Positive-Definite Generalized Functions and the Heat Equation

Yoshiaki HASHIMOTO

Institute of Natural Sciences, Nagoya City University, Yamanohata 1-1, Mizuho-ku, Nagoya, 467-8501, Japan.
key words : heat equation, positive-definite functions, Bochner's theorem, the Bochner-Schwartz theorem

Summary : In this note, the correspondence between the solutions of the heat equation and the positive-definite (ultra-) distributions will be considered.

§0. Introduction.

S.Bochner [1] showed that any positive-definite continuous function can be represented by the Fourier transformation of a finite positive measure. This results was extended by L.Schwartz to the distribution case, [12],[6]. His remarkable result says that any positivedefinite distribution must be a tempered one, which is represented by the Fourier transformation of a slowly increasing positive measure.
In this note, we shall investigate the relation between boundary values of the solutions of the heat equation and the positive-definite (ultra-)distributions by using the heat kernel method, $[2],[3],[4],[8],[9],[10],[11]$. This note contains three theorems. In Theorem 1, we shall show that for any positive-definite continuous function, there corresponds uniquely to a solution of the heat equation satisfying the condition (i),(ii),(iii) in Theorem 1. In Theorem 2, the correspondence between the tempered positive-definite distributions and the solutions of the heat equation satisfying the condition (i),(ii),(iii) in Theorem 2. In Theorem 3, a generalization of the results of Theorem 1 and Theorem 2 to the case of some ultra-distributions(generalized functions) will be considered. To do so, we need an extended Bochner-Schwartz theorem for ultra-distributions which will be proved in Theorem 4.

§1. Positive-definite continuous functions and Bochner's Theorem

Let \mathbf{R}^{n} be a n -dimensional Euclidean space whose point is denoted by $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$. We use the usual notation $\langle x, \xi\rangle=\sum_{j=1}^{n} x_{j} \xi_{j}$ and $i=\sqrt{-1}$.

Definition 1. Let $f(x), x \in \mathbf{R}^{n}$, be a (complex-valued) continuous function defined in \mathbf{R}^{n}. We say that a function $f(x)$ is positive-definite if for any finite number of $x^{1}, x^{2}, \cdots, x^{m} \in \mathbf{R}^{n}$ and $\xi_{1}, \xi_{2}, \cdots, \xi_{m} \in \mathbf{C}$ we have

$$
\begin{equation*}
\sum_{j, k=1}^{m} f\left(x^{j}-x^{k}\right) \xi_{j} \overline{\xi_{k}} \geq 0 \tag{1.1}
\end{equation*}
$$

The following facts can be easily shown by the definition.
Proposition 1.1 Let $f(x)$ be continuous in \mathbf{R}^{n} and positive-definite. Then we have the following facts :

$$
\begin{gather*}
f(0) \geq 0 \tag{1.2}\\
|f(x)| \leq f(0), \quad x \in \mathbf{R}^{n} \tag{1.3}\\
f(-x)=\overline{f(x)}, \quad x \in \mathbf{R}^{n} \tag{1.4}
\end{gather*}
$$

(Proof) (1.2) is obtained by setting $m=1$ in (1.1)

$$
f(0)\left|\xi_{1}\right|^{2} \geq 0
$$

To show (1.4), we set $m=2$ in (1.1) :

$$
f(0)\left|\xi_{1}\right|^{2}+f\left(x^{1}-x^{2}\right) \xi_{1} \overline{\xi_{2}}+f\left(x^{2}-x^{1}\right) \xi_{2} \overline{\xi_{1}}+f(0)\left|\xi_{2}\right|^{2} \geq 0
$$

Setting $x^{1}=x, x^{2}=0$, we have

$$
\begin{equation*}
f(0)\left|\xi_{1}\right|^{2}+f(x) \xi_{1} \overline{\xi_{2}}+f(-x) \xi_{2} \overline{\xi_{1}}+f(0)\left|\xi_{2}\right|^{2} \tag{1.5}
\end{equation*}
$$

Since this is real, we take complex conjugate and we have

$$
=f(0)\left|\xi_{1}\right|^{2}+\overline{f(x)} \overline{\xi_{1}} \xi_{2}+\overline{f(-x)} \overline{\xi_{2}} \xi_{1}+f(0)\left|\xi_{2}\right|^{2}
$$

From this equality, we have

$$
\begin{equation*}
\xi_{1} \overline{\xi_{2}}(f(x)-\overline{f(-x)})+\overline{\xi_{1}} \xi_{2}(f(-x)-\overline{f(x)})=0 \tag{1.6}
\end{equation*}
$$

Substituting $\xi_{1}=1, \xi_{2}=1$ and setting $A=f(x)-\overline{f(-x)}$, we have

$$
A-\bar{A}=0 \text { i.e. } A \text { real }
$$

On the other hand, substituting $\xi_{1}=i, \xi_{2}=1$ in (1.6), we get

$$
i A-i(-A)=2 i A=0 \text { i.e. } A=0
$$

Next we shall show (1.3). Since the bilinear form (1.5) is positive-definite,

$$
\text { two eigen-values of the matrix }\left[\begin{array}{ll}
\frac{f(0)}{f(x)} & f(x) \\
f(0)
\end{array}\right] \text { are } \geq 0
$$

This means the roots λ_{1}, λ_{2} of the equation

$$
\left|\begin{array}{cc}
f(0)-\lambda & f(x) \\
f(x) & f(0)-\lambda
\end{array}\right|=\lambda^{2}-(f(x)+\overline{f(x)}) \lambda+f(0)^{2}-|f(x)|^{2}=0
$$

are non-negative. So considering the relation of the roots and the coefficients, we have

$$
\begin{equation*}
\lambda_{1} \lambda_{2}=f(0)^{2}-|f(x)|^{2} \geq 0 \tag{q.e.d}
\end{equation*}
$$

Examples of positive-definite functions.

(a) $f(x)=1$
(b) $f(x)=e^{i a x}(a \in \mathbf{R})$

$$
\begin{aligned}
\sum_{j, k=1}^{m} f\left(x^{j}-x^{k}\right) \xi_{j} \overline{\xi_{k}} & =\sum_{j, k=1}^{m} e^{i a\left(x^{j}-x^{k}\right)} \xi_{j} \overline{\xi_{k}} \\
& =\sum_{j, k=1}^{m} e^{i a x^{j}} \xi_{j} \overline{e^{i a x^{k}} \xi_{k}}=\left|\sum_{j=1}^{m} e^{i a x^{j}} \xi_{j}\right|^{2}
\end{aligned}
$$

(c) $e^{-a x^{2}}(a>0)$

$$
e^{-a x^{2}}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i x \xi} \sqrt{\frac{\pi}{a}} e^{-\frac{\xi^{2}}{4 a}} d \xi
$$

(d) $f(x)=\frac{1}{1 \pm i x}$
(e) $f(x)=\frac{1}{1+x^{2}}$

$$
\frac{1}{1+x^{2}}=\frac{1}{2} \int_{-\infty}^{\infty} e^{i x \xi} e^{-|\xi|} d \xi=\frac{1}{2} \frac{1}{i x-1}+\frac{1}{2} \frac{1}{i x+1}
$$

Theorem.(Bochner's theorem [1],[6]) In order that a function $f(x) \in C\left(\mathbf{R}^{n}\right)$ be positive definite, it is nesessary and sufficient that
\exists a positive measure $d \mu(x)$ such that $\int_{\mathbf{R}^{n}} d \mu(\xi)<\infty$ and

$$
\begin{equation*}
f(x)=(2 \pi)^{-n} \int_{\mathbf{R}^{n}} e^{i(x \xi)} d \mu(\xi) \tag{1.7}
\end{equation*}
$$

§2. Relation of positive-definite functions and the heat equation

We denote by $x^{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}, x=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \mathbf{R}^{n}$. The n-dimensional heat kernel is given by

$$
\begin{array}{rlr}
E(x, t) & =(4 \pi t)^{-n / 2} e^{-\frac{x^{2}}{4 t}} \quad(t>0) \\
& =(2 \pi)^{-n} \int_{\mathbf{R}^{n}} e^{i\langle x, \xi\rangle} e^{-t \xi^{2}} d \xi
\end{array}
$$

Theorem 1. Let $u(x)$ be a continuous positive-definite function in \mathbf{R}^{n}. Then the function $U(x, t)=\int E(x-y, t) u(y) d y$ satisfies the following conditions :
(i) $\left(\frac{\partial}{\partial t}-\Delta\right) U(x, t)=0$ in $\mathbf{R}_{+}^{n+1}=\left\{(x, t) \in \mathbf{R}^{n+1}, t>0\right\}$
(ii) $U(\cdot, t)$ is positive-definite for $\forall t>0$
(iii) $0 \leq U(0, t) \leq C=u(0)$.

Conversely, every $C^{\infty}-$ function $U(x, t)$ in \mathbf{R}_{+}^{n+1} satisfying the conditions (i),(ii),(iii) with a constant C can be expressed in the form $U(x, t)=\int E(x-y, t) u(y) d y$ uniquely with $u(x)=U(x, 0)$ which is continuous, positive-definite in \mathbf{R}_{+}^{n+1}.
(Remark.) We donote the integral in the sense of a pair of a distribution and a test function.
(Proof.) (\Longrightarrow) By Bochner's theorem there exists a finite positive measure $\mu(\xi)$ in R^{n}, and $u(x)$ can be represented by

$$
u(x)=(2 \pi)^{-n} \int e^{i x \xi} d \mu(\xi)
$$

Substituting this in the expression $U(x, t)$, we get

$$
\begin{aligned}
U(x, t) & =\int E(x-y, t)\left((2 \pi)^{-n} \int e^{i y \xi} d \mu(\xi)\right) d y=\left(\int(2 \pi)^{-n}\left(\int E(x-y, t) e^{i y \xi} d y\right) d \mu(\xi)\right. \\
& =(2 \pi)^{-n} \int e^{i x \xi}\left(\int E(x-y, t) e^{i y \xi} d y\right) d \mu(\xi)=(2 \pi)^{-n} \int e^{i x \xi} e^{-t \xi^{2}} d \mu(\xi)
\end{aligned}
$$

This implies positive definiteness of $U(x, t)$ for any $t>0$.
As $U(x, t)$ becomes positive-definite, by (1.3), we have

$$
|U(x, t)| \leq U(0, t) \leq \int E(y, t)|u(y)| d y \leq u(0) \equiv C
$$

(\Longleftarrow) Conversely, let $U(x, t)$ satisfies (i),(ii) and (iii) with some constant $C>0$. Then by $\S 1,(1.2),(1.3)$, we obtain

$$
|U(x, t)| \leq U(0, t) \leq C \quad(x, t) \in \mathbf{R}_{+}^{n+1}
$$

Furthermore, by Theorem 19.2 in [10] or Theorem 5.7 in [11], there exists uniquely

$$
u=U(x, 0) \in \mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)
$$

and we have the expression $U(x, t)=\int E(x-y, t) u(y) d y$. Using the Fourier transform, we have

$$
\widehat{U}(\xi, t)=e^{-t \xi^{2}} \widehat{u}(\xi)
$$

By Bochner's theorem, there exists a positive finite measure $\mu_{t}(\xi)$ such that

$$
\widehat{U}(\xi, t)=\mu_{t}(\xi)=e^{-t \xi^{2}} \widehat{u}(\xi) \geq 0
$$

This means \widehat{u} must be a positive measure.
On the other hand, we have

$$
\begin{equation*}
U(x, t)=(2 \pi)^{-n} \int e^{i\langle x, \xi\rangle} e^{-t \xi^{2}} \widehat{u}(\xi) d \xi \tag{2.1}
\end{equation*}
$$

By (iii)

$$
U(0, t)=(2 \pi)^{-n} \int e^{-t \xi^{2}} \widehat{u}(\xi) d \xi \leq C
$$

By using Fatou's lemma and tending $t \downarrow 0$, we have $(2 \pi)^{-n} \int \widehat{u}(\xi) d \xi \leq C$, which means that $\widehat{u}(\xi)$ is a finite measure. By using Lebesgue's convergence theorem in (2.1) and tending $t \rightarrow 0$, we have

$$
u=U(x, 0)=(2 \pi)^{-n} \int e^{i(x, \xi)} \widehat{u}(\xi) d \xi .
$$

This shows u is continuous and positive-definite.
Now we shall consider the relation of the positive-definite distributions $u \in \mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$ and the solutions of the heat equation.

Definition 2. $u \in \mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$ is said to be positive-definite if and only if

$$
\left\langle u, \varphi * \varphi^{*}\right\rangle \geq 0, \quad \forall \varphi \in \mathcal{S}\left(\mathbf{R}^{n}\right), \quad \varphi^{*}(x)=\overline{\varphi(-x)}
$$

We shall describe Bochner-Schwartz theorem and Riesz-Kakutani's theorem. The former is the extension of Bochner's theorem to the case \mathcal{S}^{\prime}. The latter is to certificate the existence of a positive measure.

Theorem.(Bochner-Schwartz theorem [6],[12]) In order that a distribution $f(x) \in \mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$ be positive-definite, it is nesessary and sufficient that
\exists a positive measure $d \mu(x)$ and $N \geq 0$ such that $\int_{\mathbf{R}^{n}}\left(1+|\xi|^{2}\right)^{-N} d \mu(\xi)<\infty$ and

$$
\begin{equation*}
f(x)=(2 \pi)^{-n} \int_{\mathbf{R}^{n}} e^{i\langle x, \xi\rangle} d \mu(\xi) \tag{2.2}
\end{equation*}
$$

Theorem.(Riesz-Kakutani's theorem [3]) Every continuous, positive linear functional on $C_{0}\left(\mathbf{R}^{n}\right)$ is given by

$$
\langle F, \varphi\rangle=\int \varphi(x) d \mu(x)
$$

where μ is some positive measure (not necessarily finite).
Theorem 2. Let $u(x)$ be a distribution $\in \mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$ and positive-definite. Then the function $U(x, t)=\langle E(x-\cdot, t), u(\cdot)\rangle=\int E(x-y, t) u(y) d y$ satisfies the following conditions :
(i) $\left(\frac{\partial}{\partial t}-\Delta\right) U(x, t)=0$ in \mathbf{R}_{+}^{n+1}
(ii) $U(\cdot, t)$ is positive-definite for $\forall t>0$
(iii) $\quad 0 \leq U(0, t) \leq C t^{-N} \quad(\exists N>0) \quad 0<t<\infty$

Conversely, every C^{∞}-function $U(x, t)$ in \mathbf{R}_{+}^{n+1} satisfing (i),(ii),(iii) can be expressed in the form $U(x, t)=\int E(x-y, t) u(y) d y$ uniquely with $u(x)=U(x, 0)$ which is $\in \mathcal{S}^{\prime}$ and positive-definite.
(Proof) $\quad(\Longrightarrow) \quad$ See the proof of Theorem 1,[10],[11].
(\Longleftarrow) If $U(x, t)$ satisfies (ii) and (iii), then by $\S 1,(1.2),(1.3)$, we have

$$
|U(x, t)| \leq U(0, t) \leq C\left(1+t^{-N}\right) \quad(x, t) \in \mathbf{R}_{+}^{n+1}
$$

Hence by Theorem 19.2,[10] or Theorem 5.7,[11], there exists a unique

$$
u=U(x, 0) \in \mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)
$$

and we have the representation $U(x, t)=\int E(x-y, t) u(y) d y$, and

$$
\begin{equation*}
0 \leq \int U(x, t) \varphi * \varphi^{*}(x) d x, \quad \forall \varphi \in \mathcal{S}\left(\mathbf{R}^{n}\right) \tag{2.3}
\end{equation*}
$$

As $t \downarrow 0$, we have

$$
\left\langle u(x), \varphi * \varphi^{*}\right\rangle \geq 0
$$

Substituting the integral representation of $U(x, t)$ in (2.3), then we can get

$$
\int\left(\int E(x-y, t) u(y) d y\right) \varphi * \varphi^{*}(x) d x
$$

Changing the order of the integrals, we have

$$
=\int\left(\int E(x-y, t) \varphi * \varphi^{*}(x) d x\right) u(y) d y
$$

Using the representation of $U(x, t)$, we have

$$
=\int U(x, t) \varphi * \varphi^{*}(x) d x
$$

Using Parseval's equality, we have

$$
\int e^{-t \xi^{2}} \widehat{u}(\xi)|\widehat{\varphi}|^{2} d \xi \geq 0
$$

By Bochner-Schwartz theorem, there exists a finite measure $\mu_{t}(\xi)$ and

$$
\widehat{U}(\xi, t)=\mu_{t}(\xi)=e^{-t \xi^{2}} \widehat{u}(\xi) \geq 0
$$

Tending $t \downarrow 0$, we have $\left.\left.\langle\widehat{u}(\xi),| \varphi(\xi)\right|^{2}\right\rangle \geq 0$. This means that \widehat{u} is multiplicatively positive in \mathcal{S}. We know every multiplicatively positive distribution in \mathcal{S}^{\prime} is a positive one by the argument given in $\S 2$, Chapter 2 in [6]. Hence, by Riesz-Kakutani's theorem, \widehat{u} is a positive measure.

We have to show \widehat{u} is a tempered measure, that is to say, there is a positive constant k such that

$$
\int\left(1+|\xi|^{2}\right)^{-k} \widehat{u} d \xi<\infty
$$

Since \widehat{u} is continuous in $\mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$, we have the following inequality

$$
\begin{equation*}
|\langle\widehat{u}, \varphi\rangle| \leq C \sum_{|\alpha|,|\beta| \leq k} \sup \left|\xi^{\alpha} \partial_{\xi}^{\beta} \varphi(\xi)\right|, \quad \varphi \in \mathcal{S}\left(\mathbf{R}^{n}\right) \tag{2.4}
\end{equation*}
$$

Taking $\varphi(\xi)=\left(1+|\xi|^{2}\right)^{-k}$, we set $U_{\varphi}(\xi, t)=\int E(\xi-\eta, t) \varphi(\eta) d \eta=\varphi_{t}(\xi)$, which plays a role of a barrier function. We substitute $\varphi_{t}(\xi)$ in the right-hand-side of (2.4). We have

$$
\xi^{\alpha} \partial_{\xi}^{\beta} \varphi_{t}(\xi)=\xi^{\alpha} \int \partial_{\xi}^{\beta} E(\xi-\eta, t) \varphi_{t}(\eta) d \eta
$$

Considering $\partial_{\xi}^{\beta} E(\xi-\eta, t)=\left(-\partial_{\eta}\right)^{\beta} E(\xi-\eta, t)$, integrating by parts and using the inequality $\left|\xi^{\alpha}\right| \leq 2^{|\alpha|}\left(|\xi-\eta|^{|\alpha|}+|\eta|^{|\alpha|}\right)$, we get the terms of the right-hand-side in (2.4) with $\varphi=\varphi_{t}$ are finite. Hence we have

$$
\left|\left\langle\widehat{u}, \varphi_{t}\right\rangle\right| \leq C \quad \text { for }(0<t<T)
$$

Tending $t \downarrow 0$, we have

$$
\begin{equation*}
\int\left(1+|\xi|^{2}\right)^{-k} \widehat{u} d \xi<\infty \tag{q.e.d.}
\end{equation*}
$$

The next theorem is concerned with the ultra-distributions, that is, generalized functions in $\left(\mathcal{S}_{r}^{s}\right)^{\prime}$ (in the sense of Gelfand-Shilov).

We shall give the folloing definition.
Definition 4. ([5]) We say that a function $\varphi(x)$ is $\in \mathcal{S}_{r, A}^{s, B}\left(\mathbf{R}^{n}\right)$ if there exist $0<r, s, 1 \leq r+s \leq \infty$ and C such that

$$
\left|x^{\alpha} D_{x}^{\beta} \varphi(x)\right| \leq C A^{|\alpha|} B^{|\beta|} \alpha!^{!} \beta!^{s} \text { for } \forall \alpha, \beta \in \mathbf{N}^{n}
$$

holds. We denote by $\mathcal{S}_{r}^{s}\left(\mathbf{R}^{n}\right)$ the inductive limit of $\mathcal{S}_{r, A}^{s, B}\left(\mathbf{R}^{n}\right)$ as $A, B \rightarrow \infty$. And we denote by $\left(\mathcal{S}_{r}^{s}\left(\mathbf{R}^{n}\right)\right)^{\prime}$ the set of the generalized functions on $\mathcal{S}_{r}^{s}\left(\mathbf{R}^{n}\right)$.

Definition 5. $u \in\left(\mathcal{S}_{r}^{s}\left(\mathbf{R}^{n}\right)\right)^{\prime}$ is said to be positive-definite if and only if

$$
\left\langle u, \varphi * \varphi^{*}\right\rangle \geq 0, \quad \forall \varphi \in \mathcal{S}_{r}^{s}\left(\mathbf{R}^{n}\right), \quad \varphi^{*}(x)=\overline{\varphi(-x)}
$$

Then the following theorem holds.
Theorem 3 We assume that $\frac{1}{2} \leq r, s<\infty$. Let $u(x)$ be a generalized function \in $\left(\mathcal{S}_{r}^{s}\left(\mathbf{R}^{n}\right)\right)^{\prime}$ and positive-definite. Then the function
$U(x, t)=\langle E(x-y, t), u(y)\rangle=\int E(x-y, t) u(y) d y$ satisfies the following conditions :
(i) $\left(\frac{\partial}{\partial t}-\Delta\right) U(x, t)=0$ in \mathbf{R}_{+}^{n+1}.
(ii) $U(\cdot, t)$ is positive-definite for $\forall t>0$.
(iii) In case $\frac{1}{2}<s<\infty$, for $\forall \epsilon>0, \forall T>0$ we have $0 \leq U(0, t) \leq C_{\epsilon} e^{\epsilon t} \frac{-1}{2 s-1} \quad 0<t<T$, where C_{ϵ} is a constant depending on ϵ.
(iii) In case $s=\frac{1}{2}$, for $\forall T>0$ we have $0 \leq U(0, t) \leq C(t)<\infty, \quad 0<t<T$, where $C(t)$ is a constant depending on t.

Conversely, every C^{∞}-function $U(x, t)$ in \mathbf{R}_{+}^{n+1}, satisfing (i),(ii),(iii) or (i),(ii),(iii)' can be expressed in the form $U(x, t)=\int E(x-y, t) u(y) d y$ uniquely with $u(x)=U(x, 0)$ which is $\in\left(\mathcal{S}_{r}^{s}\left(\mathbf{R}^{n}\right)\right)^{\prime}$ and positive-definite .

Remark (1) In $\S 3$, we shall show that \widehat{u} is a positive measure and for $\forall \epsilon>0$

$$
\int \widehat{u}(\xi) e^{-\epsilon|\xi|^{\frac{1}{8}}} d \xi<\infty
$$

i.e. infra-exponentially increasing.
(2) In case $s=1$ in Theorem 3, we have $|U(x, t)| \leq U(0, t) \leq C_{\epsilon} e^{\frac{\epsilon}{t}}$ so that $u \in \mathcal{B}\left(\mathbf{R}^{n}\right)$, Fourier hyperfunction.
(Proof) $(\Longrightarrow) \quad$ By the extended Bochner-Schwartz theorem(Theorem 4 in $\S 3$), there exists a (infra-exponential) positive measure $\mu(\xi)$ such that

$$
u(x)=(2 \pi)^{-n} \int e^{\langle x, \xi\rangle} d \mu(\xi)
$$

Since $E(\cdot, t) \in \mathcal{S}_{1 / 2}^{1 / 2}, u \in\left(\mathcal{S}_{r}^{s}\right)^{\prime}, \hat{u} \in\left(\mathcal{S}_{s}^{r}\right)^{\prime}$, we have

$$
U(x, t)=\int E(x-y, t) u(y) d y=(2 \pi)^{-n} \int e^{i\langle x, \xi\rangle} e^{-t \xi^{2}} \widehat{u}(\xi) d \xi \in C^{\infty}\left(\mathbf{R}_{+}^{n+1}\right)
$$

and satisfes (ii).

For (iii), we have to estimate the integral

$$
U(0, t)=(2 \pi)^{-n} \int e^{-t \xi^{2}} \widehat{u}(\xi) d \xi=(2 \pi)^{-n} \sup _{\xi} e^{-t \xi^{2}+\epsilon|\xi|^{1 / s}} \int e^{-\epsilon|\xi|^{1 / s}} \widehat{u}(\xi) d \xi
$$

We have the inequality

$$
0 \leq U(0, t) \leq C_{\epsilon} \sup _{\xi} e^{-t \xi^{2}+\epsilon|\xi|^{1 / s}}
$$

by setting $C_{\epsilon}=(2 \pi)^{-n} \int e^{-\epsilon|\xi|^{1 / s}} \widehat{u}(\xi) d \xi$. Estimating the sup and setting $-\epsilon^{\frac{2 s}{2 s-1}} 2^{\frac{2 s}{1-2 s}}(1-2 s)$ by ϵ, we have

$$
U(0, t) \leq C_{\epsilon} e^{\epsilon t^{-1 /(2 s-1)}}
$$

To prove (iii) ${ }^{\prime}$, we estimate the integral for $t>\epsilon$

$$
U(0, t)=(2 \pi)^{n} \int e^{t \xi^{2}} \widehat{u}(\xi) d \xi=(2 \pi)^{n} \sup _{\xi} e^{-t \xi^{2}+\epsilon|\xi|^{2}} \int e^{-\epsilon|\xi|^{2}} \widehat{u}(\xi) d \xi
$$

For $t>\epsilon$, sup is estimated by ≤ 1 and the integral is estimated by C_{ϵ}. Hence we obtain (iii)'.
$(\Longleftarrow) \quad$ In case (iii)

$$
|U(x, t)| \leq U(0, t) \leq C_{\epsilon} e^{\epsilon t^{\frac{-1}{2 s-1}}}, \quad 0<t<T
$$

Using Theorem 2.1 in [2], for $\frac{1}{2} \leq \forall r<\infty$, we have uniquely

$$
u=U(x, 0) \in\left(\mathcal{S}_{r}^{s}\left(\mathbf{R}^{n}\right)\right)^{\prime}
$$

Furthermore we can represent

$$
U(x, t)=\langle E(x-y, t), u(y)\rangle=\int E(x-y, t) u(y) d y
$$

By the assumption, we have

$$
\begin{equation*}
\int U(x, t) \varphi * \varphi^{*} d x \geq 0 \quad \forall \varphi \in \mathcal{S}_{r}^{s}\left(\mathbf{R}^{n}\right) \tag{2.5}
\end{equation*}
$$

Tending $t \rightarrow 0$, we get

$$
\left\langle u, \varphi * \varphi^{*}\right\rangle \geq 0
$$

Substituting the integral representation of $U(x, t)$ in (2.5), then we can get

$$
\int\langle E(x-y, t), u(y)\rangle \varphi * \varphi^{*}(x) d x
$$

By continuity of the generalized function and the definition of the integral, we have

$$
=\left\langle\int E(x-y, t) \varphi * \varphi^{*}(x) d x, u(y)\right\rangle
$$

Using Parseval's equality, we have

$$
\int e^{-t \xi^{2}} \widehat{u}(\xi)|\widehat{\varphi}|^{2} d \xi \geq 0
$$

By the extended Bochner-Schwartz theorem(Theorem 4), there exists a positive measure $\mu_{t}(\xi)$ and

$$
\widehat{U}(\xi, t)=\mu_{t}(\xi)=e^{-t \xi^{2}} \widehat{u}(\xi) \geq 0
$$

Tending $t \downarrow 0$, we have $\left.\left.\langle\widehat{u}(\xi),| \varphi(\xi)\right|^{2}\right\rangle \geq 0$. This means that \widehat{u} is multiplicatively positive in \boldsymbol{S}_{s}^{r}. We can see that every multiplicatively positive generalized function in $\left(\mathcal{S}_{s}^{r}\left(\mathbf{R}^{n}\right)\right)^{\prime}$ is a positive one by almost the same argument given in §2,Chapter 2 in [6]. Hence, by Riesz-Kakutani's theorem, \widehat{u} is a positive measure. By Theorem 4, we have

$$
\begin{equation*}
\int e^{-\epsilon|\xi|^{1 / s}} \widehat{u}(\xi) d \xi<\infty \tag{q.e.d}
\end{equation*}
$$

§3. Extended Bochner-Schwartz theorem

We shall show the extended Bochner-Schwartz theorem for the generalized functions in $\left(\mathcal{S}_{r}^{s}\left(\mathbf{R}^{n}\right)\right)^{\prime}$.

Theorem 4. In order that a generalised function $u \in\left(\mathcal{S}_{r}^{s}\left(\mathbf{R}^{n}\right)\right)^{\prime}$ be positive-definite, it is nesessary and sufficient that there exists a positive measure $d \mu(\xi)$ such that for any $\epsilon \geq 0$ we have $\int_{\mathbf{R}^{n}} e^{-\epsilon|\xi|^{1 / s}} d \mu(\xi)<\infty$ and

$$
\begin{equation*}
u(x)=(2 \pi)^{-n} \int_{\mathbf{R}^{n}} e^{i(x, \xi\rangle} d \mu(\xi) \tag{3.1}
\end{equation*}
$$

(Proof) ($\Longleftarrow) ~ T h e ~ s u f f i c i e n c y ~ o f ~ t h e ~ p r o o f ~ c a n ~ b e ~ o b t a i n e d ~ b y ~ a l m o s t ~ t h e ~ s a m e ~ w a y ~$ as in the proof of Theorem 1 and 2, where the heat kernel method might be used effectively.
$(\Longrightarrow) \quad$ The proof is divided into 4 steps.
(Step 1) $\left(\widetilde{\mathcal{S}_{r}^{s}}\right)=\mathcal{S}_{s}^{r}$ by Gelfand-Shirov [5]. Since $\hat{\hat{u}}^{*}$, for $\forall \varphi \in \mathcal{S}_{s}^{r}$, we have

$$
\left.0 \leq\left\langle u, \varphi * \varphi^{*}\right\rangle=\left\langle\hat{\hat{u}}^{*}, \varphi * \varphi^{*}\right\rangle=\left\langle\widehat{u}^{*}, \varphi \widehat{\varphi} \varphi^{*}\right\rangle=\left.\left\langle\widehat{u}^{*},\right| \hat{\varphi}\right|^{2}\right\rangle .
$$

So \widehat{u}^{*} is a multiplicatively positive in \mathcal{S}_{s}^{r}. Hence we have \widehat{u}^{*} is positive in \mathcal{S}_{s}^{r}, then in C_{0} by using the heat kernel method.
(Step 2) By Riesz-Kakutani's theorem, $\widehat{u}^{*}(\xi)$ is a positive measure.
(Step 3) Applying the Theorem 4.2 in Chung-Kim [4] to non-negative solution of the heat equation $U^{*}(\xi, t)=\int E(\xi-\eta, t) \widehat{u}^{*}(\eta) d \eta \geq 0$, we have

$$
0 \leq U^{*}(\xi, t) \leq t^{-n / 2} e^{\left.|\epsilon|\right|^{1 / s}}, \quad 0<t \leq T
$$

(Step 4) Since the growth order of $U(\xi, t)$ in t is $t^{-n / 2}$, we have

$$
0 \leq U^{*}(\xi, 0)=\widehat{u}^{*}(\xi) \in \mathcal{D}^{\prime}\left(\mathbf{R}^{n}\right)
$$

Setting $m=\left[\frac{n}{2}\right]+1$.

$$
f(t)=\left\{\begin{array}{cl}
\frac{t^{m-1}}{(m-1)!} & \text { for } t>0 \\
0 & \text { for } t \leq 0
\end{array}\right.
$$

For $f(t), v(t)$ and $w(t)$ are constructed satisfying following conditions :

$$
\begin{gather*}
v(t)=f(t) \text { for } t \leq 1, \operatorname{supp}(v) \subset[0,2] \\
(d / d t)^{m} v(t)=\delta(t)+w(t), \operatorname{supp}(w) \subset[1,2] \tag{3.2}
\end{gather*}
$$

By the Theorem 19.2 in [10] or Theorem 5.7 in [11], we have

$$
0 \leq \tilde{U}^{*}(\xi, t)=\int_{0}^{2} U^{*}(\xi, q+t) v(s) d q \in O\left(e^{\epsilon|\xi|^{1 / s}}\right)
$$

$\tilde{U}^{*}(\xi, t)$ is C^{∞} in $\mathbf{R}^{n} \times(0,2)$ and

$$
\left|\widetilde{U}^{*}(\xi, t)\right| \leq C \exp \left(\epsilon|\xi|^{1 / s}\right)
$$

We can use $\widetilde{U}^{*}(\xi, t)$ is continuously extended to $\mathbf{R}^{n} \times[0,2)$.

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}-\Delta\right) \tilde{U}^{*}(\xi, t)=0 \text { in } \mathbf{R}^{n} \times(0,2) \tag{3.3}
\end{equation*}
$$

Integrating by part and using (3.2) we have the equality

$$
(-\Delta)^{m} \tilde{U}^{*}(\xi, t)=\left(-\frac{d}{d t}\right)^{m} \tilde{U}^{*}(\xi, t)=U^{*}(\xi, t)+\int_{0}^{2} U^{*}(\xi, t+q) w(q) d q
$$

We set $h(\xi, t)=\int_{0}^{2} U^{*}(\xi, t+q) w(q) d q$. We see $h(\xi, t)$ is C^{∞} in $\mathbf{R}^{n} \times(0,2)$ which is continuously extended to $\mathbf{R}^{n} \times[0,2)$. Furthermore we see

$$
|h(\xi, t)| \leq C \exp \left(\epsilon|\xi|^{1 / s}\right) .
$$

Setting $g(\xi)=\widetilde{U}^{*}(\xi, 0)$ and tending $t \rightarrow 0$, we have

$$
(-\Delta)^{m} g(\xi)=U^{*}(\xi, 0)+h(\xi, 0)
$$

This means

$$
\left\langle(-\Delta)^{m} \tilde{U}^{*}(\xi, t), \varphi(\xi)\right\rangle=\left\langle U^{*}, \varphi(\xi)\right\rangle+\langle h(\xi, t), \varphi(\xi)\rangle
$$

Left-hand-side of the above equality is equal to

$$
\left.\left\langle\tilde{U}^{*}(\xi, t),(-\Delta)^{m} \varphi(\xi)\right)\right\rangle
$$

Tending $t \rightarrow 0$, we have

$$
\left.\left\langle g,(-\Delta)^{m} \varphi(\xi)\right)\right\rangle=\left\langle u^{*}, \varphi\right\rangle+\langle h(\xi), \varphi\rangle
$$

So we obtain the estimate (3.1)

$$
0 \leq \int e^{-\epsilon|\xi|^{1 / 9}} \widehat{u}(\xi) d \xi<\infty
$$

References

[1] Bochner,S., "Lectures on Fourier Integrals", Princeton University Press, Princeton, NewJersey, 1959.
[2] Chen Dong-Matsuzawa,T., S-spaces of Gel'fand-Shilov and differential equations, Japanese Journal of Mathematics, Vol.19,No. 2 (1993), pp.227-239.
[3] Chung,J-Chung,S.Y.-Kim,D., Positive definite hyperfunctions, Nagoya Math.J., Vol. 140 (1995), pp.139-149.
[4] Chung,S.Y.-Kim,D., Distributions with exponential growth and Bochner-Schwartz theorem for Fourier hyperfunctions, Publ.RIMS, Kyoto Univ., Vol. 31 (1995), pp.829-845.
[5] Gelfand,I.M.-Shilov,N.Ya., "Generalized Functions Vol.2", Academic Press, New York and London, 1964.
[6] Gelfand,I.M.-Vilenkin,N.Ya., "Generalized Functions Vol.4", Academic Press, New York and London, 1964.
[7] Kostyuchenko,A.G.-Mitsyagin,B.S., Positive-definite functionals on nuclear spaces,(in Russian), Trudy Moskov.Mat.Obsc.9, (1960), pp.283-316.
[8] Matsuzawa,T., Foundation of Calculus Approach to Hyperfunctions and Applications, monograph An Introduction to the Theory of Partial Differential Equations, Monograph, 1997.
[9] Matsuzawa,T., A calculus approach to hyperfunctions II, Trans.Amer.Math.Soc., 313, No. 2 (1989), pp.615-654.
[10] Matsuzawa,T-Hara,M.-Ogawa,Y., "Introduction to Integral Theory and Distribution Theory", Gakujyututosho Syuppansya, (Japanese),1996.
[11] Matsuzawa,T., An Introduction to the Theory of Partial Differential Equations, JSPSDOST, Lecture Notes in mathematics Vol.4, Sophia University, 1997.
[12] Schwartz,L., Théorie des Distributions, vol.I and vol.II, Herman, Paris, 1950,1951.

