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 Summary  : In this  note, the correspondence between the solutions of the heat equation 
and the positive-definite (ultra-) distributions will be considered. 

§0. Introduction. 
 S.Bochner [1] showed that any positive-definite continuous function can be represented 

by the Fourier transformation of a finite positive measure. This results was extended by 

 L.  Schwartz to the distribution case,  [12],[6]. His remarkable result says that any positive-
definite distribution must be a tempered one, which is represented by the Fourier transfor-

mation of a slowly increasing positive measure. 

 In this note, we shall investigate the relation between boundary values of the solutions of 

the heat equation and the positive-definite (ultra-)distributions by using the heat kernel 
method,  [2],[3],[4],[8],[9],[10],[11]. This note contains three theorems. In Theorem 1, we 
shall show that for any positive-definite continuous function , there corresponds uniquely 
to a solution of the heat equation satisfying the condition  (i),(ii),(iii) in Theorem 1. In 
Theorem 2, the correspondence between the tempered positive-definite distributions and 

the solutions of the heat equation satisfying the condition  (i),(ii),(iii) in Theorem 2. In 
Theorem 3, a generalization of the results of Theorem 1 and Theorem 2 to the case of some 

ultra-distributions(generalized functions) will be considered. To do so, we need an extended 
Bochner-Schwartz theorem for ultra-distributions which will be proved in Theorem 4. 
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 §1. Positive—definite continuous functions and Bochner's Theorem 

    Let  Rn be a n-dimensional Euclidean space whose point is denoted by 

  x  =  (x1,  x2,  •  •  •  ,  xri)• We use the usual notation (x,  e) =  xjej and i 

    Definition 1. Let  f(x), x E  It', be a (complex-valued) continuous function de-
  fined in  Rn  . We say that a function  f(x) is positive-definite if for any finite number 

   of  x1,  x2,••  •  ,  Xm  E  RTh  and  6,  6,  •  •  •  ,  C  we  have 

                  E  f  (xi  -  xk)66:  >  0 (1.1) 
                                       j,k=1 

    The following facts can be easily shown by the definition. 

    Proposition 1.1 Let  f(x) be continuous in  Rn and positive-definite. Then we have 
  the following facts : 

 AO)  0 (1.2)  

I  f  (x)  I<  AO),  x  E  Rn  (  1  .  3) 

 f  (-x)  =  f(x),  x  E  Rn (1.4) 

   (Proof) (1.2) is obtained by setting  m = 1 in (1.1) 

            f (0)10 0 • 

    To  show  (1.4),  we  set  m  =  2 in (1.1) : 

 f  (0)1612 +  f  (xl —  x2)66  +  f  (x2 —  x1)66.  +  f  (0)1612  > 0 

  Setting x1 =  x,  X2 = 0, we have 

 f  (0)102  +  f  (x)eiG  +  f  (-x)C26  f  (0)1612 (1.5) 

  Since this is real, we take complex conjugate and we have 

             =  f  (0)1612 +  f  (x)  f  (-x)Gei  f  (0)  ie212 

  From this equality, we have 

 6e2Cf(x)  f  (—x))  +16(f  (—x) —  f  (x)) =  0 (1.6) 
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Substituting  e1 =  1,  6  = 1 and setting A =  f  (x) -  f  (-x), we have 

 A  -  A  =  0  i.e.  A  real 

On the other hand, substituting  ei = i,  6 = 1 in (1.6), we get 

 iA  -  i(-A)  =  2iA  =-  0  i.e.  A  =  0 

 Next we shall show  (1.3). Since the bilinear form  (L5) is positive-definite, 

       [ 

          two eigen-values of the matrix1(0) f (x) are  > 0  f  (x)  f  (0) 

This means the roots  A1, A2 of the equation 

    f(0) - A  f(x)  = A2 —  (  f  (x)  +  f  (x))A  +  1  (0)2 -  1  f  (x)I2 = 0 
     f(x) f(0) - A 

are non-negative. So considering the relation of the roots and the coefficients, we have 

 A1A2 =  f  (V —  If (x)!2  _?_  0• 

                                                   (q.e.d) 

 Examples of positive-definite functions. 

 (a)  f(x)  =  1 
(b)  f  (x) =  eiax(a  E R) 
         mm 

       E f(xi  — xk)ej-cc= E eia(xi_.k)66 
                         _=-     ,,k1 j,k=  1 

 m  m 

 = Eeiaxj6eiaxk6,= 1Eeiaxi612 
 j,k=1  j=1 

(c)  e-'2 (a  > 0) 
                                                        00  e—aS2 =1 — feiS\rire-4c'de 

                        27r-coa 

(d)  f(x) =  1        1 ± ix 

(e)  f  (x)=  1         1 + x2 

      1 1  1    1                        1 f c)c) eixe--Itl de =  +1. 
 1  +  x2 2 -00 2zx-1 2x+1 
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 Theorem.(Bochner's theorem  [1],[6]) In order that a function  f(x)  E  C(Rn) be 

positive definite, it is nesessary and sufficient that 

 3 a positive measure  da(x) such that f dp(0  <  oo and 
                                               Rn 

 f  (x) =  (27r-)-n f ei(x)  di/W.  (1.7) 
                                 Rn 

§2. Relation of positive—definite functions and the heat equation 

 We denote by x2 =  x? +  x2 +  •  •  • +  xn2, x = (x1,  x2,  •  • • ,  xn) E  Rn. The n-dimensional 
heat kernel is given by 

 E(x,  t) =  (47rt)-n/2e- (t > 0) 

                   = (27)-nfei(X'°e-g2  de. 
                                Rn 

 Theorem 1. Let u(x) be a continuous positive-definite function in  Rn. Then the 
function U(x, t) = f E(x — y, t)u(y) dy satisfies the following  conditions  : 

 (i) —  A)U(x,t)  = 0 in  RY'.+1 =  {(x,t) E  Rn+1,  t>  0}  at 

(ii) t) is positive-definite for  Vt > 0 

(iii) 0  < U(0, t)  < C = u(0). 

 Conversely, every  C°°-function  U(x, t) in  RV satisfying the conditions  (i),(ii),(iii) with 
a constant C can be expressed in the form U(x, t) =  I E(x — y,  t)u(y)  dy uniquely with 
u(x)  = U(x, 0) which is continuous, positive-definite in RV-. 

 (Remark.) We donote the integral in the sense of a pair of a distribution and a test 
function. 

 (Proof.)  () By Bochner's theorem there exists a finite positive measure  p(e)  in 
 Rn, and u(x) can be represented by 

             u(x) =  (27r)-n f  dp(e). 
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   Substituting this in the expression U(x, t), we get 

 U(x,  t) =  f  E(x y, t) ((27)-n f eivtdp(e))dy = (J(27)-n(fE(x — y,t)ejYt dy)dy(0 

 =  (27)-n f  eixe  (f E(x —  y,t)eivtdy)dit()  =  (27)-neiste-tedge) 
   This implies positive definiteness of U(x, t) for any  t  > 0. 

     As  ,U(x, t) becomes  positive-definite, by (1.3), we have 

            1U(x,t)1 <  U(0,  t)  <f  _E(y,t)lu(y)Idy,  < u(0) C 
    () Conversely, let U(x, t) satisfies (i),(ii) and (iii) with some constant C > 0. Then 

   by §1, (1.2),(1.3), we obtain 

 1U(x,t)1  _<  U(0,  t)  < C  (x,  t) E RT+1 

   Furthermore, by Theorem 19.2 in [10] or Theorem 5.7 in [11], there exists uniquely 

                      u =  U(x,  0)  E  Si(Rn). 

   and we have the expression U(x, t) = f E(x —  y,  t)u(y) dy. Using the Fourier transform, 
   we have 

 0(e, t) =  e-teil(e)- 

   By Bochner's theorem, there exists a positive finite measure  itt(e) such that 

 0(e, t)  =  fit(e) =  e-g2ii(e)  _?_ 0. 

   This means  it must be a positive measure. 

   On the other hand, we have 

 U(x,t)  =  (27)-n  f  ei(x't)  e-tefi(e)  de. (2.1) 
  By (iii) 

                 U(0, t)  =  (27)-n  e-te  u(e)  d  < C 

   By using Fatou's lemma and tending t  J 0, we have  (27)-n f  u(e)  d  < C, which means 
   that  u(e) is a finite measure. By using Lebesgue's convergence theorem in (2.1) and tending 
   t 0, we have 

                  u = U(x, 0)  =  (27)-n f  ei(x7t)fi(e)  de. 
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This shows u is continuous and positive-definite.  (q.  e.  d.  ) 

 Now we shall consider the relation of the positive-definite distributions u E  Si(Rn) and 

the solutions of the heat equation. 

 Definition 2. u  E  S'(Rn) is said to be positive-definite if and  only if 

           (u,  Sp *  (p*)  _> 0,  V  co  E  S(Rn),  co*  (x) = cp(- x)• 

 We shall describe Bochner-Schwartz theorem and  Riesz-Kakutani's theorem. The former 

is the extension of Bochner's theorem to the case  8`. The latter is to certificate the existence 

of a positive measure. 

 Theorem.(Bochner-Schwartz theorem  [6],[12]) In order that a distribution 

 f  (x) E 4.5'(Rn) be positive-definite, it is nesessary and sufficient that 

  3 a positive measure  dµ(x) and N  > 0 such that I Rn(1 +  le12)-N dp(e)  <  oo and 
 f  (x) =  (27r)-n f ei(x'° dp() (2.2) 

                                 Rn 

 Theorem.(Riesz-Kakutani's theorem [3]) Every continuous, positive linear func-
tional on  Co(Rn) is given by 

 (F,  co) = f  co(x)  dit(x), 
 whereµ is some positive measure (not necessarily  finite). 

 Theorem 2. Let u(x) be a distribution E  45'(Rn) and positive-definite. Then the 

function U(x, t) = (E(x -  •  ,t),  u(•)) =  f E(x -  y,  t)u(y) dy 
satisfies the following conditions : 

(i)  (—  -  A)  U(x,  t)  =  0  in  Rn++1  at 

(ii)  U  (-  ,t) is positive-definite for  Vt > 0 

(iii) 0  < U(0, t)  <  Ct'  (3N > 0) 0 < t <  co 

 Conversely, every  C'-function U(x, t) in  RT+1 satisfing  (i),(ii),(iii) can be expressed in 

the form U(x, t) = f E(x -  y,  t)u(y) dy uniquely with u(x) = U(x, 0) which is E  45' and 
positive-definite. 
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        (Proof) ( >) See the proof of Theorem  1,[10],[11]. 
          (< ) If U(x, t) satisfies (ii) and (iii), then by §1, (1.2),(1.3), we have 

 1U(x,t)l<  U(0,  t)  < C(1  ±t-N)  (x,t) E 

       Hence by Theorem  19.2,[10] or Theorem  5.7,[11], there exists a unique 

                         u =  U(x,  0) E  Si(Rn) 

       and we have the representation U(x, t)  E(x —  y, t)u(y) dy, and 

                    0  <  f  U(x,t)co*  (p*  (x)  dx  V E  S(Rn). (2.3) 
       As t 0, we have 

                          (u(x), * co*) _> 0. 

       Substituting the integral representation of U(x, t) in (2.3), then we can get 

                  (1 E(x —  y,  t)u(y)  dy)  co *  cp*  (x) 
       Changing the order of the integrals, we have 

                =  f  (f  E(x —  y,  t) *  co*  (x)  dx)  u(y)  dy 
       Using the representation of U(x, t), we have 

                       =  U(x,  Oct)  *  co*  (x) 

        Using Parseval's equality, we have 

                      f e-teli(e)lcol2 0. 
        By Bochner-Schwartz theorem, there exists a finite measure  µt  (e) and 

 0(e, t) =  ,ut =  e-g2i/()  ?_ 0 

       Tending t  J, 0, we have (1/(0,140(612)  > 0. This means that it is multiplicatively positive 
       in S. We know every multiplicatively positive distribution in  S' is a positive one by the 

       argument given in  §2,Chapter 2 in  [6]. Hence, by Riesz-Kakutani's theorem,  u is a positive 
          measure. 
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 We have to show  'a is a tempered measure, that is to say, there is a positive constant k 

such that 

 1(1-1-  0)-k fade < oo 
Since  fi is continuous in  S'(Rn), we have the following inequality 

           (ii, co) I < C  E sup  lea":  co()  i, E  s(Rn) (2.4) 

Taking  co(e) = (1 +  le12)  k, we set  Uw(e, t) = f  E( -  t)(p(n)  dri =  apt(), which plays a 
role of a barrier function. We substitute  cot () in the  right-hand-side of  (2.4). We have 

            caNt(e)  =  SafatE  (e - 71, t)(pt(n)  dri 
Considering  0:E  (e t) =  (-5,00  E(e—n,t), integrating by parts and using the inequality 
Ida I  <  2H (le  -7711a1+17711a1), we get the terms of the right-hand-side in (2.4) with  (00 =  cot 
are finite. Hence we have 

 

I  (it,  (Pt)  C  for  (0  <  t  <  T). 

Tending t  J, 0, we have 

 f (1 +  jerk  ud < oo 
                                                          (q.e.d.) 

 The next theorem is concerned with the  ultra-distributions, that is, generalized functions 

in  (Si!)  (in the sense of  Gelfan.d-Shilov). 
 We shall give the folloing definition. 

 Definition 4. ([5]) We say that a function  (p(x) is E  Srs:PRn) if there exist 
 0  <  r,  s, 1  <r+s<oo  and  C  such  that 

 

lx"/j1cp(x)1  <  CAI  al  Bifilar  p for  V  a,  ,Q  E  Nn 

holds. We denote by  SARn) the inductive limit of  Srs:T(Rn) as A, B  --+ oo. And we denote 
by  (8;(111)' the set of the generalized functions on SgRn). 

 Definition 5. u  E  (45:(R.n))'  is said to be positive-definite if and only if 

           (u,  cp *  yo*)  > 0,  Vcp E  SARn),  co*  (x) = co(-x)• 
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Then the following theorem holds. 

 Theorem 3 We assume that  a  < r, s <  oo. Let u(x) be a generalized function E 
 (Srs(Rn))' and positive-definite. Then the function 

U(x, t) =  (E(x —  y,  t)  , u(y)) = f  E(x —  y, t)u(y) dy satisfies the following  conditions  : 
(i) —  A)U(x,t)  =  0 in  RT+1. 

   at 

(ii)  U  (.  , t) is positive-definite for  Vt > 0. 
                                                                                                                                                                                --1 

(iii)  In  case  2 <s<oo,forVc>0,VT>0wehave0<U(0,t)<CEedtT=1  0  <  t  <  T, 

   where  C, is a constant depending on  E. 

(iii)'  In  case  s  =  1,  for  VT  >  0  we  have  0  <  U(0,  t)  <  C(t)  <  oo,  0  <  t  <  T, 

where C(t) is a constant depending on  t. 
 Conversely, every  C'-function U(x, t) in RT+1+1, satisfing  (i),(ii),(iii) or  (i),(ii),(iii)' can be 

expressed in the form U(x, t) = f  E(x —  y, t)u(y) dy uniquely with u(x) = U(x, 0) which 
is  E (5,,r(Rn))/ and positive-definite . 

 Remark (1) In §3, we shall show that  u is a positive measure and for V € > 0 

                 f il(e)e-'111  de <  oo, 
i.e. infra-exponentially increasing. 

    (2) In case s = 1 in Theorem 3, we have  1U(x,  t)1  <  U(0,  t)  <  CEO so that 
u E  13(Rn), Fourier hyperfunction. 

 (Proof) ( By the extended Bochner-Schwartz theorem(Theorem 4 in §3), there 
exists a (infra-exponential) positive measure  11(0 such that 

                 u(x)  =  (27)-n f  e(x,  dp,(e)• 

Since  E  (.  ,  t)  E u E  (45;7,  u  E  (SD', we have 

     U(x, t) =  f  E(x —  y, t)u(y) dy =  (27r)-n  f  ei(x'°  ii(e)  d E  C°°(R.,74-1) 
and satisfes (ii). 
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  For (iii), we have to estimate the integral 

                                    fV/sii(e)ck.  U(0, t)  = (27rrn fe-g211(0d= (2irrn supe--g2+11/8e-€ 
We have the inequality 

                                     e+Eles  0  <  U(0, t)  <  C, sup e-t 

by setting  C, =  (270' f  e-clesfi(e)  de. Estimating the sup and setting  —€291.  2  et  (  1  -  2  s  ) 
by c, we have 

 U(0, t)  <  CfeEt-"(28-" 

  To prove (iii)', we estimate the integral for t > c 

 U  (0  , t)  (27)n  f  eg2i1(e)  de =  (27r)n  sup  e-g2+ell2  f  e-E1Wii(e)  de. 
For t > c, sup is estimated by  < 1 and the integral is estimated by  CE. Hence we obtain 

(iii)'. 

  (< ) In case (iii) 
                                                                 -1 

             IU(x,t)I <  U(0,  t)  <  C,ef°7-71., 0  <  t  <  T. 

Using Theorem 2.1 in [2],  fora  < Vr <  oo, we have uniquely 

 u  =  U(x,  0)  E  Alln)) 

Furthermore we can represent 

       U(x, t)  (E(x —  y, u(y)) =  f E(x  —  y  ,t)u(y) dy. 
By the assumption, we have 

                f U  (x  ,  t)co  *  co* dx  > 0  V4o  E  SNEV). (2.5) 
Tending t 0, we get 

 (u,  cp  *  co*)  0 

Substituting the integral representation of U(x, t) in (2.5), then we can get 

              I (E(x —  y  ,t), u(y))  SP *  co*  (x)  dx. 
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By continuity of the generalized function and the definition of the integral, we have 

             = (f  E(x -  y, t) *  co*  (x) dx, u(y)) 
Using Parseval's equality, we have 

               f e-tefi()Icor  4> 0. 
By the extended Bochner-Schwartz theorem(Theorem 4), there exists a positive measure 

 pt  (e) and  -0(
e, t) =  ptt(0 =  e-g2ii(e) 0 

Tending t  4. 0, we have  (i2(e),  Ico(e)12)  > 0. This means that  is is multiplicatively positive 
in  S. We can see that every multiplicatively positive generalized function in  (Srs(Rl)' 
is a positive one by almost the same argument given in §2,Chapter 2 in  [6]. Hence, by 
Riesz-Kakutani's theorem,  is is a positive measure. By Theorem 4, we have 

                  fe-€1611/87a(e) < oo 
                                                      (q.e.d) 

§3. Extended Bochner—Schwartz theorem 
 We shall show the extended Bochner-Schwartz theorem for the generalized functions in 

 (49:(Rn)) 

 Theorem 4. In order that a generalised function u E  (ST  Rn)) be positive-definite, 
it is nesessary and sufficient that there exists a positive measure  dp,() such that for any 

 > 0 we have e-€161118  41(0  <  oo and 
             R. 

            u(x) = (27)-n f n ei(s4)(3.1) 

                          R 

 (Proof) (< ) The sufficiency of the proof can be obtained by almost the same way 
as in the proof of Theorem 1 and 2, where the heat kernel method might be used  effectively. 

   ( >) The proof is divided into 4 steps. 
 (Step 1)  (Si!) =  4578' by Gelfand-Shirov  [5]. Since  it*, for  V  co E 4,91.9.,we have 

 0  <(u,  Co  *  40*) =  *  (P*) =  (ar,  4040*) =  (u,  1C-512). 
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   So  ir is a multiplicatively positive in  S. Hence we have  Cr is positive in then in  Co 

   by using the heat kernel method. 

     (Step 2) By Riesz-Kakutani's theorem,  ii*(e) is a positive measure. 
     (Step 3) Applying the Theorem 4.2 in Chung-Kim [4] to non-negative solution of the 

   heat equation  U*  (e, t)  =  f  E(e -  (n)  dii  > 0, we have 
                     0  <  U*(e,t)  <  rti/2eEles, 0 < t  < T. 

     (Step 4) Since the growth order of  U(e,t) in t is  t-71/2, we have 

 0  <  U*(e,  0) =  ii*() E V(Rn). 

   Setting m  =  [7:211]+ 1. 
 tm-1 

 f  (t)(m - 1)!for t > 0 
                           0  for  t  <  0. 

   For  f  (t), v(t) and w(t) are constructed satisfying following conditions 

               v(t) =  f  (t) for t  <  1,  supp(v) C  [0,  2], 

 (d/  dt)nv  (t) =  5(t) + w(t), supp(w) C [1, 2]. (3.2) 

   By the Theorem 19.2 in [10] or Theorem 5.7 in  [11], we have 

            0  <  0*(e, t) =f2  U*(, q + t)v(s) dq E 0(eele8). 
 t) is  C°° in  Rn x  (0,2) and 

 10*(e,t)l<  Cexp(eler) 

   We can use  U*  (e, t) is continuously extended to  Rn x  [0,2). 

                (-5-ta- A)r/*(e,t)= 0 in  Rn x  (0,2). (3.3) 
   Integrating by part and using (3.2) we have the equality 

      (-Artj*(,t)= (-d2-dt)0*(e,t)= U*(e, t)+f  U* t +  q)w  (q) dq 
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                 2  We set  h(e, t) = fU* (e, t q)w  (q) dq. We see  h(e, t) is  C°° in  Rn  x  (0,  2) which is con-
 tinuously extended to  Rn x [0,  2). Furthermore we see  

I  h(e  ,  Cexp(ejellis). 

 Setting  g(e)  (e, 0) and tending t 0, we have 

 (—A)mg(e) =  U*(e, 0) + h(e, 0). 

 This means 

 ((—:A)m0*(e,t),(P(e)) =  (U*,  VW) +  (h(,  t), WO. 

 Left—hand—side of the above equality is equal to 

 (t-/-*(e,t),(---A)m(P(e))) 

 Tending t 0, we have 

                (g,  (—  A)'  (XV) =  (u*,  (p) +  (h(e),  co) 

 So we obtain the estimate (3.1) 

               0  <  f  8  u(e)  de < oo 
                                                          (q.e.d.) 
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