

Nagoya City University Academic Repository

学位の種類	博士 (医学)
報告番号	甲第1414号
学位記番号	第1019号
氏 名	沼野 琢旬
授与年月日	平成 26 年 3 月 25 日
学位論文の題名	Comparative study of toxic effects of anatase and rutile type nanosized titanium dioxide particles in vivo and in vitro (アナターゼ型およびルチル型ナノサイズ二酸化チタニウム粒子の in vivo および in vitro における毒性影響の比較) Asian Pac J Cancer Prev, in press.
論文審查担当者	主查: 高橋 智 副查: 上島 通浩, 酒々井 眞澄

Abstract

There are three mineral forms of natrual titanium dioxide partilces: rutile, anatase and brookite. Two types of nanosized titanium dioxide, anatase (anTiO₂) and rutile (rnTiO₂), are being manufactured in large quantities worldwide and widely used in industry, commercial products and biosystems. Large quantity production and widespread application of nTiO₂ have given rise to concern about its health and environmental effects. Previous reports indicated that under ultraviolet irradiation, anTiO₂ is more toxic than rnTiO₂ in vitro because of the difference in their crystal structures. In the present study, we compared the *in vivo* and *in vitro* toxic effects caused by anTiO₂ and rnTiO₂. Female SD rats were treated with 500 µg/ml of anTiO₂ or rnTiO₂ suspensions by intra-pulmonary spraying 8 times over a two week period. In the lung, treatment with anTiO₂ or rnTiO₂ increased alveolar macrophage numbers and levels of 8-hydroxydeoxyguanosine (8-OHdG). These increases tended to be lower in the anTiO₂ treated group compared to the rnTiO₂ treated group. MIP1 α mRNA and protein expression in the lung tissues treated with anTiO₂ and rnTiO₂ was also significantly up-regulated. Higher mRNA and protein expression of MIP1 α were seen in the rnTiO₂ group than in the anTiO₂. In cell culture of primary alveolar macrophages (PAM) treated with anTiO₂ and rnTiO₂, expression of MIP1 a mRNA in the PAM and protein in the culture media was

significantly higher than in control cultures. Similarly to the *in vivo* results, MIP1 α mRNA and protein expression was significantly lower in the anTiO₂ treated cultures compared to the rnTiO₂ treated cultures. Furthermore, conditioned cell culture media from PAM cultures treated with anTiO₂ had less effect on A549 cell proliferation compared to conditioned media from cultures treated with rnTiO₂. However, no significant difference was found in the toxicological effects on cell viability of ultra violet irradiated anTiO₂ and rnTiO₂. Conclusively, our results indicate that anTiO₂ is less potent in induction of alveolar macrophage infiltration, 8-OHdG and MIP1 α expression in the lung, and growth stimulation of A549 cells *in vitro* than rnTiO₂.