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Summary : In this note, the correspondence between the solutions of the heat equation
and the positive-definite (ultra—) distributions will be considered.

§0. Introduction.

S.Bochner [1] showed that any positive-definite continuous function can be represented
by the Fourier transformation of a finite positive measure. This results was extended by
L.Schwartz to the distribution case, [12],[6]. His remarkable result says that any positive—
definite distribution must be a tempered one, which is represented by the Fourier transfor-
mation of a slowly increasing positive measure.

In this note, we shall investigate the relation between boundary values of the solutions of
the heat equation and the positive-definite (ultra—)distributions by using the heat kernel
method, [2],[3],(4],(8],[9],(10],[11]. This note contains three theorems. In Theorem 1, we
shall show that for any positive-definite continuous function, there corresponds uniquely
to a solution of the heat equation satisfying the condition (i),(ii),(iii) in Theorem 1. In
Theorem 2, the correspondence between the tempered positive—definite distributions and
the solutions of the heat equation satisfying the condition (i),(ii),(iii) in Theorem 2. In
Theorem 3, a generalization of the results of Theorem 1 and Theorem 2 to the case of some
ultra-distributions(generalized functions) will be considered. To do so, we need an extended
Bochner—Schwartz theorem for ultra—distributions which will be proved in Theorem 4.
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§1. Positive—definite continuous functions and Bochner’s Theorem

Let R™ be a n—dimensional Euclidean space whose point is denoted by
z = (21,%3, -+, ). We use the usual notation (z,€) = Y7 z;§; and i = v/—1.

Definition 1. Let f(z), £ € R, be a (complex—valued) continuous function de-
fined in R™. We say that a function f(x) is positive—definite if for any finite number
of z*,z%,---,2™ € R" and £, &, -+, €m € C we have

f(@” = 2*)€& > 0 -y
Jik=1
The following facts can be easily shown by the definition.

Proposition 1.1 Let f(z) be continuous in R™ and positive-definite. Then we have
the following facts : '

f(0)=0 (1.2)
|f(z)| < f(0), z€R® (1.3)
f(-z) = f(z), z€R" (1.4)

(Proof) (1.2) is obtained by setting m = 1 in (1.1)
FO)&* >0
To show (1.4), we set m = 2 in (1.1) :
FO)&? + f(z! = ah)e&a + f(2® — 21)6b + f(0)|&]* 2 0
Setting z! = z, 1% = 0, we have

FO)&f? + f(2)€r€2 + f(—2)&als + F(0)6af? (1.5)

Since this is real, we take complex conjugate and we have

= f(O)[&]* + F(2) &i&a + f(—2) &b + £(0) 2]
From this equality, we have

§&(f(2) - F(-2)) + &&a(f(—2) - f(2)) =0 | (1.6)
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Substituting & = 1,& = 1 and setting A = f(z) — f(—z), we have
A—A=0ie Areal
On the other hand, substituting {; = 4,& = 1 in (1.6), we get
iA—i(—A)=2iA=0ie. A=0
Next we shall show (1.3). Since the bilinear form (1.5) is positive—definite,

f(0) f(z)
m f(O)} are > 0

two eigen—values of the matrix [

This means the roots A1, Az of the equation

FOSA (7 | =¥ = (@) + Fan+ 07 - @R =0

are non-negative. So considering the relation of the roots and the coefficients, we have

Atdg = f(0)? —|f(z)[> > 0.

(q.e.d)
Examples of positive—definite functions.
(a) f(z) =1
(b) f(z) =e***(a €R)
f@ —2hEE = Y @ gE
Jik=1 Jk=1
— giar’ gjg;;xk—fk — |Z giar’ §j‘2
k=1 j=1
(c) e (a > 0)
oo . 2
e~ = l—/ Y d¢
2w J—oc0 a
(@) f(2) = —
T 14z
© 1@ =15
111 e gege 1 1 1.1
1+22 2/_006 Rl P B P
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Theorem.(Bochner’s theorem [1],(6]) In order that a function f(z) € C(R") be
positive definite, it is nesessary and sufficient that |

3 a positive measure dy(z) such that /R du(€) < oo and

f@) = @m)™ [ e du(e). (17)

§2. Relation of positive—definite functions and the heat equation
We denote by z2 = 22 + 22 + - + 22, £ = (21,22, -+, 2s) € R". The n—dimensional

heat kernel is given by

_ -n/2 —z2
E(z,t) = (4mt)™e = (t >0)
= (2m)™ /Rn @8 et ge.

Theorem 1. Let u(z) be a continuous positive—definite function in R®. Then the
function U(z,t) = / E(z — y,t)u(y) dy satisfies the following conditions :
0
Q) (5; - A)U(x,t) =0 in R™ = {(z,¢) € R*, ¢ > 0}
(ii) U(-,t) is positive—definite for V¢ > 0
(iil)  0<U(0,8) < C =u(0).

Conversely, every C®°—function U(z,t) in R?*! satisfying the conditions (i),(ii),(iii) with

a constant C can be expressed in the form U(z,t) = / E(z — y,t)u(y) dy uniquely with

u(z) = U(z,0) which is continuous, positive—definite in R%*!,

(Remark.) We donote the integral in the sense of a pair of a distribution and a test
function. |

(Proof.) (=) By Bochner’s theorem there exists a finite positive measure p(€) in
R", and u(z) can be represented by

u(z) = @m)™" [ € du(¢).
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Substituting this in the expression U(z,t), we get

UGe,t) = [ B —y)(@n0™ [ e%du©))dy = ([ (2n)(f E(m—y,we’“dy)du(e)

= (2m) ™ [ et ( [ Ba-y, t)eiyﬁdy)du(s) = (2m)™ [ e du(e)

This implies positive definiteness of U(z,t) for any ¢ > 0.
As U(z,t) becomes positive—definite, by (1.3), we have

U0l U0, < [ B lu)ldy < u0) =C

(=) Conversely, let U(z,t) satisfies (i),(ii) and (iii) with some constant C > 0. Then
by §1, (1.2),(1.3), we obtain

U(z,t)| <U©0,t) <C  (x,t) € R
Furthermore, by Theorem 19.2 in [10] or Theorem 5.7 in [11], there exists uniquely
=U(z,0) € S'(R").

and we have the expression U(z,t) = [ E(z — y,t)u(y) dy. Using the Fourier transform,
we have

O t) = ea(e).
By Bochner’s theorem, there exists a positive finite measure u;(£) such that

U(&,t) = m(€) = e*'a(¢) > 0.

This means ¥ must be a positive measure.
On the other hand, we have

U(z,t) = (20)™" / @) ¢~5(8) de. (2.1)
By (ii)
U(0,t) = (21)~" f e u(e) de < C

By using Fatou’s lemma ard tending ¢ | 0, we have (27)™" / U(€) d¢ < C, which means

that @(£) is a finite measure. By using Lebesgue’s convergence theorem in (2.1) and tending
t — 0, we have

w=U(z,0) = (2) ™" / @ a(E) dt.
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This shows u is continuous and positive—definite. (q.ed.)

Now we shall consider the relation of the positive—definite distributions v € S "(R™) and
the solutions of the heat equation.

Definition 2. © € 8 (R") is said to be positive-definite if and only if

(w,px ) >0, VpeSR"), ¢ (z)=p(-z).

We shall describe Bochner—Schwartz theorem and Riesz—Kakutani’s theorem. The former
is the extension of Bochner’s theorem to the case S’. The latter is to certificate the existence
of a positive measure.

Theorem.(Bochner—Schwartz theorem [6],[12]) In order that a distribution
f(z) € 8'(R™) be positive—definite, it is nesessary and sufficient that

J a positive measure du(z) and N > 0 such that /Rn (1+ [¢>)™N du(€) < oo and

f@)=(@m™ [ e du(e) (22)

Theorem.(Riesz—Kakutani’s theorem [3]) Every continuous, positive linear func-
tional on Co(R"™) is given by

() = [ p(@)du(),
where 4 is some positive measure (not necessarily finite).

Theorem 2. Let u(z) be a distribution € 8 (R") and positive-definite. Then the
function U(z,t) = (E(z — -, 1),u(")) = / E(z — y,t)u(y) dy
satisfies the following conditions :
) (% - A)U(:c, t) = 0 in R7H!
(ii) U(-,t) is positive-definite for V¢ > 0
(iii) 0<U@0,¢)<Ct™ (IN>0) O0<t<oo
Conversely, every C*—function U(z,t) in R+ satisfing (i),(ii),(iii) can be expressed in

the form U(z,t) =/ E(z — y, t)u(y) dy uniquely with u(z) = U(z,0) which is € 8’ and
positive—definite.
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(Proof) (=) See the proof of Theorem 1,[10],[11].
(¢<=) If U(z,t) satisfies (ii) and (iii), then by §1, (1.2),(1.3), we have

U(z,t) <U@0,t) <CA+t")  (z,t) € R
Hence by Theorem 19.2,[10] or Theorem 5.7,[11], there exists a unique
u="U(z,0) € S'(R")

and we have the representation U(z,t) = f E(z — y,t)u(y) dy, and

0< / Uz, t)p + o*(z)dz, Vo e SR (2.3)
Ast | 0, we have
(u(z), o % %) 2 0.
Substituting the integral representation of U(z,t) in (2.3), then we can get

(] B -y0uw)dy) o+ ¢'(2) da.
Changing the order of the integrals, we have
= [([ B -yt x¢' @) do) ulw) dy
Using the representation of U(z,t), we have
= f Uz, t)p * *(z) dzx
Using Parseval’s equality, we have
[ e a@)lpr de > o.
By Bochner—Schwartz theorem, there exists a finite measure p;(§) and
U(1) = m(€) = ™€) 2 0

Tending t | 0, we have (G(€), |¢(€)[?) > 0. This means that 4 is multiplicatively positive
in 8. We know every multiplicatively positive distribution in &' is a positive one by the
argument given in §2,Chapter 2 in [6]. Hence, by Riesz—Kakutani’s theorem, @ is a positive
measure.
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We have to show i is a tempered measure, that is to say, there is a positive constant k
such that ‘

[+ P *ade < oo

Since # is continuous in & ’(R“), we have the following inequality

(@) <C Y sup [€%02 p(€)], ¢ € S(RM) (2.4)

|et],|B|<k

Taking p(&) = (1+ [€")7*, we set Uy(§,t) = | E(€ — n,t)¢(n) dn = ¢4(€), which plays a
role of a barrier function. We substitute ¢;(§) in the right-hand-side of (2.4). We have

£ pi(€) = € / O E(& — m,t)pi(n) dn

Considering 6‘? E(¢—n,t) = (—8,)PE(§—n,t), integrating by parts and using the inequality
€] < 2°I(|¢ — plle! + |n|!™!), we get the terms of the right-hand-side in (2.4) with ¢ = ¢
are finite. Hence we have

G, e < C for (0<t<T).

Tending ¢ | 0, we have
[+ ade < oo

(q.e.d.)

The next theorem is concerned with the ultra-distributions, that is, generalized functions
in (82)'(in the sense of Gelfand-Shilov).
We shall give the folloing definition.

Definition 4. ([5]) We say that a function ¢(z) is € S;f (R") if there exist
0<ms, 1<r+s<ooand C such that

|22 DEyp(z)| < CA® BPlal™g1 for V o, B € N™

holds. We denote by S;(R") the inductive limit of S, 'P(R™) as A, B — 0o0. And we denote
by (S(R™))’ the set of the generalized functions on S(R®).

Definition 5. u € (8(R™))’ is said to be positive-definite if and only if

(v, pxp*) 20, VoeS(R"), ¢"(z)=¢p(-z).
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Then the following theorem holds.

Theorem 3 We assume that § < r,s < co. Let u(z) be a generalized function €
(S:(R™))’ and positive-definite. Then the function

U(z,t) = (E(z — y,t),u(y)) = / E(z — y,t)u(y) dy satisfies the following conditions :

(i) (g-t - A)U(m, ) =0in RY™.
(i) U(-,t) is positive—definite for V¢ > 0.

-1
(i) In case -;— <8< 00, for Ve > 0,VT >0 we have 0 < U(0,t) < C.e*™ " 0<t<T,

where C; is a constant depending on .
iii)’ In case s = %, for VT > 0 we have 0 < U(0,t) < C(t) < o, 0<t<T,
2

where C(t) is a constant depending on ¢.

Conversely, every C*—function U(z, t) in R+!, satisfing (i),(ii),(iii) or (i),(ii),(iii)’ can be
expressed in the form U(z,t) = / E(z — y,t)u(y) dy uniquely with u(z) = U(z,0) which
is € (82(R™))" and positive-definite .

Remark (1) In §3, we shall show that 4 is a positive measure and for Ve > 0

[ e dg < oo,

i.e. infra—exponentially increasing.
(2) In case s = 1 in Theorem 3, we have |U(z,t)| < U(0,t) < Ceei so that
u € B(R™), Fourier hyperfunction.

(Proof) (=) By the extended Bochner-Schwartz theorem(Theorem 4 in §3), there
exists a (infra~exponential) positive measure p(€) such that

u(@) = (2m) " [e=du(e).
Since E(-,t) € Siﬁ, u € (8;), u € (8]), we have

Ule,t) = [ Blo -y tuly)dy = @r) ™ [ o0 () de € 0=(RLH)

and satisfes (ii).
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For (iii), we have to estimate the integral
U(0,8) = (2m)™ [ ea(g) dg = (2m) " supe €+’ [ o=t q(c) dg,
13
We have the inequality
0 < U(0,t) < C.sup e~ %+l
£
by setting C. = (2m)™ [ e~<€I"*qi(¢) d¢. Estimating the sup and setting —6%213_;*(1 —2s)

by €, we have
U(0,t) < Ceet™ @

To prove (iii)’, we estimate the integral for ¢ > ¢
U(0,t) = (21)" / e a(€) dé = (2m)" sup gt elel? / e~ a(e) de.
For t > ¢, sup is estimated by < 1 and the integral is estimated by C.. Hence we obtain
(i)',
(<=) In case (iii)
Uz, )| < U(0,8) < Cee®™ ., 0<t<T.
Using Theorem 2.1 in [2], for 1 < Vr < 0o, we have uniquely
u=U(z,0) € (8(R™))".
Furthermore we can represent
Uz, 1) = (E(z —,8),uly)) = [ (e - y,t)uly) dy.
By the assumption, we have
/ Uz, t)p* o' dz >0 Yy e SR (2.5)

Tending t — 0, we get
(u, o % ") 20
- Substituting the integral representation of U(z,t) in (2.5), then we can get

J{B(@ - ,8),u(y)) o x " (2) da.
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By continuity of the generalized function and the definition of the integral, we have

= ([ B(z —,t) g+ ¢"(2) dz, u(y))

Using Parseval’s equality, we have
42 p oy ~
[ e aer e > o.

By the extended Bochner-Schwartz theorem(Theorem 4), there exists a positive measure
p:(§) and R , .

U t) = m(€) =™ u(€) 20
Tending ¢ | 0, we have (@(€), |¢(€)|?) > 0. This means that 4 is multiplicatively positive
in 8;. We can see that every multiplicatively positive generalized function in (S;(R"™))’

is a positive one by almost the same argument given in §2,Chapter 2 in [6]. Hence, by
Riesz—Kakutani’s theorem, ¢ is a positive measure. By Theorem 4, we have

[ ek a(g) de < oo
(q.e.d)
§3. Extended Bochner—Schwartz theorem

We shall show the extended Bochner-Schwartz theorem for the generalized functions in
(S:(BR™)".
Theorem 4. In order that a generalised function u € (87(R"))’ be positive-definite,

it is nesessary and sufficient that there exists a positive measure du(€) such that for any
€ > 0 we have fR e~1* du(€) < 00 and

u(z) = (2m)™ [ ¢4 du). (31)

(Proof) (<) The sufficiency of the proof can be obtained by almost the same way
as in the proof of Theorem 1 and 2, where the heat kernel method might be used effectively.
(=) The proof is divided into 4 steps.
(Step 1) (EE) = &, by Gelfand-Shirov [5]. Since i, for Vo € 87, we have

0 < (u, % @*) = (@, 0 * ") = (@, p* ¢*) = (@, 3.
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So @* is a multiplicatively positive in S8;. Hence we have #* is positive in 8], then in Cy
by using the heat kernel method. ‘

(Step 2) By Riesz—Kakutani’s theorem, 4*(€) is a positive measure.

(Step 3) Applying the Theorem 4.2 in Chung-Kim [4] to non-negative solution of the
heat equation U*(&,t) = / E(& — n,t)a*(n) dn > 0, we have

0 < U*(E,t) <tk 0<t<T.
(Step 4) Since the growth order of U(¢,t) in ¢ is t ™2, we have
0<U(§,0)=a"(§) € D'(RY).

Setting m = [g] + 1.

fit)=3 (m-1)!

m—1
t— fort>0
0 fort <0.

For f(t), v(t) and w(t) are constructed satisfying following conditions :
v(t) = f(t) for ¢ < 1,supp(v) C [0,2],
(d/de)™(t) = 5(8) + w(t), supp(w) C [1,2] 32)
By the Theorem 19.2 in [10] or Theorem 5.7 in [11], we have
0<U*(¢,t) = /02 U*(¢,q + t)v(s) dg € Ok,
U*(&,t) is C* in R™ x (0,2) and
|U*(&,8)] < Cexp(elé]'V?)

We can use U*(€,t) is continuously extended to R™ X [0, 2).

(g - A) U*(¢,t) =0in R™ x (0,2). (3.3)

Integrating by part and using (3.2) we have the equality

(a0 = ()"0 (6,0 = U (E ) + [ U6t + ule)da
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9 .
We set h(€,t) =/0 U*(&,t + q)w(q) dg. We see h(¢,t) is C* in R™ x (0,2) which is con-
tinuously extended to R™ x [0, 2). Furthermore we see

|R(€,1)] < Cexp(el¢]').
Setting g(€) = U*(£,0) and tending t — 0, we have
(=A)™g(§) = U*(€,0) + h(£,0).

This means ~
(=A)"U*(&,8),(8)) = (U™, 9(€)) + (h(&, 1), p(§))-
Left-hand-side of the above equality is equal to

{U*(&,1), (=A)™p(&)))

Tending ¢ — 0, we have

(9, (=A)"p(£))) = (u*,0) + (h(£), ¥).

So we obtain the estimate (3.1)
0< [ e a(g) dg < oo

(g.ed)
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