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  Summary  : In this note, the Sobolev space are analysed, then it is applied to the 
boundary problems of some differential operators. 

1 Introduction 

The theory of distributions constructed systematically by Schwartz [4] has many applica-
tions to several domains in mathematics. In particular, in the theory of partial differential 

equations and the probability theory, it plays the fundamental role. Rozanov's result [3] 
was intended to apply it to the probability theory. One of his results is to determine 

the structure of the functional space  (HI'  (Q) )'. Then, using this result, he discussed the 
existence of the solutions of the differential equations appearing in the probability theory. 

His method is somewhat different from the method used in the theory of partial  differen-

tial equations. Therefore we summerize here the results using the usual notations and the 

usual results in Mizohata  [2]. Our result might be used to the problem of positive—definite 
distributions elsewhere(cf. [1]). 
  This note contains 8 sections. Section 2 is devoted to the notations and the main results 

in a book of Rozanov  [3]. In §3, we prove Theorem 3.1 using the result in Mizohata  [2]. In 
§4 we descrive the representation theorem in the case of  (Hm(0))'. In the latter  half of the 
paper we shall give some applications of the representation theorem. §5 is devoted to the 
construction of the Riemann function in the case of the ordinary differential equations. In 
§6 we shall give an example to Theorem 4.2 in the case of ordinary differential equations. 
In §7, we apply Theorem 4.2 to the case of elliptic partial differential operators. In §8 we 
shall apply again Theorem 4.2 to the problem of heat equation. 

  I would like to thank professor Matsuzawa of Meijo University. This paper is due to 
the discusion with him. 

                          45



Annual Review 2000 Volume 5 

  2 Notations and a representation  of  Sobolev's spaces 

   Let  Rn be n—dimensional Euclidean space with its point x = (x1,  x2,  •  •  • ,  xn)  . Let  Si  C  Rn 
   be an open set. The followings are the usual notations 

               = .130`;"1 Dr • • • Dr,',  a=  (ai,a2  •  ,  an),  IaI =a1+a2+•••+an 

   where  Di =  —is/ax;  . Furthermore  Cr(ci) denotes the set of infinetely differentiable 
   functions with compact support in  ft 

   Definition 1. We define by  D(S2) the set of  Cr  (S2) which has the topology in the 
   following sense i.e.  {yon(x)} 0 means  supp  con C  K, n =  1,  2,  •  •  •  , for some compact set 

   K C  S2, and for any non—negative integer m 

                    I(Pnlm,K = max I.T"pni -+0as n -4  oo 

 Definition 2. We denote by  D'  (a) the set of continuous linear functionals on D(SZ). 

   Definition 3. We define by  e'(S2) the set of continuous linear functionals on  DP with 
    compact support in  Q. 

   Definition 4. We donote by S = S (Rn) the set of  C°°(Rn) which has the topology in 
   the folloing sense  i.e.  {con(x)} 0 means that 

               sup  IxaD13cpnj  -4 0 as n  oo V  m,  k 
 xERn  ,10,Km,10Kk 

   Definition 5. We denote by  S' =  S'(Rn) the set of continuous linear functionals on 
   S (Rn). 

      For  cp  E S we define the Fourier transform  by 

                              Fp() =  ge)  =fcp(x) dx 

                                                      x 

   where (x, =  xie1 +  •  •  • +  x.74,. We define the Fourier transform of T E 8' by 

 (T,  co)  = (T,  ce)  V  co E 

     For f E  7,(C1), we denote by  IlfIlp a norm 

 IlflIp2=  f  i  (612  (1  + 
   for any real number p. For positive p, W denotes the completion of  D(Rn) with respect 

   to the norm  Ilf  11p. We also denote by  W(c2) =  [DP)} the closure of  D(S1) with this norm 
 Ilf  Ilp.  X denotes the completion of  D(Rn) with respect to the norm  11f11-p. We also 
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  denote by  X(S2) =  [D(1)] the closure of  D(C2) with this norm  11f11-p. It is easy to see 
 W*  =  X. 

  Theorem  2.1.  X(Q) =  [D(S2)] consists of f E X, supp f  C 

     The proof is in  [3]. We prove  it, in §3, by another method in the case of the Sobolev 
   space. 

     Let P be an elliptic positive operator of order 2m satisfying 

                             2 

                   114147 =  (CP)  P(P)  >"  11(Plim2  (I)  E  D(R71), (2.1) 

  where denotes the equivalent norm. We denote X  =Wri  (C2) then we have 

 X  =  PW.  (2.2) 

  Denote by  OS2 =  r and 

 x(r)  =  {f  E  x(c2),  suppf  C  r}.  (2.3) 

  Then we have the following theorem. 

  Thoeorem 2.2. (representation theorem) 

 X(S2) =  [PD(Q)]  (I)  x(r) (2.4) 

     The proof is given also in  [3]. More precise representation formula will be given in §4. 
     We define the following non-isotropic norm which will be used in §8 for treating the 
  heat equation. For u  E  D(Rn+1), we denote 

 hull  n,$) = (1 +  ien +  Inl2s)111(,n)12  d  Chi   

, where x E  Rn, y  E R where  ri) denote the Fourier transform of  u(x,  y). We denote 

 H(m,.9)(Rn+1) =  wpt,$)  (Rn+1) =  W 

  and its dual space with respect to the L2-inner product by 

 1-1-(m's)(Rn+1)  =  W2  (ms) =  X. 

  Furthermore, the restrictions to  S2 of the spaces  1/(m,$)(Rn+1) and  H-(ms)(Rn+1) are 
  denoted by  H(mo)(S2) and  11-(7")(11), respectively. 
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                                        0 

  3 Some properties of (Hm(S2))/ 

   In the following m is a fixed positive integer. Furthermore we denote  ai =  wax .; and 
     as __= 

   Theorem 3.1. (representation theorem) If u E (Hm(9))', then there exists  {fa} E 
 L2(11) and 

        u =  E  aa (3.1) 

   These  ffal are not necessarily unique. 

                                         o 

   Remark. We denote by (Hm(S2))'=H-m (Q) 

   (Proof) For u  E (iim(S2)Y,  (u, (p),Eiim(9), is a bounded linear functional on 
   fim(S2). Using the Riesz  theorem(cf. [2,Theorem  2.10,p.73]), there exists g E  Hm(12) 

   such that 

                  (u,  (P)  =  ((P, g)m,L2 = E  (aaco,  aag)L2 
 la15-m 

                      E ((_1)1.0.a.g,w) 

   Hence, by setting fa =  (-1)1a1,0ag, we have 

                        u = E  as  foe. 

 ^ 

                                                   0 

   Theorem 3.2.  D(1) is dense in  (Hm(S2))/ 

   (Proof) By Theorem 3.1, u  E  (Hm(n))' is represented by u =  Eial<m  as  fc„ where 
 3  {fa},  fa E  L2(SZ). For one of the above  fa's, there is an approximate sequence 

   {(Pcar_i C  D(52) which satisfies  II  pai -  fally(n)  0(cf. [2,Proposition 2.4,p.67]). We 
   put  uj =  Elai<m  aa(pai, then  ui E7)and  uj  u in (iim(C2)Y. Hence u E (fim(9))/. 

 For  Vco  E  Hm(12),  we  have 

                (u, (P)1 = E  (aa  f.,  (p) 
                                       Ict15-m 

                    5  E  IIMIL2.110acoilL2. 
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      By the Cauchy-Schwarz inequality, we get 

                5_(E Ilf.I112)1/2(II  E II act(i01112)1/2 
 lal-rn  laKm 

 \  1/2 

               ( E IlL.1112)  ilwillim 
 lal.'m 

      Hence we  obtain 

                  

Ilttj -  u113.1_77,0) =  E  lif,  -  (paill12  -4 0, 
  which is to be proved.  ^ 

   4 The representation of  (Hm(S2)Y 

      In this section we  shall  determine the representation of the distribution  e'(12) which has 
      a support in one point and also the representation of the distribution  (Hm(0))' with its 
      support touched to the boundary F =  %1. This is the precision of the Theorem 2.2 in §2. 
      In the following, we denote by  6 the Dirac delta function and also by C(U) the continuous 

      function on U. 

      Theorem 4.1. Let f E  E' and supp f =  {0}. Then we have, for  3m non-negative 
       integer, 

 f  =  E  caaao (4.1) 
                                         la15-rn 

      (Proof) The following proof is due to Yoshida-Ito  [6,p.135]. 
        Since f E  e', f is represented by f =  Eicd<„,  Oclg„, where  gc, E C(U) and U is a 

 neilDorhood of the origin  0. Let  cp  E  E satisfying  Daw(0) = 0 for  lal  <  m. Then we have 

                      (f,  go) = 0 

      from the following argument. 
        Let  V) E  1) and satisfy 

                 Ip(x) .1if lxI < 1/2 

      { 

                         0if  lx1  >  1. 

     For a fixed  cp we put  wi(x)  =  1p(ix)(p(x). Then for  lal = m we have sup  15'yo(x)(  -÷ 0. 
 IsIlli 

     Further for  la  l  <  m we get 
                               i d                     Oacp(x)=f—(0'w(tx))dt                       .odt 

                          = itxif1—dxd(aa,(tx))dt.                          i=ioi 
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       So we see by the induction on 

                             sup la'co(x)I  = o(j1'1.-m). 

         By the Leibniz formula we have 

           t)                    paC°i(x)a                          Eaa-e(e(x)?1(09)(ix). 
                                                 c„>,3 

       So it obtains 

 sup  laac,oi(x)1 = sup Pacpi(x)1 
 xEU 

                    = supKONa)(x)IEji0I sup  laa-'3co(x)1 = °(jtak') 
 xdoel<m 424>0 

       Since  (pi and its derivatives up to the order m converge uniformly, we get 

                          lim(f, (pi) -÷ O. 
                                                j-÷00 

      On the other-hand, since  cpi(x) =  cp(x) in  lx1  < and the support of f is the origin, 
 (f, (,o) =  (f,c,oi). It follows that (f,  (p) = 0. 

 For  Vc,0  E  E,  we  put 

                         rm =(p(x)-Exa  —aa(p(0)(E E). 
                                        laKrn a! 

                                               (-1)Ial       As Oar
m(0)=0(lai<m),weget(f,rm)=0.PutingCc,=   (f,xa),it follows that  a! 

 f  =  E  caaa(s 
                                    IaI<m 

 • 

         In the case of  S2  = [0, oo), we obtain the representation theorem for T E  (Hm(12))/ by 
       the same argument as above. For n-dimensional case, we divide the domain  SI into the 

       patches which are two types. The first ones are in the interior of  SI and the others are 

       touched to the boundary. The former are corresponding to the open neighborhood of the 

       origin, and the latter are corresponding to the neiborhood of  xr,  > 0 and its boundaries 

       are contained in  xn = 0. 

      Theorem 4.2. Let T be in  ((Hm(f2))' . Then there exists  {ga}  C L2 
               E H—(m—k-1/2)       and  xk(r) (k =  0,  •  ,m - 1) such that 

 m--1 

                     T =  E  aaga +  E  xk  (5.(k) (r) (4.2) 
 IaI<m  k=0 
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Remark. We denote  (Hm(Q))'  =  H-m(Q). 

                                                                                         0 (Proof) Since T  E  ((Hm(Si))',  (T,  co) is a linear functional on  (p  E  Hm(Q). We have  

1(T,  (00)1  C( E  Ilact(piiL2(01/2 =  ClIcgm,L2 
                             la15m 

By Theorem 3.1, there is a set  {go,}  C L2 such that 

                  T1 =  E  Gaga, (T1,  V))  = (T,  (P) 

Setting T2 = T T1, since  (T,  (p) =  (T1,  (p), we get  supp  T2 C Fixing  x(°) = 
(xi()), • •  •  ,  4)1, 0) =  (x(°)', 0) and U is a neighborhood of  0. We continue the same argu-
ment as in one variable. We put 

                                                  xm 

 cp(x) =  (p(x'  , 0)  + On(p(x' ,0)x„ +-• +(9;,nco(x'1p(x) 
                                                          m. 

where  7,b(x) =  0(x":+1). Hence (T2,  (p)  = 0. we consider the particular case T2  =  T2  ®T2'. 

              xkk xk 

          (T2, Onk(P(Xf0)7)= (T2'  0  T2"an(P(XI0)  17) 

 =(T2  0  6(k)  ,  (p) 

By T2 = T - T1, it follows that 

             T =  T1+  T2  =  E  Oa  ga  E  xk  ® 6(k) (r) 
                        lal<rn  k=0 

This completes the proof. ^ 

5 Ordinary differential equations and the Riemann 

   function 

This section is due to Yosida  [5,p.53]. This is the preparation of the representation of the 
solution of the ordinary differential equation which will be given in §6. 

  We consider the ordinary differential equation of the folloing type 

               Ly =  y(n)  +pi(x)y(n-1-) +  •  •  •  -Fpn(x)y = q(x) (5.1) 

where  p1(x),  •  •  •  ,pn(x) and the right-hand-side q(x) are continuous in the interval D. 

Theorem 5.1. For any point x1 in the interval D and any data  77,  ?IF,  • • • ,  n(n--1), there 

exists a unique continuous solution y(x) in D satisfying the equation (5.1) and the initial 
values 

 y(x1) =  77,  y'(xl)  =  ?I,  •  - • ,  (xi) =  (5.2) 
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   Theorem 5.2. The difference z(x) =  y1(x) — y2(x) of the two solutions of the equation 
   (5.1) satisfies the equation 

 z(n)  ±  pi  (x)z(n-1)  +  .  .  .  +  pn(x)z =  O. (5.3) 

   Hence any solution of the equation (5.1) is written by the sum of a particular solution of 
   (5.1) and a solution of the homogeneous equation  (5.3). 

   Theorem 5.3. For a system of fundamental solutions  {zi(x)} of (5.3), we take the 
   unknown functions  {ni(x)}.71 which satisfy 

 zinc.  -1-z2u12  +  -  -  -  -Fznuin  =  0 
           zilu'l +4ut, ,                                   + • • • +zinun = 0 

  (E) (5.4)                      • • • • • •  +  •  •  •  +  •  •  • • • • 

 zln-1)u1  ±z2n--1)u2  ±... ±-4n-i)u/n = q(x) 

   Then we have the solution of (5.1) by setting 

                                         n 

                   y(x) =  E  zi(x)ui(x). 
                                               i=i 

   (Proof) Differentiating (5.4) succesively, we have by using (5.3) 

                                          n 

              y(x) = E zi(x)ui(x) 
                                          i=1 

                                        n 

 y'(x) = E  zii(x)ui(x) 
                                            i=i 

                  

• • • • • • 

                                          n 

                      y (n-1) (x) = E--                          z(n1)  (x)ui(x) 
                                            i=1 

                                        n 

 y(n)  (X) =  E  .4n)(x)ui(x) + q(x) 
                                                          i=1. 

   Therefore considering  {zi(x)}31 solutions of (5.3), we see that y(x) satisfies (5.1).  ^ 

   Theorem 5.4. The above method obtaining a particular solution of (5.1), is the same 
   as the folloing method. The variable x is in an open interval a  < x  < b. We take con-
   tinuous functions  {ai(x)}7, and choose continuous ones  {bi(x)}7_, satisfying the folloing 

   equations 

 (bi(x)  —  al  (x))zi  (x) 

     1  +  •  •  • 4(bn(x) —  an (x))znn (x) = 0 
 (bi(x) —al(x))z'(x)  +  -•-  ±(bn(x) —an(x))z(x) = 0 

       (bi(x) — al(x))4 7-2)(x)   +...   -1-(bn(x) —  an(x))  4n-2)  (x)  =  0 
         (bi(x) — al (x))zin-1)(x) +...  -1-(bn(x) — an (x))(7-1) (x)  =  q(x) 
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Then we define 

                          n 

               E aj(x),zi(e) if  a  <  x  < 
                         j—i 

          R(x'—    e){ 

 n 

          —  

E  bi(x)zi(o if  <  x  <b 
                             3=1 

Then we have a particular solution of (5.1) as the following form 

                            b 

            y(x) =I R(x,  e)q(e)  de 

                                       a (Proof) Since  (ki(x) — aj(x))q(x) is coinside with the solution  tej(x) of (5.4), we have 

 b n xb 

    Ia R(x,  e)q(e) de=E zi(x)// bj(e)q(e) d+f a  j(e)q(e) de} 
        j=1ax 

      n xnb               =  E zj(x)f7.e.,W 3 di + E  zj(x)f ai(e)q(e)  de           j_14%j=1=1a 

                     n 

          =  E  zi(x)(ui(x) —  ui(a))+ti zj(x)fbaiW47d 
     j=1  j=1 

                                                                      a 

   n n 

          = E zi(x)uj(x) +  cjzi(x) 
        i=ii=1. 

Hence  y(x) is represented by the sum of a particular solution and the solution of  (5.3).  ̂  

 Remark. This function R(x,  e) is called the Riemann function of the equation  (5.3). 
Here the choise of  ai is not unique, so the function is not uniquely  defined. 

Example 5.1 We consider the Cauchy problem for  Lcio =  IP with the boundary deta 
 w(i)  (0) =  O(j =  0,  •  •  • , 2m  —  1) in the interval I = [0, oo). Then we have, by Theorem 5.4, 

                          t 

          (p(t) = f g(t, s)(s) ds=(g i, 0), t >.0. (5.5) 
                      o Here we set the Riemann function R(x,  e) in the above as g(t, s) and we put 

                  {g(t, s) if  t  >  s               g7(t,s)=0                                if  t  <  s. 

        0 0 

  By Theorem 3.1, we have X  = (H2m  (I))' =I-1-2m  (I)  . Then x =  £*  g E  CL2(/) and 

 (x  , u) =  (.C*  gi-  , u) =  (g7,  Cu) =  (gi-  ,  f) 
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      For a resolvent representation of the solution  (5.5), we have 

 co(k)  (t) =  (4k)  ,  co) =  (e),  L(p) =  (L*  e)  , (p), co E  V' 

     for k = 0,  1,  •  • • , 2m  — 1. So X =  L*  L2  (I) contains the  (0) functions. 

     Example 5.2 We consider the Cauchy problem for  ,Cu = f with the boundary deta 
 u(j)(0) =  1j(j  =  0,  •  •  • , 2m — 1) in the interval [0, oo). By (5.5) we have 

                                                 2m-1 

 U(t) =  (gi  ,  f) +  E  ui(t)ei 
 j=o 

     where  {ui(t)} is a system of fundamental solutions of  ,Cu = 0 with the initial data 
     u.(ik) =  6jk. For x  E  X, we have x =  ,C*gT +  Eri6-'  xiow. Therefore it follows that 

 (x, u) =  (C*  gT  , u) +  E  _TV  (x  jo(j)  , u) 

                           =  (gi  , Lu) + E7_7/_,,T1- (x i ,  u(i)  (0)) 

 =  (gT,  1) +  EP1261  xjj 
     We get 

             2m-1 2m-1 

 Ut =  (6t, u) =  (gi  ,  Cu) + Eeini(t) = (L*gi,u) + E  ejui(t) 
 i=0i=o 

     that is, we have 
                                                      2m-1 

                          St = Cgi- + E 5(i)u3(t). 
 i=o 
     This shows Theorem 4.2 with  gi-  E L2. 

   6 The case of ordinary differential equations 

     Let L be an ordinary differential operator of order 2m with constant  coefficients  : 

                             2m  (  dk 
                             L =  E  ak  d-7, 

                        k=0X 

     and  I is an interval [a,  1)]. 

     Theorem  6.1. The boundary value problem 

            {  ,Cu  =  f  in  I  (P)  u(i)  (a)  =  ge  (j  =  0  ,  1  ,  -  -  •  ,  m  —  1) (6.1) 

 u(i)  (b) =  gli)  (j =  0,1,  •  •  •  , m — 1) 
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is given. If it has a unique solution, then for any f  E  L2  (I) and any data 
 {RV} ,911)}o<i<2m-1, there exists a solution u E H2m(I) satisfying (P). 

(Proof) For ye  E (H2m  , by Theorem  4.2, there exists  77  E  L2  (I) 
        n n 

              =  L*7-1+  E  di)6(3)  +  E  (6.2) 
                 i=o i-o 

where 
 m-i  m-i 

 10-2m  =  117114,2 +  E +  E  le?)I. (6.3) 
 j=0  j=o 

 We  put 
                                       m-i 

                  =  (77, f) Eai) gk)  E1 91 
 i=0 

Then we obtain 

 m-i  m-i 

         111(01  5.  10,  i)i E ieligY)1+ E Igij)1 
 j=0 j=0 

 m_i  m_i 

             

117711 11f11 + E Igk)I + E Ig1-1)1 
              j=0 j=0 

 m_i  m_i  C(1177  E E 
 i=0 i=o 

By (6.3), we then have 
 IFW1  5-  CRII-2m• 

So  F  () is a bounded linear functional on  (H2m  . Therefore  there is a u  E  H2m(i) 
satisfying 

 F(e)  =  (e,  u) 
For  Sp  E 7), we put  =  C*  cp. Since  Coc is 0 on the boundary  ar, we get 

 (L*(P, u) =  (SP, f) i.e.  (40,  Cu)  =  (co, f) 

This implies  ,Cu =  f  . Putting u =  4,j)  ®SY) we have  uk) =  a). By the same substitution, 
we also  have  u(i.j) =  gV). These facts show that u is a solution of the boundary problem 

 (P)• ^ 
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  fi The case of elliptic partial differential equation 

   Let  E2 be a bounded domain in  Rn with smooth boundary  r. Furthermore, let  P be an 

   elliptic partial differential operator of order 2m and positive-definite : 

           P =  E  akak  >  0 (7.1) 
 lk  I  2m 

   with 
                  =  (V),PC0)1/2 E  D(E2). (7.2) 

 For  Ve  E  Hm(E2),  rl  =  P  E  H-m(E2)  and 

                7/ =  ((P,  71) =  (RP,  E  DA. (7.3) 

   Furthermore the folloing relation is satisfied 

        11(Plim (7.4) 

   We consider the boundary value problem of this  operator  : 

 Pe  .77 in  E2 
  (P) (7.5) 

 ei)  (a)  =  4  on  r,  =  0,  1,  •  •  ,  m  -  1) 

   where E  Hm—k-1/2(r). 

   Theorem 7.1. For any  ri E  (Hm(S2))1, there exists an unique solution  e  E  Hm(Q) of 
   the boundary value problem (7.5). 

   (Proof) By Theorem 4.2, we have 
                                                   m-1 

 X(Hm(f2)Ypll-m0-2)EH-(m-k_1/2)(r) 
 k=0 

   where  PHm(S2) =  [7:YD(S2)]. Hence, for any x  E  (1/m(S2))1, we have 

 m-1 

          x = Pu E  xk  6(k). (7.6) 

   Here u  E  Hm(n),  xk  E H-(m-k-1/2)(r)(k = 0,1,- • •  ,m  -  1) and 
                                        m-1 

 +  E  I  l  Xk  l  l—(m—k-1/2)  • 
 k=0 

   For any x E  (Hm(f2))', we define 

 rrt-1 

 F(x) =  (U,  ri)  E  (xk,k)• 
 k=0 
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This indicates F(x) is a bounded linear functional on  (Hm(11))'. Because the following 
estimates holds for x  E  (Hm(Q))' 

 m—i 

      1F(x)15-1(1,77)1 +i(xk, 
 k=0 

 rn-1  COUlim  E 
 k=0 

Hence there exists  E  Hm(S2) satisfying 

 (PC°,  e) =  (40,17)  V E  D(S2) 

 (xk  (5(k),  e) =  (xk,  e(k)) =  (xk,ek)  xk E H-(m-k-1/2)(r), 
                                  (ko, • • • , m - 1). 

This implies that satisfies  (7.5). ^ 

8 The case of heat equation 

In this section, we consider the heat equation 

 On 

 at  =  Au  f (8.1) 

in  Rn x R. We put 
                    = - A 

and 
 'P  =  L*,C  =  02. 

The following notations are given in §2, that is, 

 0 

 W =  [D]  =w(24)  (Rn+1), 

                     =  (40,P  co)1/2  QED. 

Then we also have 

 x =  w. =  w-(2,1)(Rn+1), 

                   X = ,C* L2 (Rn+1). 

We denote by  (•,  •) the inner product of  L2(Rn+1) and by  (•,  -) the inner product of  L2  (Rn) 
Hence we have the existence and the uniqueness theorem as follows. 

Theorem 8.1. For f E  L2(Rn+1), there exists an unique solution u E  W2'1)(Rn+1)  of 
(8.1). 
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 (Proof) 
 g  =  1(a,b),  E  7,(11n). 

    The set of functions of this type is dense in  L2(1r+1). Denote by u =  u(t,  -)  =  ult. We 
     have 

 x  =  .C*  g  =  (—at  —  0)9 
                           =  (atl(a,o) —  (AY)  1(a,b) 

                             =  ®  (5a  —  81)) —  (AY)  ®  1(a,b) 
    This shows Theorem 4.2. Hence taking the inner product with u, we have the following 

    equality 

             (x, u) =  (,C*g,u)  (g'  0  ((5b —  Sa),  u) —  (Lg'  01(0),u) 

                           =  (g',  ulb) —  (g`  ula) — (g' ED  1(0,,b),  Au) 

                                          a733                           fab(gf01,(b)aul)ds —(g'1(a,b),AU) 

 = 

 (g'  1(a,b)  7  au) —  (g'  1(a,b),  Au) 

                          =  (x'  1(a,07  atu —  Au)  =  Of  1(a,b) f) 
    From this we have 

 (x,  u)  =  (g,  f). 
    By the same arguments as in  §6,§7, it follows that (g, f) is a linear functional on x E  X. 

   Consequently we have an unique solution u E W. ^ 
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