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Summary : In this note, the Sobolev space are analysed, then it is applied to the
boundary problems of some differential operators.

1 Introduction

The theory of distributions constructed systematically by Schwartz [4] has many applica-
tions to several domains in mathematics. In particular, in the theory of partial differential
equations and the probability theory, it plays the fundamental role. Rozanov’s result [3]
was intended to apply it to the probability theory. One of his results is to determine
the structure of the functional space (H™(2))'. Then, using this result, he discussed the
existence of the solutions of the differential equations appearing in the probability theory.
His method is somewhat different from the method used in the theory of partial differen-
tial equations. Therefore we summerize here the results using the usual notations and the
usual results in Mizohata [2]. Our result might be used to the problem of posﬂ:we—deﬁmte
distributions elsewhere(cf. [1]).

This note contains 8 sections. Section 2 is devoted to the notations and the main results
in a book of Rozanov [3]. In §3, we prove Theorem 3.1 using the result in Mizohata [2]. In
84 we descrive the representation theorem in the case of (H™(2))’. In the latter half of the
paper we shall give some applications of the representation theorem. §5 is devoted to the
construction of the Riemann function in the case of the ordinary differential equations. In
§6 we shall give an example to Theorem 4.2 in the case of ordinary differential equations.
In §7, we apply Theorem 4.2 to the case of elliptic partial differential operators. In §8 we
shall apply again Theorem 4.2 to the problem of heat equation.

I would like to thank professor Matsuzawa of Meijo University. This paper is due to
the discusion with him.
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2 Notations and a representation of Sobolev’s spaces

Let R™ be n—dimensional Euclidean space with its point z = (z;,z2, -+, 2,) . Let @ CR"
be an open set. The followings are the usual notations

Da:D‘l)«'ng2...Dgh, a:(ai,az...’an), |a|=al+a2+...+an

where D; = —i0/0z;. Furthermore C§°(f2) denotes the set of infinetely differentiable
functions with compact support in €2.

Definition 1. We define by D(f2) the set of C§°(2) which has the topology in the
following sense i.e. {¢,(z)} — 0 means suppp,, C K,n=1,2,---, for some compact set
K C Q, and for any non—negative integer m

|‘70~n|m,K = laILIé?g(K lDa<pn| —0 asn — oo

Definition 2. We denote by D'(f2) the set of continuous linear functionals on D((2).

Definition 3. We define by £’(Q) the set of continuous linear functionals on D(2) with
compact support in 2.

Definition 4. We donote by S =8 (R") the set of C*°(R") which has the topology in
the folloing sense i.e. {¢,(z)} — 0 means that

sup |z®DPp,| > 0asn— 00 Vmk
zeR” Jaj<m,|Bi<k

Definition 5. We denote by &’ = 8'(R") the set of continuous linear functionals on
S(R™).

For ¢ € S we define the Fourier transform by
Fo(&) = 2(6) = [ e Op(a)do
where (z,£) = 21&1 + - -+ + z,£,. We define the Fourier transform of T' € S’ by
(T,¢)=(T,@) Vpes
For f € D(Q?), we denote by |||, a norm
112 = [ 17+ IePy de
for any real number p. For positive p, W denotes the completion of D(R") with respect

to the norm | f||,- We also denote by W (§2) = [D(£2)] the closure of D(2) with this norm
Ifll- X denotes the completion of D(R™) with respect to the norm | f|l—,. We also
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denote by X (Q) = [D(Q)] the closure of D(2) with this norm | f||-p. It is easy to see
W*=X.

Theorem 2.1. X (Q) = [D(Q)] consists of f € X, supp f C Q.

The proof is in [3]. We prove it, in §3, by another method in the case of the Sobolev
space.

Let P be an elliptic positive operator of order 2m satisfying

lelify = (0, Po) < el ¢ € DRT), (21)
where < denotes the equivalent norm. We denote X = 0{ ™ (2) then we have
X =PwW. (2.2)
Denote by 02 =T" and
XT)={feX(), suppfcCT} (2.3)

Then we have the following theorem.

Thoeorem 2.2. (representation theorem)

X(Q) = [PD(2)] & X(T) (2.4)

The proof is given also in [3]. More precise representation formula will be given in §4.

We define the following non—isotropic norm which will be used in §8 for treating the
heat equation. For u € D(R™*"), we denote

By = fopmis (14 €12 + )l (6, m)|? ddin
, where z € R™,y € R where (£, n) denote the Fourier transform of u(z,y). We denote
Hm) (R = W™ (R = W
and its dual space with respect to the L?—inner product by
H—(m9) (Rn+1) = Wz—(m,s)(Rnﬂ) =X.

Furthermore, the restrictions to © of the spaces H™*)(R™™) and H-(™*)(R"*!) are
denoted by H (m2)(Q) and H~(™*)(Q), respectively.
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3 Some properties of (I;)T ™(Q))

In the following m is a fixed positive integer. Furthermore we denote 9; = 8/dz; and

0% = o5t --- 0%,
Theorem 3.1. (representation theorem) Ifue€ (ﬁm(Q))' , then there exists {fa} €

L?*(Q) and
u= Y 8f., (3.1)

le|<m

These {fa} are not necessarily unique.
Remark. We denote by (ﬁm(Q))’ =ﬁ ()

(Proof) For u € (ﬁm(ﬂ))’, (u, ), € ﬁm(ﬂ), is a bounded linear functional on
H™(Q). Using the Riesz theorem(cf.[2,Theorem 2.10,p.73]), there exists g € H™(Q)

such that
(w,0) = (P, Pmrz= Y, (0%, 0%9)12
|a|<m
= ¥ ()07, )

laf<m
Hence, by setting f, = (—1)%16%g, we have
u= Y, 0%,

|| <m

Theorem 3.2. D(Q) is dense in (ﬁm(ﬂ))’ :

(Proof) By Theorem 3.1, u € (ﬁ ™(Q2))" is represented by u = Y j4j<m 0% fa, Where
3{fa}, fo € L?(2). For one of the above f,’s, there is an approximate sequence
{pa;}321 C D(Q) which satisfies ||pa; — fallL2@@) = O(cf. [2,Proposition 2.4,p.67]). We

put u; = ¥|aj<m 0%Paj, then u; € D and u; — u in (ﬁm(ﬂ))’ Hence u € (ﬁm(Q))’
For Vy € ﬁm(ﬂ), we have

(el =| X (6fars)

le|<m

< X Mallzz - 16°¢] 22

lajsm
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By the Cauchy—Schwarz inequality, we get

< (S 1sl) " (1 S norwlza) "

lajsm laj<m

< (S WAels) il

lal<m
Hence we obtain _
flu; — U“%{-m(m - Z | fa — %ej“%z — 0,

which is to be proved. [ |

4 The répresentation of (H™(Q))’

In this section we shall determine the representation of the distribution £'(2) which has
a support in one point and also the representation of the distribution (H™(Q))" with its
support touched to the boundary I" = 2. This is the precision of the Theorem 2.2 in §2.
In the following, we denote by d the Dirac delta function and also by C(U) the continuous
function on U.

Theorem 4.1. Let f € £ and supp f = {O}. Then we have, for Im non-negative

integer,
f=3 C.0% - (4.1)

|laj<m

(Proof) The following proof is due to Yoshida-Ito [6,p.135].
Since f € &', f is represented by f = Yj4j<m 0%°ga Where g, € C(U) and U is a
neiborhood of the origin O. Let ¢ € £ satisfying D*p(0) = 0 for || < m. Then we have

(f,) =0

from the following argument.
Let ¥ € D and satisfy

1 if |z < 1/2
Q/’(w):{ 0 if |xI21./

For a fixed ¢ we put ¢;(z) = ¥(jz)p(z). Then for |a| = m we have sup |0%(z)| — 0.

lz|<1/3
Further for |a| < m we get

op(a) = [ S(@(ta))d

q

= ; z: /0 7 (0 (i)t
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So we see by the induction on ||

sup |0%p(z)| = o(5*™™).

lz|<1/5
By the Leibniz formula we have
Q . .
o) = 3 ( )aa-%(m)a'ﬂ'(a%)m).
asp \P
So it obtains
sup [0%p;(z)| = sup [0%;(z)]
€U - Jel<1/3
al a— |al—m
= swp [T ( )i#sup 10+~ (a) = o~
z,|a|<m a>p 16

Since p; and its derivatives up to the order m converge uniformly, we get

On the other-hand, since ¢;(z) = ¢(z) in |z| < 1/j and the support of f is the origin,

(f,) = (f1p;). It follows that (f, ) =0.
For Vy € &, we put

rn= ()~ X Z0°(0)(€ ).

laj<m

—1\lel .
As 8°r,,(0) = 0(la] < m), we get (f,rm) = 0. Puting C, = ( ;') (f,z*), it follows that

f=3 C.0%

la|<m

In the case of 2 = [0, 00), we obtain the representation theorem for T' € (H™(2))’ by
the same argument as above. For n—dimensional case, we divide the domain 2 into the
patches which are two types. The first ones are in the interior of 2 and the others are
touched to the boundary. The former are corresponding to the open neighborhood of the
origin, and the latter are corresponding to the neiborhood of z,, > 0 and its boundaries
are contained in z,, = 0.

Theorem 4.2. Let T be in (H™()). Then there exists {go} C L?
and zx € H-(m*-YA(T) (k =0, --,m — 1) such that

m—1
T= Y 0%+, () (4.2)

|ej<m k=0

S0
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Remark. We denote (H™(Q))' = H™™(£2).
(Proof) Since T € ((H™(Q)), (T, ) is a linear functional on ¢ € H ™(€2). We have
(T, @) <C( X [10%¢lZa@) ' = Cllellm,rs

le|<m
By Theorem 3.1, there is a set {g,} C L? such that
Tl = Z 80190“ (Tla (P) = <T7 90)

|a|<m

Setting Ty = T — Ti, since (T,¢) = (Ty,y), we get suppTy C I. Fixing 2@ =
@, ,z9,,0) = (2©7,0) and U is a neighborhood of O. We continue the same argu-
ment as in one variable. We put

o(z) = (&', 0) + Onp(a, 0)Tn + - - - + IT0(a,0) == + ()
m)

where 9 (x) = O(z™*!). Hence (T, ) = 0. we consider the particular case T = T, ® T3’

k k

n T
(T, Bl 0)37) = (T © Ty, Bhp(a!, 0)77)

z
&

= (T3 ® 0¥, p)
By T, = T — Ty, it follows that

m—1
T=Ti+To= Y 0%+ Y z;®§*(T)
0

|e|<m k=l

This completes the proof. . ‘ u

5 Ordinary differential equations and the Riemann
function

This section is due to Yosida [5,p.53]. This is the preparation of the representation of the
solution of the ordinary differential equation which will be given in §6.
We consider the ordinary differential equation of the folloing type

Ly =y™ +pi(@)y™ D+ +palz)y = ¢(x) (5.1)
where p;(z), -+, pn(z) and the right-hand-side ¢(z) are continuous in the interval D.

Theorem 5.1. For any point z, in the interval D and any data 1,7/, - - , "D, there
exists a unique continuous solution y(z) in D satisfying the equation (5.1) and the initial
values -

y(zl) =1, y,(ml) —~ 77,1 ] y(n_l)(ml) = n('n.—l) (52)
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Theorem 5.2. The difference 2(z) = y1(z) — y2(z) of the two solutions of the equation
(5.1) satisfies the equation '

2™ 4+ py(2)2D + -+ pa(z)2 = 0. (53)

Hence any solution of the equation (5.1) is written by the sum of a particular solution of
(5.1) and a solution of the homogeneous equation (5.3).

Theorem 5.3. For a system of fundamental solutions {z;(x)} of (5.3), we take the
unknown functions {u;(x)}7_; which satisfy

z1u) +2puf +-0 Fzpu, =0
2 +2huh +-0 Fzul, =0
(B) AW FAm Ao dan = (5.4
AV 4 e 420, = g(a)
Then we have the solution of (5.1) by setting
=Y zi(@)ui(z).
i=1
(Proof) Differentiating (5.4) succesively, we have by using (5.3)
y(z) =D z(z)ui(z)
i=1
y(@) =2 #(@w)
i=1 )
¥ (a) Z 7 (@)u(e)
@) =3 A7 @u() + o)
i=1
Therefore considering {z;(z)}}_, solutions of (5.3), we see that y(z) satisfies (5.1). [ ]

Theorem 5.4. The above method obtaining a particular solution of (5.1), is the same
as the folloing method. The variable = is in an open interval a < z < b. We take con-
tinuous functions {a;(x)}?_, and choose continuous ones {b;(z)}7,; satisfying the folloing
equations

(br(2) —ai(@))z(e) 4+ +(ba(z) —an(@))2m(z) =0
( (@) —ai(z)Z(e) 4+ +(ba(z) —an(z))d(z) =0

<b1<x>—a1(m>)z£"‘2’(x> +oo H(ba(z) — an(2))28(z) =0
(b1(z) — a1 (2))2" V(@) + -+ +(ba(2) — 6a(2))20V(z) = g(2)
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Then we define

( n

Zag (z)z;(£) if a<z<¢
=1

R@=1
Zb(m)zj if £<z<b

Then we have a particular solution of (5.1) as the following form
b
y(@) = [ Rl@,Oa(€)dt
(Proof) Since (b;(z) — a;(z))g(z) is coinside with the solution u}(z) of (5.4), we have

/ab R(z,€)q(§)d¢ = z::I zj(:c){/: b;(£)q(€) d€ + /: a;(€)q(€) dg}

> 550) [ +3 5o [ as(€lale) e

=1

- 3= () - w(@) + 3 5@ [ o

Jj=1

=Y z(z)u;(z) + ) czi()
j=1 j=1
Hence y(z) is represented by the sum of a particular solution and the solution of (5.3). m

Remark. This function R(z,£) is called the Riemann function of the equation (5.3).
Here the choise of a; is not unique, so the function is not uniquely defined.

Example 5.1 We consider the Cauchy problem for Lo = % with the boundary deta
©W(0)=0(j =0,---,2m —1) in the interval I = [0, 00). Then we have, by Theorem 5.4,

o(t) = /0 t gt s)¢(s)ds = (g;,9), t>0. (5.5)

Here we set the Riemann function R(z,£) in the above as g(t, s) ‘and we put

_ t, s if t>s
gt(t,s)={90( ) if t<s.

By Theorem 3.1, we have X = (ﬁ'Zm Dy —H-m (I). Then z = L*g € L*Ly(I) and
(@,u) = (Lg;,v) = (g7, Lu) = (g7, f)-
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For a resolvent representation of the solution (5.5), we have
B (t) = (67, 0) = (a7, Lp) = (L9, 0), €D
for k=0,1,---,2m — 1. So X = L*Ly(I) contains the 5tk) functions.

Example 5.2 We consider the Cauchy problem for Lu = f with the boundary deta
u9(0) = &(§ =0,--+,2m — 1) in the interval [0, 00). By (5.5) we have

2m—1

u(t) = (g;, f) + Z u; (8)§;

where {u;(t)} is a system of fundamental solutions of Lu = 0 with the initial data
(k) = 6. For z € X, we have z = C*g; + 2’"‘1 1;69). Therefore it follows that

(z,u) =(Lrg;,u) +Z,2-Zo'1($j5(“m)
(gt a£u> + ZQm 1(5917 U(J)(O»

= (90, f) + 2775 w5

We get \ ,
= (5) = 07, £+ 3 350) = (€0 0) + 5 sty
that is, we have "
6= L*g7 + 22)1 6@ (t).
=

This shows Theorem 4.2 with g; € L2.

6 The case of ordinary differential equations

Let £ be an ordinary differential operator of order 2m with constant coefficients :

and I is an interval [a, b].

Theorem 6.1. The boundary value problem
Lu =f in I

(P) u(j)(a) . g(()j) (.7 =0,1,---,m— 1) (61)
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is given. If it has a unique solution, then for any f € L*(I) and any data
{08, 9} oci<am—1, there exists a solution uw € H*™(I) satisfying (P).

(Proof) For V¢ € (H>™ (I)), by Theorem 4.2, there exists n € L*(I)

E=Ln+Y 96D +3 £8P, | (6.2)
j=0 7j=0
where o
1€]|—2m < |17ll22 + Z 91+ 3 169, (6.3)
=0
We put

m—1 . . m—1 . .
FO=mH+Y 999+ 6799
Jj=0 j=0
Then we obtain

IF@© <[ AHl+ Z 169 199| + Z |£(.J)Hg(3)
<lnlllfl+ Z €1 196”| + 2 €912

m—1 . m—1 )
o(lnl+ X 1+ X 1671).
j=0 j=0

By (6.3), we then have
IF(&)] < Clléll-2m-

So F(£) is a bounded linear functional on (H?™(I))'. Therefore there is a u € H*™(I)
satisfying
F(§) = (& u)
For ¢ € D, we put £ = L*¢. Since L*¢ is 0 on the boundary 0, we get
<£*‘Pau> = (‘P’ f) te. (‘Pa ['u) = <507 f)

This implies Lu = f. Puttingu = u(’ ) ®6Y) we have uo = g((,j). By the same substitution,
we also have ug’ ) = g{” ). These facts show that u is a solution of the boundary problem
(P). |
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7 The case of elliptic partial differential equation

Let Q be a bounded domain in R™ with smooth boundary I'. Furthermore, let P be an
elliptic partial differential operator of order 2m and positive-definite :

P= Z aka’“ >0 (71)
[k|<2m .
with
lpllam = (. Pp)2 < [|@llm, ¥ € D(Q). (7.2)
For V§€ € H™(Q), n = P£ € H™™(Q2) and '
n=(p,m = (Pp,€), ¢eDQ). (7.3)
Furthermore the folloing relation is satisfied
[ellm = 1P| ra- (7.4)
We consider the boundary value problem of this operator :
PE =7 in §
(P) ' (7.5)
5(1)(0’) =£k OHF, (.7=0,133m_1)

where &, € H™*-1/2(T).

Theorem 7.1. For any n € (H™(Q)), there exists an unique solution £ € H™(Q2) of
the boundary value problem (7.5).

(Proof) By Theorem 4.2, we have
m—1
X =(H™Q)) =PH™Q)® ) H™™*1/3(T)
k=0

where PH™(Q) = [PD(Q2)]. Hence, for any z € (H™(2))’, we have

m—1
g=Pu+ )y 2 ®P. (7.6)
=0
Here u € H™(Q), z € H-™*1Y2(')(k =0,1,---,m — 1) and
' m—1
2]l -m < ullm + D2 Nzall-nr-1/2)-
k=0

For any z € (H™(Q2))', we define

F(z) = (u,1) +’Z§ (2 £2)-
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This indicates F(z) is a bounded linear functional on (H™(€2))". Because the following
estimates holds for z € (H™(Q))

F(@) < |(wm)] +"i“ e, &)

m—1

< (sl +'E oklnescsrn) < Clelm
k=0
Hence there exists £ € H™(Q) satisfying
(P, ) = (p,m) Vi € D(2)

(zx ® 6®, &) = (z4,®) = (zr, &) x1 € H™mF-YA(T),
(k=0,---,m—1).

This implies that ¢ satisfles (7.5). ]

8 The case of heat equation

In this section, we consider the heat equation

ou
in R” x R. We put
L= —-A

and

P=LL=—-0%+ A%

The following notations are given in §2, that is,

W =[D] =W B,

1/2

lellw = (o, Pe)”* < [l@lley, ¢ €D.

Then we also have
X — W* = W_(z’l)(R"+1),

X = L*Ly(R™).

We denote by (-, -) the inner product of L2(R"™*!) and by (-, ) the inner product of L?(R").
Hence we have the existence and the uniqueness theorem as follows.

Theorem 8.1. For f € Ly(R™™), there exists an unique solution u € WD (R™) of

(8.1).
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(Proof)
9=9®1lay, ¢ €DR").

The set of functions of this type is dense in L*(R™"!). Denote by u = u(t,-) = ul;. We
have

z=Lqg =(-0:—A)g
= —g ® (Ol(ap) — (AF) ® Loy
= —¢' ® (6a — 0) — (A9') ® Lap)
This shows Theorem 4.2. Hence taking the inner product with u, we have the following
equality
((L’, u> = (‘C*ga u) = (gl @ (66 - 6a)a“> - (Ag’ ® 1(a,b)a u)

= (gyule) = (¢ ule) = (¢ @ Liap, A0)
b
— ['(¢ @ Lo, Betls)ds — (g’ ® 1, Au)

= (¢ ® L(ap), Ot) — (¢’ ® 1(ap), Au)

= (2’ ® L(a), Ou — Au) = (¢ ® 1ap), f)

From this we have

(z,u) = (g, f)- _
By the same arguments as in §6,87, it follows that (g, f) is a linear functional on z € X.
Consequently we have an unique solution u € W. [ |
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