

Nagoya City University Academic Repository

学位の種類	博士 (薬科学)
報告番号	乙第1867号
学位記番号	論第194号
氏 名	井川 英之
授与年月日	平成 28 年 10 月 31 日
学位論文の題名	メラニン凝集ホルモン受容体1拮抗薬に関する合成研究およびその薬理作用

名古屋市立大学学位論文

メラニン凝集ホルモン受容体1拮抗薬 に関する合成研究およびその薬理作用

2016 年度(2016 年 10 月)

井川 英之

- 1. 本論文は、2016 年 10 月に名古屋市立大学大学院薬学研究科において審査されたもの である。
 - 主查 中川秀彦 教授 副查 樋口恒彦 教授
 - 今川正良 教授
 - 中村精一 教授
- 2. 本論文は、学術情報雑誌に収載された次の報文を基礎とするものである。
 - Hideyuki Igawa, Masashi Takahashi, Keiko Kakegawa, Asato Kina, Minoru Ikoma, Jumpei Aida, Tsuneo Yasuma, Yayoi Kawata, Shuntaro Ashina, Syunsuke Yamamoto, Mrinalkanti Kundu, Uttam Khamrai, Hideki Hirabayashi, Masaharu Nakayama, Yasutaka Nagisa, Shizuo Kasai, and Tsuyoshi Maekawa. Melanin-concentrating hormone receptor 1 antagonists lacking an aliphatic

amine: synthesis and structure–activity relationships of novel 1-(imidazo[1,2-a]pyridin-6-yl)pyridin-2(1H)-one derivatives.

J. Med. Chem., 59(3), 1116–1139 (2016).

2. Hideyuki Igawa, Masashi Takahashi, Mikio Shirasaki, Keiko Kakegawa, Asato Kina, Minoru Ikoma, Jumpei Aida, Tsuneo Yasuma, Shoki Okuda, Yayoi Kawata, Toshihiro Noguchi, Syunsuke Yamamoto, Yasushi Fujioka, Mrinalkanti Kundu, Uttam Khamrai, Masaharu Nakayama, Yasutaka Nagisa, Shizuo Kasai, Tsuyoshi Maekawa.

Amine-free melanin-concentrating hormone receptor 1 antagonists: Discovery of novel 1-(1*H*-benzimidazol-6-yl)pyridin-2(1*H*)-one derivatives and design to avoid CYP3A4 time-dependent inhibition.

Bioorg. Med. Chem., 24(11), 2486–2503 (2016).

 Hideyuki Igawa, Masashi Takahashi, Minoru Ikoma, Hiromi Kaku, Keiko Kakegawa, Asato Kina, Jumpei Aida, Shoki Okuda, Yayoi Kawata, Toshihiro Noguchi, Natsu Hotta, Syunsuke Yamamoto, Masaharu Nakayama, Yasutaka Nagisa, Shizuo Kasai, Tsuyoshi Maekawa.

Amine-free melanin-concentrating hormone receptor 1 antagonists: Novel non-basic 1-(2H-indazole-5-yl)pyridin-2(1H)-one derivatives and mitigation of mutagenicity in Ames test.

Bioorg. Med. Chem., 24(11), 2504–2518 (2016).

3. 本論文の基礎となる研究は、武田薬品工業株式会社循環代謝創薬ユニットにおいて 前川毅志博士および河西静夫博士の指導の下に行われた。

略語表

5HT	5-Hydroxytryptamine (Serotonin)		
		5-ヒドロキシトリブタミン (セロトニン)	
Ac	Acetyl	アセチル	
Ar	Aryl	アリール	
Asn	Asparagine	アスパラギン	
Asp	Aspartic acid	アスパラギン酸	
AUC	Area under the curve	曲線下面積	
ADDP	1,1'-(Azodicarbonyl)dipiperio	line	
		1,1'-(アゾジカルボニル)ジピペリジン	
BBB	Blood brain barrier	血液脳関門	
Bu	Butyl	ブチル	
СНО	Chinese hamster ovary	チャイニーズハムスター卵巣細胞	
СҮР	Cytochrome P450	シトクロム P450	
DIO	Diet-induced obesity	食餌性肥満	
DIPEA	N,N-Diisopropylethylamine	N,N-ジイソプロピルエチルアミン	
DMA	Dimethylacetamide	ジメチルアセトアミド	
DME	Dimethoxyethane	ジメトキシエタン	
DMEAD	Di-(2-methoxyethyl)azodicarboxylate		
		アゾジカルボン酸ジ (2-メトキシエチル)	
DMEDA	N,N'-Dimethylethylenediamin	ne	
		<i>N,N'-</i> ジメチルエチレンジアミン	
DMF	Dimethylformamide	ジメチルホルムアミド	
DMSO	Dimethyl sulfoxide	ジメチルスルホキシド	
ECL	Extracellular loop	細胞外ループ	
Et	Ethyl	エチル	
Gln	Glutamine	グルタミン	
GHS	Glutathione	グルタチオン	
HATU	1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo(4,5-b) pyridinium		
	3-oxide hexafluorophosphate		

HBA	Hydrogen-bonding acceptor	水素結合受容基		
HBD	Hydrogen-bonding donor	水素結合供与基		
hERG	Human ether-a-go-go related	gene		
		ヒト遅延整流性カリウムチャネル遺伝子		
HLM	Huma liver microsome	ヒト肝ミクロソーム		
HOBt	1-Hydroxybenzotriazole	1-ヒドロキシベンゾトリアゾール		
IPE	Diisopropyl ether	ジイソプロピルエーテル		
iv	Intravenous	静脈		
LHS	Left hand side			
	(MCHR1 拮抗薬)	のファーマコフォアにおける) 左側部分		
LLE	Ligand-lipophilicity efficience	у		
		脂溶性効率		
Me	Methyl	メチル		
HMDS	Hexamethyldisilazane	ヘキサメチルジシラザン		
МСН	Melanin-concentrating hormone			
		メラニン凝集ホルモン		
MCHR1	Melanin-concentrating hormo	one receptor 1		
		メラニン凝集ホルモン受容体1		
mp	Melting point	融点		
MS	Molecular sieve	モレキュラーシーブ		
MW	Molecular weight	分子量		
NMR	Nuclear magnetic resonance	spectroscopy		
		核磁気共鳴スペクトル		
Ph	Phenyl	フェニル		
PLsis	Phospholipidosis	ホスホリピドーシス		
ро	Per os	経口投与		
Pr	Propyl	プロピル		
^c Pr	Cyclopropyl	シクロプロピル		
ⁿ Pr	Normal propyl	ノルマルプロピル		
PSA	Polar surface area	極性表面積		

RHS	Right hand side			
	(MCHR1 拮抗薬)	のファーマコフォアにおける) 右側部分		
SAR	Structure-activity relationship			
		構造活性相関		
TDI	Time-dependent inhibition	時間依存的阻害		
TEA	Triethylamine	トリエチルアミン		
TFA	Trifluoroacetic acid	トリフルオロ酢酸		
TFAA	Trifluoroacetic anhydride	トリフルオロ酢酸無水物		
THF	Tetrahydrofuran	テトラヒドロフラン		
THP	Tetrahydropyran	テトラヒドロピラン		
Thr	Threonine	トレオニン		
TPSA	Topological polar surface are	a		
		位相幾何学的極性表面積		
Tyr	Tyrosine	チロシン		
WSC	1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride			
	1-エチル-3-(3-ジメチルア	?ミノプロピル)カルボジイミド塩酸塩		

理論の部

/生神/

第1項	薬物設計	32
第2項	合成	33
第3項	生物活性と考察	35
第3節	チオフェン置換体の CYP3A4 時間依存的阻害回避の戦略	38
第1項	背景	38
第2項	薬物設計	40
第3項	合成	41
第4項	生物活性と考察	41
第4節	ベンズイミダゾール誘導体 54s の薬理作用	42
第1項	食餌性肥満 F344 ラットによる二日間摂食抑制確認試験	42
第2項	食餌性肥満 F344 ラットにおける二週間連続投与試験	43
第3項	MCHR1 欠損マウスにおける選択性確認試験	44
第5節	小括	45
第4章	新規インダゾール誘導体の構造活性相関および薬理作用	
第1節	新規インダゾール誘導体の発見	46
第1項	背景	46
第2項	薬物設計	47
第3項	合成	47
第4項	生物活性と考察	49
第2節	TA1537 株における遺伝毒性リスクと回避の戦略	50
第1項	背景	50
第2項	薬物設計	52
第3項	合成	53
第4項	生物活性と考察	55
第3節	インダゾール誘導体 661 の薬理作用	58
第4節	小括	59
第5章	結語	61

62

実験の部

Experimental Section	64
Experiments concerning Chapter 2	65
Experiments concerning Chapter 3	89
Experiments concerning Chapter 4	104
Experiments concerning biological activities	115
References and notes	120

第1章 緒言

第1節 肥満と抗肥満薬の現状

世界保健機構の 2014 年の調査では、世界における成人の 19 億人以上が過体重 [ボデ ィマス指数 (BMI)≥25] であり、そのうち 6 億人が肥満 (BMI≥30) であるとされている ¹。肥満はカロリー摂取量がカロリー消費量に比べ過剰な状態により惹起され、過剰な体脂 肪により産生された炎症性アディポカインが糖尿病、高血圧、脂質異常症、うつ病、冠動 脈疾患およびある種の癌などの疾患の誘起に関連している²。そのため、肥満人口の増加 は深刻な社会問題として認識されている³。

現在、肥満の治療方法としては、食事療法、運動療法、外科的療法(胃バイパス術や胃 バインディング術など)および薬物療法がある。食事療法および運動療法では満足な結果 が得られないことが多く、外科療法には手術に伴う危険性がある。

薬物療法に関しては、欧米では抗肥満治療薬として中枢性摂食抑制薬 Phentermine や膵 リパーゼ阻害薬 Orlistat が用いられているものの、Phentermine は副作用から使用期間が 3 ヶ月以内と制限されており、Orlistat は脂肪便といった副作用を有している⁴(Figure 1)。 また過去には、中枢性摂食抑制薬として使用されてきたノルアドレナリン / セロトニン再 吸収阻害薬 Sibutramine ⁵ が心臓への影響から 2010 年に欧州医薬品庁から使用中止の勧 告を受け⁶、また同じく中枢性摂食抑制薬である中枢性カンナビノイド CB1 受容体イン バースアゴニスト Rimonabant は、欧州での承認後まもなく重篤なうつと自殺のリスクが 報告されたことから、米国では非承認、欧州でも 2008 年に販売中止となっている⁷。

2012 年から 2014 年にかけて連邦食品医薬品局 (FDA) は、新たに 3 つの低分子肥満 薬 [Lorcaserin (セロトニン 2C アゴニスト)、Qsymia (Phentermine と Topiramate の合剤) および Contrave (Bupropion と Naltrexone の合剤)] を承認した。しかし、これらの薬剤の 場合、BMI \geq 30 以上もしくは BMI \geq 27 以上かつ高血圧、2 型糖尿病、脂質異常症等の 合併症を併発している患者層に投薬は限定されており、3 ヶ月の投与で 5% 以上の体重 低下が無ければ使用を中止する必要がある (Qsymia については Phentermine 15 mg/Topiramate 92 mg 錠が対象)。またこれらの薬剤には心血管イベントに関する長期間の 市販後調査が求められている。一方、2015 年に承認された Liraglutide (GLP-1 アナログ) は安全性の高い薬剤として期待されているが、注射剤で高価といったペプチド製剤特有の 課題を抱える。このように既存の抗肥満薬には効果と安全性の面に課題があることから、 抗肥満薬の unmet medical needs は高い⁸。

なお、日本においては肥満症の薬物治療は浸透しておらず、使用できる抗肥満薬は Mazindol のみである。しかし、Mazindol の適用は重度肥満症の患者層に限定されており、 また中枢性の副作用のリスクから使用期間が 3 ヶ月に制限されている。

Figure 1. Chemical structures of existing antiobesity agents.

第2節 メラニン凝集ホルモンとメラニン凝集ホルモン受容体 1

メラニン凝集ホルモン (MCH) は主に視床下部外側野や不確帯において産生される 19 アミノ酸残基から成るペプチドホルモンであり (Figure 2)、その神経線維は脳内に広く投 射されている⁹。MCH の受容体としては 7 回膜貫通型 G-タンパク質共役型受容体 (GPCR) である MCH 受容体 1 (MCHR1) と MCH 受容体 2 (MCHR2) が報告されている ¹⁰。MCHR1 は大脳皮質、尾状核・被殻、海馬、視床下部など中枢の各部位に発現してい る一方 ¹¹、MCHR2 はげっ歯類において発現していない ^{12a-f}。最近になって、MCHR2 が 食餌性肥満に対する抵抗性を示すとの報告があるものの ^{12g}、その機能に対する理解は未 だ限定的である。また、多くの MCHR1 拮抗薬が報告されているのに対し、MCHR2 拮 抗薬の報告は μ M オーダーの IC₅₀ 値を示す例のみである ^{12h}。

H-Asp-Phe-Asp-Met-Leu-Arg-Cys-Met-Leu-Gly-Arg-Val-Tyr-Arg-Pro-Cys-Trp-Gln-Val-OH

Figure 2. Amino acid sequence of MCH.

MCH/MCHR1 系は摂食行動およびエネルギー消費において重要な役割を果たしていることがこれまでの研究により明らかとなっている。すなわち、食餌性肥満ラット (DIO ラット)¹³ や遺伝的な肥満を呈する *ob/ob* マウス¹⁴ や*db/db* マウス¹⁵、 $A^{y/a}$ (agouti) マウス¹⁶、Zucker (*fa/fa*) ラット¹⁷ において MCH の mRNA レベルおよび発現レベルの上昇

が認められている。また、MCH の脳室内投与は、特に高脂肪食負荷において過食、体重 増加および高インスリン血症を惹起することが報告されている¹⁸。さらに、視床下部外側 野における MCH の過剰発現マウスは高脂肪食負荷において肥満およびインスリン抵抗 性を呈することが知られている¹⁹。一方、MCH もしくは MCHR1 の遺伝的欠損マウスは 痩せの表現型を示し、代謝亢進と食餌性肥満に対する抵抗性が認められる²⁰。また、肥満 患者では視床下部における MCH の産生が増加していることが明らかとなっている²¹。さ らには、ヒトにおいて MCHR1 の機能欠損型変異 (R210H もしくは P377S) が体重低下 を引き起こすことが確認されており、痩せの表現型と MCHR1 シグナル低下との関連性 が示唆されている²²。

これらの報告は MCH/MCHR1 系が摂食行動およびエネルギー消費に対して深く関与 していることを示しており、MCHR1 拮抗薬は新しい分子機構に基づく抗肥満薬となると 考えられる。これを受け多数の研究機関によって MCHR1 を創薬ターゲットとした抗肥 満薬の研究が実施され、Figure 3 に示す 6 つの低分子化合物 (AMG-076、GW865464、 NGD-4715、Alb-127158(a)、BMS-830216 および AZD1979)の臨床開発が行われたが、有 効性と安全性の両立の困難さから未だ上市に至った候補化合物は無い。

BMS-830216 (R = PO₃H₂, prodrug of BMS-819881)

第3節 研究方針および論文の概要

1999 年に当グループが MCH は MCHR1 の内因性リガンドであることを見出し²³、 低分子 MCHR1 拮抗薬 T-226296 (**1a**, (-)enantiomer) を報告して以来²⁴、我々は種々の低 分子 MCHR1 拮抗薬を創製している²⁵ (Figure 4)。一般にこれらの化合物は、分子中央の アミド結合を中心に、脂溶性部位から成る left hand side (LHS)、二環性縮合環とアルキル アミン部位から成る right hand side (RHS) が左右に配置された構造的特性を有する。また、 ウシのロドプシンに基づく MCHR1 のホモロジーモデルを用いたテトラリン誘導体 1b のドッキング解析の結果、中央カルボニル基と Gln127、アルキルアミン部位と Asn294 と の相互作用が示唆されている^{25a} (Figure 5)。これらの MCHR1 拮抗薬は、肥満モデル動 物において強力な摂食抑制作用を示したが、致死的不整脈を誘発する hERG 阻害作用や リン脂質の臓器への蓄積を伴うホスホリピドーシス (PLsis) 等、安全性の懸念から、その 後の開発は中止された。この様な状況の下、安全性の向上した新規 MCHR1 拮抗薬を見 出すべく研究を開始した。

Figure 4. Chemical structures of our MCHR1 antagonists.

未だいずれの研究機関も MCHR1 拮抗薬の臨床開発に成功していない要因の一つとし て、安全面での課題、特に hERG 阻害作用の問題が挙げられる。これまでに、既存の MCHR1 拮抗薬および hERG 阻害薬の網羅的解析によって両者のファーマコフォアの類 似性が指摘されており、これが MCHR1 拮抗薬が hERG 阻害作用を起こしやすい原因と 考えられた²⁶。すなわち、既存 MCHR1 拮抗薬におけるアルキルアミン部位は、MCHR1 に結合する上での重要な部分構造である反面、カチオン-π 相互作用により hERG チャネ ルとの結合においても鍵構造である。これまでの検討により、本アルキルアミン部位はア ミド基やカルバマート基に置換可能であり、それにより hERG 阻害作用を回避できるこ とを報告しているが^{25a}、これら初期型の非アミン性 MCHR1 拮抗薬は中枢移行性の低下 により in vivo で効果を発揮するには至らなかった。

Figure 5. Docking model of **1b** with hMCHR1 generated by homology modeling. (a) overall structure (colored for helices) and (b) binding pocket of hMCHR1 with **1b** (carbon atoms in yellow for ligand and in green for receptor, nitrogen atoms in blue, oxygen atoms in red, and chloride atom in light green).

一方、Sasmal らは β2-アドレナリン受容体に基づく独自のホモロジーモデルにより、 Figure 6 に示すドッキング解析を報告している²⁷。すなわち、2-アミノキナゾリン誘導体 4 のキナゾリン環上の二つの窒素原子がそれぞれ AspIII:08 および細胞外ループ (ECL) 上の Thr と相互作用し、二環性縮合環が受容体との結合に重要な役割を果たしていると している。一方、Figure 5 で論じた我々のドッキング解析では化合物 1b のテトラリン環 近傍に Asp123 および Tyr 272 の存在が示唆されており^{25a}、水素結合を利用することで 二環性縮合環部位と受容体との相互作用が可能と考えられた。そこでこの新たな相互作用 獲得により、アルキルアミン部位を持たない非アミン性 MCHR1 拮抗薬の設計が可能で あり、それにより hERG 阻害作用や PLsis リスクの軽減された安全性の高い薬剤の創出 が可能と考えた (Figure 7)。本研究方針に基づき、アルキルアミン部位を薬物設計に用い ない、非アミン性 MCHR1 拮抗薬の探索に着手した。

Figure 6. Docking model of the quinazoline derivative **4** reported by 7TM Pharma on the basis of the β 2-X-ray structure. Dotted lines denote the hydrogen-bonding interaction with the receptor. ECL refers to the extracellular loop.

Figure 7. Design concept of alkyl amine-free MCHR1 antagonists. Dotted lines denote the hydrogen-bonding interaction with the receptor.

本論文では、筆者が武田薬品工業株式会社において実施した下記の内容について論じる。 第2章では、上述の研究方針に基づいたリード化合物創出の戦略と、新規イミダゾピリジ ン誘導体の構造活性相関と薬理作用について論じる。第3章では、イミダゾピリジン環の 更なる変換によって見出されたベンズイミダゾール誘導体の構造活性相関と薬理作用、な らびにチオフェン誘導体の CYP3A4 時間依存的阻害 (TDI) 作用回避の戦略について論 じる。さらに第4章では、中性 MCHR1 拮抗薬の創製と、インダゾール誘導体の TA1537 株における遺伝毒性リスク回避の戦略について論じる。 第2章 新規イミダゾピリジン誘導体の構造活性相関および薬理作用

第1節 非アミン性 MCHR1 拮抗薬リード化合物創出の戦略

第1項 薬物設計

第1章で述べた研究方針に従い安全性と薬効に優れたリード化合物を創出すべく、ア ルキルアミン部位を持たない非アミン性 MCHR1 拮抗薬の設計を行うに際し、以下に論 じる物理化学的指針を指標とした薬物設計を実施した。

Ploemen らは既存の PLsis 陽性化合物を解析することで、PLsis 回避のモデル $[(pK_a)^2$ + $(\text{ClogP})^2 < 90$ もしくは $pK_a < 8$ もしくは ClogP < 1] を提唱している ²⁸。本モデルより、 PLsis 回避を指向した薬物設計の指標として $pK_a < 8$ を選択した。また、MCHR1 は主に 中枢に発現していることから、その拮抗薬は血液脳関門 (BBB) を透過する必要がある。 一般に中枢薬は、末梢性の薬剤と比較し、より制限された物理化学的パラメータの範囲内 で設計することが推奨される。これまでに、市販後もしくは臨床開発段階における中枢薬 の解析や、薬物排出トランスポーターである P-gp の基質性評価の結果から、複数の中枢 移行性に関する経験則が報告されている²⁹。Hichcock らは、それらの経験則を統合した 極性表面積 (PSA)、ClogP 値、分子量 (MW) および水素結合供与基 (HBD) 数で規定され る中枢移行性を指向した chemical space を提唱しており、良好な中枢移行性の獲得には PSA < 70、2 < ClogP < 4、MW < 450 および HBD 数 = 0 もしくは 1 で定義される範囲内 で薬物設計を行うことを推奨している³⁰。この chemical space は、中枢移行性が求められ る本ターゲットに対しても有効な指針となると考えた。以上の考察を踏まえ、本章で述べ る薬物設計は、安全性および中枢移行性を指向した五つの物理化学的パラメータから定義 される chemical space (p K_a < 8、PSA < 70、2 < ClogP < 4、MW < 450 および HBD 数 = 0 も しくは 1) を指標に行うこととした。

アルキルアミン部位を持たない非アミン性 MCHR1 拮抗薬を設計するにあたり、 Figure 8 に記載した一般式に基づいて、受容体との親和性が高いことが期待される二環性 縮合環を設計した。すなわち、Asp 123 もしくは Tyr 272 との相互作用獲得を狙い、水素 結合受容基 (X) を環上に有する 5–5, 5–6 および 6–6 の縮合環を設計し、さらに R¹ およ び R² 部分には脂溶性相互作用を指向したアルキル側鎖を配置した。本設計に基づき選択 した二環性縮合環は、対応するアミン I を既知の LHS (一般式 A および B 参照) と縮 合することによりスクリーニングし、その有効性を確かめた。

Figure 8. Lead identification strategy via RHS exploration. A number of bicyclic motifs were designed on the basis of the illustrated general structure.

第2項 合成

フェノキシアセトアミド誘導体 6a-d の合成を Scheme 1 に示した。カルボン酸 5 を WSC による縮合反応に付し、目的物 6a-d を得た。本反応で用いた芳香族アミン試薬は 常法を用いて合成した。

第3項 生物活性と考察

二環性縮合環のスクリーニングにより得られた結果の抜粋を Table 1 に示した。百種類 を超えるアミン I (Figure 8) を評価した結果、イミダゾピリジン誘導体 6a および 6b の みが IC₅₀ 値 10⁻⁹ M オーダーの強力な in vitro 結合活性を示した^{*)}。これらの化合物は アルキルアミン部位を持たないことから、イミダゾピリジン環が受容体との相互作用に寄

^{*)} 化合物 6a の CHO 細胞における拮抗活性は IC₅₀ 値 4.4 nM であった。

与していると考えられる。また両化合物の物理化学的性質は、概ね第1項で設定した中枢 移行性を指向した chemical space (PSA < 70、2 < ClogP < 4、MW < 450 および HBD 数 = 0 もしくは 1)の範囲内であった。一方、インドリジン誘導体 6c およびベンゾフラン誘導 体 6d の in vitro 活性は大きく減弱した。本結果は、イミダゾピリジン環 1 位窒素原子 が活性発現に寄与していることを示唆している。

本項で論じた結果から、二環性縮合環のスクリーニングにより、非アミン性 MCHR1 拮 抗薬を設計する上での鍵構造となるイミダゾピリジン環を見出すことに成功した。

Table 1. In vitro binding affinity of compounds 6a-d

^{*a*}IC₅₀ values were calculated using an experiment performed in duplicate, with a standard deviation of 3-fold. ^{*b*}Binding affinity for human MCHR1.

第2節 ピリミジノン誘導体の創出

第1項 薬物設計

一般に鎖状アミドを有する化合物には化学的、酵素的に分解の懸念がある。実際、化合物 6a および 6b は代謝的に不安定であった為、安定性の向上を指向し、化合物 6b の中央アミド部位を環化、芳香化したピリドン誘導体を設計した (Figure 9)。

Figure 9. Design of cyclic amides on the basis of two conformers of **6b**. The energy barrier between the 2 conformers (ΔE value) was calculated using MOE.³¹

化合物 6b は closed form と open form の二つの局所安定配座を取ると考えられ、その 間には 3.98 kcal/mol のエネルギー障壁が存在する (MOE³¹ による計算結果に基づく)。中 央アミド部分を環化構造に組み込んだピリドン誘導体として、化合物 6b の closed form からはピリドン 4 位置換体 (I)、open form からはピリドン 3 位置換体 (II) が設計でき る。そこで筆者は、化合物 6b が強力な MCHR1 結合親和性を有することから、活性コ ンフォメーションは最安定構造である closed form と近い構造であると考え、ピリドン 4 位置換体 (I) を中心とした薬物設計を実施した。本節では、より安定なリード化合物の創 出を指向したピリドン誘導体の創出と、ピリドン環部位の他のアジン環への構造変換につ いて論じる。

第2項 合成

3-アルコキシピリドン誘導体 11a および 11b は Scheme 2 に示した手法により合成した。すなわち、ピリジン-2,3-ジオール (7) の 3 位選択的アルキル化反応³² により 3-ベンジルオキシピリドン 8 を得、続くヨウ化銅 (I) 存在下におけるカップリング反応³³ により目的物 11a へと導いた。一方、ボロン酸エステル 12 と対応するフェノールとの Chan-Lam-Evans カップリング反応³⁴ により中間体 13 を調製した後、塩素原子を置換することで、ピリドン 1 位無置換体 14 を得、ヨウ化銅 (I) 存在下におけるカップリング反応により目的物 11b へと導いた。

ピリダジノン誘導体 18、ピリミジノン誘導体 22 および 26 の合成を Schemes 3-5 に 示した。ピリダジノン誘導体 18 は、ピリダジノン-5-オール 15 を出発原料とし、アルキ ル化反応に続く THP 基脱保護反応ならびにヨウ化銅 (I) によるカップリング反応を経て 合成した (Scheme 3)。ピリミジノン誘導体 22 は、4,6-ジヒドロキシピリミジン (19) の モノアルキル化反応により得られたピリミドン 20 を用いて合成した。ピリミドン 20 に 対してヨウ化銅 (I) によるカップリング反応は進行しなかったため、Chan-Lam-Evans カ ップリング反応を用い目的物 22 を得た (Scheme 4)。ピリミジノン誘導体 26 は 2,4-ジク ロルピリミジン (23) より合成した (Scheme 5)。一段階目の S_NAr 反応は 4 位選択的に進 行し ³⁵、中間体 24 を与えた。続いて中間体 24 の 2 位塩素原子を水酸基に置換した後、 得られたピリミジノン誘導体 25 をヨウ化銅 (I) を用いたカップリング反応に付し目的 物 26 へと導いた。

上述の反応に用いたイミダゾピリジン-6-ボロン酸 21 は常法に従って合成した。また、 6-ヨードイミダゾピリジン 9a、化合物 10a および 10b の合成については、第4節にお ける 4-アルコキシピリドン誘導体の一般合成法において述べた。

第3項 生物活性と考察

第1項で論じた化合物 **6b** の二つの局所安定配座をもとに設計したピリドン 3 位および 4 位置換体の in vitro 活性を Table 2 に示した。

ピリドン 4 位置換体 10a が強力な in vitro 活性を示したのに対し、ピリドン 3 位置 換体 11a および 11b では大幅に活性が減弱した。これは活性コンフォメーションが化合 物 6b の closed form に類似するとする第1項の仮説を支持する結果である。一方、4-フ ェノキシ誘導体 10b では 4-ベンジルオキシ誘導体 10a と比較して活性が低い事が明ら かとなった。本結果を考察すべく、計算の都合上構造を単純化した 10a' および 10b' の 最安定構造を鎖状アミド 6b' の構造と比較したところ、化合物 10a' の末端アリール基が、 化合物 6b' の OCF₃ 基とよく重なることが明らかとなった (Figure 10)。一方、化合物 10b' の末端アリール基は化合物 6b' の OCF₃ 基と異なる配向を取っており、これが化合物 10b'の活性減弱の要因となっていることが考えられた。

R H Me						
Compound	nosition	D	$IC_{50} (nM)^a$			
Compound	position	ĸ	hMCHR ^b	rMCHR ^c		
10a	4	$OCH_2(4-Cl-C_6H_4)$	26	20		
10b	4	$O(4-CF_3O-C_6H_4)$	>1000	950		
11a	3	$OCH_2(4-Cl-C_6H_4)$	990	650		
11b	3	$O(4-CF_3O-C_6H_4)$	270	240		

Table 2. In vitro binding affinity of compounds 10a, 10b, 11a, and 11b

^{*a*}IC₅₀ values were calculated using an experiment performed in duplicate, with a standard deviation of 3-fold. ^{*b*}Binding affinity for human MCHR1. ^{*c*}Binding affinity for rat MCHR1

Figure 10. Superposition of the lowest energy conformers of **6b'** (yellow), **10a'** (purple), and **10b'** (orange) using MOE^{31} (for the calculation cost, the imidazopyridine ring was simplified with a methyl group).

続いてピリドン誘導体 10a の中央の環の構造活性相関を検証すべく、アジン誘導体 18、 22 および 26 を in vitro 試験に供した (Table 3)。ピラジン-6-オン誘導体 18 およびピリ ミジン-4-オン誘導体 22 では in vitro 活性が減弱し、それに伴い脂溶性効率 (LLE 値)^{*)} が低下した。一方、ピリドン環 3 位への窒素原子導入は活性に影響せず、脂溶性を低下

^{*)} $pIC_{50} - \log D_{74}$ により算出した³⁶。一般的に値が高いものがリード化合物として適していると考えられる。

させた [log D_{74}^{37} = 3.2 (10a)、log D_{74} = 2.8 (26)]。結果としてピリミジン-2-オン誘導体 26 は化合物 10a より良好な LLE 値を示し、リード化合物として適切であることが示唆された ^{*)}。

本項で論じた、より安定なリード化合物の創出を目的とした研究の結果、鎖状アミド誘 導体 6b の最安定配座を基に化合物 10a を見出した。また、続くピリドン環の構造変換 により化合物 26 を非アミン性 MCHR1 拮抗薬のリード化合物として見出すことに成功 した。

Table 3. In vitro binding affinity, log D, and LLE of compounds 10a, 18, 22, and 26

CI C							
Compound	v	V	7	IC ₅₀ ($(nM)^a$	$L_{\alpha\alpha} D^{d}$	LIE ³²
Compound	Λ	1	L	hMCHR ^b	rMCHR ^c	$\log D_{74}$	LLE
10a	СН	СН	СН	26	20	3.2	4.4
18	Ν	CH	СН	92	110	3.7	3.3
22	СН	Ν	CH	150	140	2.9	3.9
26	СН	CH	Ν	37	30	2.8	4.6

^{*a*}IC₅₀ values were calculated using an experiment performed in duplicate, with a standard deviation of 3-fold. ^{*b*}Binding affinity for human MCHR1. ^{*c*}Binding affinity for rat MCHR1. ^{*d*}The logD value at pH 7.4.³⁷

第3節 フロピリドン誘導体の創出

第1項 薬物設計

前節においてピリドン誘導体 10a より設計したアジン誘導体を種々合成し、その中で ピリミジン-2-オン誘導体 26 がピリミジン-4-オン誘導体 22 より強力な活性を示すこと を示した (Table 3)。また同節における検討によって LHS の配向が活性に影響することが 明らかとなっていることから、化合物 26 および 22 においても LHS の配向が活性差に 寄与していると考えた。

一般に2-アルコキシアジン誘導体は、酸素上と窒素上の孤立電子対の反発を避ける配向

 $^{^{*)}}$ *) 化合物 10a、18 および 26 の CHO 細胞における拮抗活性はそれぞれ IC₅₀ 値 23 nM、40 nM および 140 nM であった。

を取ることが知られている。この効果により、ピリミジン-2-オン誘導体 26 およびピリミ ジン-4-オン誘導体 22 のベンジルオキシ基は異なる安定配座を取ることが予想される (Figure 11A)。すなわち、化合物 22 ではベンジロキシ基が式中下方向に伸長した 22-B、 化合物 26 では式中左方向に伸長した 26-A が安定配座と考えられ、計算結果からも支持 されている。本項では、優れた活性を有するピリミジン-2-オン誘導体 26 の安定配座 26-A が活性コンフォメーションに類似していると考え、安定配座の固定化による in vitro 活性 増強を目的とした薬物設計を行った。具体的にはピリドン環 5 位への置換基導入、もし くはベンジル位とピリドン環 3 位を環状に固定化した化合物を設計し (Figure 11B)、更な るリード化合物創出を試みた。

Figure 11. A) Conformational preference of compounds **22** and **26**, and prediction of the active conformer. B) Design based on the putative active conformer. The energy barrier between the 2 conformers (ΔE value) was calculated using MOE.³¹

第2項 合成

5 位にメチル基を有する 4-アルコキシピリドン誘導体 31 は Scheme 6 に示す手法に より合成した。すなわち、3-メチル-4-ニトロピリジン-N-オキシド (27) から、ニトロ基の 置換反応による臭素化 ³⁸、S_NAr 反応によるベンジルオキシ基導入、ピリジン-N-オキシド への付加-脱離反応を経る三段階で調製した 5-メチルピリドン 30 を用い、ヨウ化銅 (I) 存在下カップリング反応により合成した。

Scheme 6

テトラヒドロピラノピリドン誘導体 37 は Scheme 7 に示した手法により合成した。ヨ ードピリジン 32 と 1-(4-chlorophenyl)prop-2-en-1-ol との Heck 反応によりケトン 33 を 得、続く水素化ホウ素リチウムによる還元反応によりベンジルアルコール 34 を調製した。 続いて環化前駆体 34 を水素化ナトリウムで処理する事により速やかに分子内環化が進 行し、中間体 35 を得た。中間体 35 は塩素原子の置換反応 ³⁹、続くヨウ化銅 (I) による カップリング反応により目的物 37 へと導いた。

Scheme 7

フロピリドン誘導体 41 の合成法を Scheme 8 に示した。アクリル酸誘導体 38⁴⁰ から アシルアジド 39 を合成した後、アジド 39 を塩基性条件下 200 度で加熱する事により フロピリドン 1 位無置換体 40 へと導いた。続いて Chan-Lam-Evans によるカップリン グ反応により目的物 41 へと導いた。

Scheme 8

第3項 生物活性と考察

予想活性コンフォメーションの固定化により設計した化合物の in vitro 活性を Table 4 に示した。5-メチルピリドン誘導体 31 はリード化合物 10a と比較して活性が低く、ピリドン 5 位の置換基許容性が低いことが明らかとなった。テトラヒドロピラノピリドン誘導体 37 の最安定構造を計算した結果、クロロフェニル基はリード化合物 10a のものと計算上良好な重なりを示したが、その活性は 10a に比べわずかに低かった。ここでの活性低下は、化合物 10a には無いテトラヒドロピラン環のエチレン部位と受容体の反発によるものと考え、縮合環部分をより小さいフラン環に変換したところ、フロピリドン誘導体 41 は hMCHR1 に対して IC₅₀ 値 10⁻⁹ M オーダーの強力な in vitro 活性を示すことが明らかとなった^{*)}。

本項における結果により、化合物 10a のベンジルオキシ基をより活性コンフォメーションに近い構造に固定化することで活性向上が可能であり、本目的においてフロピリドン 環が scaffold として適切なことが明らかとなった。

^{*)} 化合物 37 および 41 の CHO 細胞における拮抗活性はそれぞれ IC₅₀ 値 330 nM お よび 42 nM であった。

CI $IC_{50} (nM)^a$ Compound Structure $hMCHR^{b}$ rMCHR^c 31 210 150 37 94 62 6.8 41 11 10a 26 20 С

Table 4. In vitro binding affinity of compounds 10a, 31, 37, and 41

Me

第4節 ピリドン誘導体の構造活性相関

第1項 薬物設計

本章におけるここまでの検討により、RHS にイミダゾピリジン環を有する新規非アミン性 MCHR1 拮抗薬 10a、26 および 41 を見出すことに成功した。これらの化合物は良好な MCHR1 結合活性を有し、さらに CHO 細胞を用いた MCH 刺激による Ca²⁺ mobilization assay において良好な MCHR1 拮抗活性を有することが明らかとなった (Figure 12)。そこで本項では、最も細胞系で強力であった化合物 10a の LHS 上末端アリール基、イミダゾピリジン環上 2 位および 3 位置換基の更なる最適化について論じる。

^{*a*}IC₅₀ values were calculated using an experiment performed in duplicate, with a standard deviation of 3-fold. ^{*b*}Binding affinity for human MCHR1. ^{*c*}Binding affinity for rat MCHR1.

Figure 12. Binding affinities and antagonistic activities of lead compounds 10a, 26, and 41.

なお、イミダゾピリジン環 3 位へのアルコキシ基や水酸基等の極性基の導入により活性は低下し、本位置の置換基としてはメチル基が最適であった。この構造活性相関 (SAR) は類似の MCHR1 拮抗薬⁴¹の SAR とよく一致しており、同様の結合様式を取っていることが推察された。

第2項 合成

4.アルコキシピリドン誘導体 10a, 10c, 10d, 10g-l および 10o-q は Scheme 9 に示した 一般合成法に基づいて合成した。原料の 4-クロルピリジン-N-オキシド (42) とベンジルア ルコールとの S_NAr 反応により中間体 43a-c を得、続く無水酢酸との反応によりピリド ン 1 位無置換体 44a-c へと導いた。得られたピリドン 1 位無置換体は、ヨウ化銅 (I) 存 在下、種々の 6-ヨードイミダゾピリジン 9a-h とカップリングさせることにより、目的 物へと導いた。なお、本カップリング反応においては、配位子として DMEDA もしくは *trans-N,N'*-dimethylcyclohexane-1,2-diamine のいずれかを使用し、原料 44a-c の反応性の低 さから化学量論量のヨウ化銅 (I) を用いた。2-シアノメチル誘導体 10q は、2-ヒドロキシ メチル誘導体 10o から塩素化、TMSCN によるシアノ化を経て合成した。また、6-ヨード イミダゾピリジン誘導体 9a-h の合成は実験の部に記した。

Scheme 9 で得た化合物 10l は、Grignard 試薬との反応によりメチルアミド誘導体 10m およびシクロプロピルアミド誘導体 10n へと導いた (Scheme 10)。

Scheme 10

ところで、ピリドン環 4 位に様々なアルコキシ基を導入した誘導体を合成することを 考慮すると、4-アルコキシピリドン誘導体を、4-ヒドロキシピリドン 45 もしくは 4-ブロ モピリドン 46 から一段階で合成することが望ましい。そこで、Scheme 11 に示す経路に よる合成を行った。原料の 4-ヒドロキシピリドン 45 は化合物 10c の加水素分解反応に より合成でき、4-ブロモピリドン 46 は続くオキシ臭化リンを用いた臭素化反応により調 製した。4-ヒドロキシピリドン 45 に対するアルキル基導入は、塩基性条件下もしくは光 延反応条件下で行い、目的物 10e、10f および 10r-y を得た。一方、4-ブロモピリドン 46 に対するアルコキシ化反応はヨウ化銅 (I) を用いたカップリング反応もしくは S_NAr 反応 により進行し、目的物 10b および 10z が得られた。

Scheme 11

第3項 生物活性と考察

末端ベンゼン環上の初期 SAR を Table 5 に示した (化合物 10c-g)。これまでの当グル ープにおけるジヒドロナフタレン誘導体 ^{25a} やキノリン誘導体 ^{25c} の検討結果から、LHS は TM5 部位の Phe213、Ala 216 および Phe217、ならびに TM 6 部位における Tyr273 か ら形成される脂溶性領域に結合しており (第一章第三節、Figure 5 参照)、パラ位置換ベン ゼンの導入が最適なことが想定された。そこでベンゼン環上パラ位の構造変換を行ったと ころ、無置換ベンゼン誘導体 10c および *p*-フッ素体 10d では、*p*-クロロ体 10a と比較 して活性が減弱した。無置換体 10c および *p*-フッ素体 10d に活性差が無いことから、ベ ンゼン環上の電子密度は活性に影響しないことが考えられる。*p*-クロロ体 10a の塩素原 子を臭素原子に置換した *p*-ブロモ体 10e では、10a と比較して in vitro 活性が二倍増強 した。ここまでの結果は、パラ位のハロゲン原子の van der Waals 半径と活性の正相関を 示している。そこで次に、van der Waals 半径の増したトリフルオロメチル基およびイソプ ロピル基の導入を試みたが、化合物 10f、10g いずれも in vitro 活性が減弱した。これら の結果から、ベンゼン環上パラ位には塩素原子もしくは臭素原子程度の van der Waals 半 径を有する置換基導入が最適であることが明らかとなった。

	P		Me	
		-2	IC ₅₀ (nM) ^a
Compound	R'	R ² –	hMCHR ^b	rMCHR ^c
10a	Cl	^c Pr	26	20
10c	Н	^c Pr	42	28
10d	F	^c Pr	47	28
10e	Br	^c Pr	12	9.3
10f	^{<i>i</i>} Pr	^c Pr	410	240
10g	CF ₃	^c Pr	72	82
10h	Н	Me	78	80
10i	Н	Et	120	120
10j	F	CN	>1000	>1000
10k	F	O N-Me Me	>1000	>1000
10m	F	∕ Me	>1000	>1000
10n	F	~ o	>1000	>1000
100	F	CH ₂ OH	>1000	>1000
10p	F	CH ₂ OMe	>1000	>1000
10q	F	CH ₂ CN	180	170

Table 5. In vitro binding affinity of compounds 10a, 10c-k, and 10m-q

^{*a*}IC₅₀ values were calculated using an experiment performed in duplicate, with a standard deviation of 3-fold. ^{*b*}Binding affinity for human MCHR1. ^{*c*}Binding affinity for rat MCHR1.

次にイミダゾピリジン環 2 位の構造変換を行った (化合物 10h-k および 10m-q)。同 位置の置換基は、既存のアミン含有化合物 (1-3) においてアルキルアミン部位が Asn294 と相互作用する領域に向かって伸長すると考えられる。そこで、HBD もしくは HBA の 導入により、Asn294 との相互作用を介した活性増強が期待できると考えた。そこで本仮 説に基づき、種々の官能基を有する置換基をイミダゾピリジン 2 位に導入し、その効果 を調べた。シクロプロピル基をメチル基 (10h)、もしくはエチル基 (10i) に置換したとこ ろ、in vitro 活性はそれぞれ 2-3 倍および 3-4 倍減弱した。次にシアノ基 (10j)、カルボ キシアミド基 (10k)、ケトン等 (10m および 10n)の極性基を導入したところ、いずれも 活性が大きく低下した。この結果は、電子求引性の置換基導入によりイミダゾピリジン環 1 位窒素原子上の電子密度が低下し、受容体との相互作用が弱くなった為と考えられる。 実際、窒素原子上の電子密度を PM3 法 (MOPAC)⁴² により計算したところ、いずれの化 合物においても電子密度の低下が認められた (Figure 13)。そこで、電子密度に影響しない 置換基を導入した化合物 100-q を評価したが (イミダゾピリジン環上 1 位窒素原子の 電子密度:10d,-0.104;10o,-0.108;10p,-0.103;10q,-0.097)、シアノメチル体 10q のみが 10⁻⁷ M オーダーの弱い活性を示すに留まり、2 位への極性基導入は受容体と相互作用す る上で不利なことが明らかとなった。以上の結果から、イミダゾピリジン環 2 位置換基 としてはシクロプロピル基が最適であり、Asn294 との相互作用を狙った極性官能基の導 入による活性向上は達成できなかった。

Figure 13. Calculated electron densities (PM3, MOPAC) on the nitrogen atom on the imidazopyridine ring of 10d, 10j, 10k, 10m, and 10n.

続いて、末端アリール基の更なる最適化を目的に、種々の芳香族複素環を導入した (Table 6)。まず無置換体の導入により、芳香族複素環の活性に与える影響を評価した (化 合物 10r-w)。2-ピリジル誘導体 10r は、3-ピリジル誘導体 10s および 4-ピリジル誘導 体 10t と比較して良好な活性を示し、ヒトおよびラットに対してそれぞれ IC₅₀ 値が 240 nM および 150 nM の値を示した。また、高極性のピリミジン誘導体 10u では大幅な活 性低下を招いた。窒素原子の許容性は置換位置によって若干異なるが (化合物 10r-t)、脂 溶性置換基を好む傾向は、これまでの当グループにおける塩基性 MCHR1 拮抗薬の検討 結果と一致した ^{25a}。一方、チオフェン誘導体 10v および 10w は強力な in vitro 活性を 示し、特に 3-チエニル誘導体 10w の活性は対応するベンゼン体 10c より強力であった (25 vs 42 nM)。

	O N		
	Ar	Me	
Compound	٨r	IC ₅₀ ($(nM)^a$
Compound	AI	hMCHR ^b	rMCHR ^c
10r	N	240	150
10s	N	>1000	>1000
10t	N	>1000	>1000
10u	N	>1000	>1000
10v	S	95	130
10w	s	25	54
10x	CI	24	19
10y	CI	7.7	7.5
10z	F ₃ C-	17	15
10a	CI	26	20

Table 6. In vitro binding affinity of compounds 10a and 10r-z

^aIC₅₀ values were calculated using an experiment performed in duplicate, with a standard deviation of 3-fold. ^bBinding affinity for human MCHR1. ^cBinding affinity for rat MCHR1.

次に受容体の脂溶性領域との結合を更に強固にすべく、これらの複素芳香環上への脂溶 性置換基の導入を試みた (10x-z)。3-クロロピリジン誘導体 10x は、対応する無置換体 10r より強力な in vitro 活性を持ち、またリード化合物 10a より高い LLE 値を示した [LLE = 5.2 (10x)、4.4 (10a)]。クロロチオフェン誘導体 10y はリード化合物 10a よりおよ そ三倍強力な in vitro 活性を示し、ヒトおよびラットともに IC₅₀ 値 10⁻⁹ M オーダーの 強力な IC50 値が認められた。一方、トリフルオロメチルチオフェン誘導体 10z はクロロ

チオフェン誘導体 10y には若干劣るものの、リード化合物 10a より強力な in vitro 活性 を示した。

本項で論じた最適化研究により、リード化合物 10a より強力な MCHR1 結合活性を有 するクロロチオフェン誘導体 10y を見出すことに成功した。また、本化合物は CHO 細 胞において優れた MCHR1 拮抗活性を示すことが明らかとなった (10y: IC₅₀ = 19 nM)。

第5節 イミダゾピリジン誘導体 10a の薬理作用

第1項 食餌性肥満 F344 ラットによる二日間摂食抑制確認試験

研究方針の妥当性を検証すべく、リード化合物 10a を各種プロファイリング試験に供 した。化合物 10a の pK_a 値 ⁴³ は 7.9 であり、また中枢移行性を指向した chemical space の範囲内に概ね収まる物理化学的性質を有していた (TPSA^{*)} = 49、ClogP = 5.0、MW = 405、 HBD 数 = 0)。また、化合物 10a は in vitro 評価において PLsis 陰性であり、パッチクラ ンプ試験において hERG 阻害作用を示さなかった (IC₅₀ > 10 μ M)。さらに、化合物 10a は ラットにおいて、良好な経口吸収性と血中暴露を示した (Table 7)。

Table 7. Pharmacokinetic	parameters	of 10a	in rats ^a
--------------------------	------------	--------	----------------------

Compound	F ^b (%)	iv (0.1 mg/kg)			po (1 mg/kg)		
		${\rm CL_{total}}^c$	$\mathbf{V}_{\mathrm{ss}}^{d}$		C_{max}^{e}	T_{max}^{f}	AUC _{0-8 h} ^g
		$(mL \cdot h^{-1} \cdot kg^{-1})$	$(mL \cdot kg^{-1})$	_	$(ng \cdot mL^{-1})$	(h)	$(ng \cdot h \cdot mL^{-1})$
10a	58	312	1053	_	313	2.0	1880

^{*a*}n = 3; SD rats (male, 8 weeks old). ^{*b*}Bioavailability. ^{*c*}Total clearance. ^{*d*}Volume of distribution at steady state. ^{*e*}Maximal plasma concentration. ^{*f*}Time of maximal concentration. ^{*g*}Area under the plasma concentration–time curve (0–8 h).

化合物 10a の in vivo における効果を確認すべく、化合物 10a を DIO F344 ラットに おける二日間摂食抑制確認試験に供した。化合物 10a (3 および 10 mg/kg) を一日一回、 二日間経口投与したところ、3 mg/kg 投与群で-15.1%、10 mg/kg 投与群で-29.6%の用量 依存的な摂食量の低下が認められた (Figure 14)。投与後 24 時間後の血中及び脳内の薬物 濃度は、3 mg/kg 投与群においてそれぞれ 351 ng/mL および 218 ng/mL、10 mg/kg 投与 群において 1350 ng/mL および 841 ng/mL であった (脳/血中濃度比: 0.61 および 0.62)。 化合物 10a の DIO F344 ラットの血漿中における非結合型分率^{**)}は 0.02 であることか

^{*)} 位相幾何学的極性表面積。分子の三次元構造を発生させずに高速に PSA を計算するための手法。PSA と TPSA はその値が良く相関する事が報告されている⁴⁴。 **) 血中における血漿タンパク質と結合していない薬物の割合。

ら、投与 24 時間後の血漿中フリー体濃度は 3 mg/kg および 10 mg/kg 投与群に対してそ れぞれ 7.0 ng/mL および 27 ng/mL (17.2 nM および 66.5 nM) と算出され、それぞれ IC₅₀ 値の 0.86 倍および 3.3 倍のフリー体が血漿中に存在すると考えられた。

Figure 14. Effects of **10a** in a 2-day food intake study in DIO F344 rats. Inhibition of cumulative food intake for 2 days in DIO F344 rats was evaluated. The compound was administered once daily, and food intake from the initial administration to 2 days later was measured. The cumulative food intake inhibition rate was calculated by dividing the average food intake of each treatment group by that of the vehicle group. Each data represents mean \pm SD (n = 6 for each group). (#) p < 0.025 vs. the vehicle group (Williams test).

第2項 食餌性肥満 F344 ラットにおける二週間連続投与試験

化合物 10a の抗肥満作用を DIO F344 ラットにおける二週間連続投与試験において評価した (Figure 15)。化合物 10a (3 および 10 mg/kg) を一日一回、二週間経口投与したところ、有意かつ用量依存的な体重低下作用が 3 mg/kg 投与群から確認され、vehicle 群に対して 3 mg/kg 投与群で 3.7%、10 mg/kg 投与群で 8.6% の体重低下が認められた。また、その時の摂餌量は vehicle 群と比較し、それぞれ 15.4% および 36.2% 減少していた。

Figure 15. Effects of **10a** in a repeated-dose study in DIO F344 rats. A) Body weight change from initial during 2 weeks of dosing. B) Cumulative food intake for 2 weeks of dosing. The compounds were administered once daily for 2 weeks and body weight and food intake were measured before drug administration. Each data represents mean \pm SD (n = 6 for each group). (#) p<0.025 vs. the vehicle group (Williams test), (**) p<0.01 vs. vehicle group (Student's t-test). Sib = Sibutramine.

第3項 MCHR1 欠損マウスにおける選択性確認試験

化合物 10a の摂食抑制作用が MCHR1 を介した作用であることを証明すべく、次に MCHR1 欠損マウスを用いて化合物 10a の作用を検証した (Figure 16)。化合物 10a (10 および 30 mg/kg) を一日一回、三日間経口投与したところ、正常マウスでは用量依存的な 摂食抑制作用が認められたのに対し、MCHR1 欠損マウスにおいては作用が認められなか った。本結果は、第二項で述べた化合物 10a の摂食抑制作用および体重低下作用が、 MCHR1 拮抗作用を介する効果であることを示している。

Figure 16. Effects of **10a** in a 3-day food intake study in MCHR1-deficient and wild-type mice. The mice were fed a high-fat diet. The cumulative food intake was measured for 3 days. Each data represents mean \pm SD (n = 5 or 6 for each group). (#) p < 0.025 vs. the vehicle group (Williams test).

第6節 小括

第1章で述べた研究方針に基づき、既存化合物より安全性に対する懸念の低い MCHR1 拮抗薬を見出すべく、活性発現に重要であるが、同時に hERG 阻害作用および PLsis 惹 起を誘発するアルキルアミン部位を持たない非アミン性 MCHR1 拮抗薬の設計を行った。 その際、安全性および中枢移行性を指向した五つの物理化学的パラメータから定義される chemical space ($pK_a < 8$ 、PSA < 70、2 < ClogP < 4、MW < 450 および HBD 数 = 0 もしくは 1)を指標にリード化合物創出を試みた結果、良好な MCHR1 結合活性および細胞系での 活性を有するピリドン誘導体 10a、ピリミジノン誘導体 26 およびフロピリドン誘導体 41 を見出すことに成功した。代表化合物 10a は in vitro 評価において PLsis 陰性であり、 パッチクランプ試験において hERG 阻害作用を示さなかった。また、化合物 10a は食餌 性肥満ラットにおいて MCHR1 拮抗作用に基づく強力な摂食抑制作用および体重低下作 用を示した。これらの結果は、五つの物理化学的パラメータより規定される安全性および 中枢移行性を指向した chemical space を用いた我々のリード創出戦略が有効であり、それ により in vivo で薬効を発揮し、かつ hERG 阻害作用および PLsis 惹起のリスクが低減さ れた非アミン性 MCHR1 拮抗薬の創出が可能なことを示している。

第3章 新規ベンズイミダゾール誘導体の構造活性相関および薬理作用

第1節 低塩基性二環性縮合環化合物の探索

第1項 背景

安全性の向上を指向した非アミン性 MCHR1 拮抗薬の創出を目的に、前章では強力な in vitro および in vivo での活性を示すイミダゾピリジン誘導体 10a を見出した (Figure 17)。本化合物では hERG 阻害作用および PLsis 惹起リスクが低減しており、我々の期待 するプロファイルを示すことが明らかとなった。しかし、更に精査試験を継続したところ、 化合物 10a は 10 μM において CYP3A4 阻害作用を示すことが明らかとなった。本作用 は、イミダゾピリジン環 1 位の塩基性窒素原子が CYP3A4 上のへム鉄に配位することが 原因で起こったものと考えられる。そこで本節では、イミダゾピリジン環に代わるより塩 基性の低い二環性縮合環を見出すべく、水素結合受容基を有する他の低塩基性縮合環 (ア ザイミダゾピリジン環およびベンズイミダゾール環)を持つ化合物を設計し、in vitro 活性 に与える影響を検証した。

Figure 17. Chemical structures of **1b** and the amine-free MCHR1 antagonist **10a**. Dotted lines depict putative interactions with MCHR1.

第2項 合成

アザイミダゾピリジン誘導体 48a-c は、アザイミダゾピリジン 47a-c を用いて、前章 第4節で示したヨウ化銅 (I) を用いたカップリング反応により合成した (Scheme 12)。こ こで用いたイミダゾピリダジン 47a および 47c は、原料となる芳香族アミン 49a もし くは 49b に対する α-ブロモケトン 50 によるアルキル化、続く環化反応をワンポットで 実施する事により調製した。一方、イミダゾピラジン 47b はアルキル化反応および環化 工程を段階的に実施することで合成した。すなわち、アミン 51 のトシル保護体 52 を α-ブロモケトン 50 によるアルキル化反応に付すことで環化前駆体 53 とし、その後無水ト リフルオロ酢酸による環化反応を経て良好な収率で目的物 47b を得ることができた。

ベンズイミダゾール誘導体 54a の合成法は、第2節におけるベンズイミダゾール誘導体の一般合成法において述べる。

第3項 生物活性と考察

イミダゾピリジン誘導体 10a の二環性縮合環部分の SAR 結果を Table 8 に示した。イ ミダゾピリジン環の 6 員環部分に窒素原子を導入したアザイミダゾピリジン誘導体 48a-c の共役酸の pK_a^{43} 値を計算したところ、いずれも化合物 10a より塩基性が低いこ とが示された。これらの化合物を in vitro 評価に供したところ、イミダゾピラジン誘導体 48b では化合物 10a と比較して in vitro 活性がおよそ 2 倍弱く、イミダゾピラジン誘導 体 48a およびイミダゾピリミジン誘導体 48c では、それぞれ 10 倍および 50 倍活性が 低くなることが明らかとなった (48a: IC₅₀ = 380 nM、48c: IC₅₀ > 1000 nM)。続いて、医薬 品の部分構造として用いられることが多く、安全面での懸念が低いと考えられるベンズイ ミダゾール環 ⁴⁵ を導入した結果、化合物 54a はリード化合物 10a と同等の強力な in vitro 活性を示すことが明らかとなった。化合物 54a におけるベンズイミダゾール環 1 位窒素原子上の共役酸の pK_a 値は 5.71 であったことから、塩基性の低減した新規リード 化合物として、活性向上を目指した更なる最適化研究を実施することとした。

	CI	O N Ar	
Compound	A m	$IC_{50} (nM)^a$	nK ^c
Compound	Ar	hMCHR1 ^b	$p\mathbf{k}_{a}$
10 a	N Me	26	7.85
48 a	N N N N Me	380	6.35
48b	N N N Me	44	5.35
48c	N N N N Me	>1000	6.35
54a	N N Me	35	5.71

Table 8. In vitro binding affinities and pK_a values of compounds 10a, 48a–c, and 54a

^{*a*} IC₅₀ values were calculated using an experiment performed in duplicate with a three-fold standard deviation. ^{*b*} Binding affinity for human MCHR1. ^{*c*} pK_a values of conjugate acids were calculated using ACD Labs ver. 12.0.⁴³

第2節 ベンズイミダゾール誘導体の構造活性相関

第1項 薬物設計

前章におけるイミダゾピリジン誘導体の SAR では、イミダゾピリジン環 2 位への極性 基の導入は活性を減弱させた。この傾向は、ベンズイミダゾール環 2 位においても同様 であり、アルコキシ基、水酸基、ケトンもしくはアミド基の導入により in vitro 活性が減 弱した。そこで本節では、種々のアルキル鎖導入による脂溶性相互作用の最大化を目的と したベンズイミダゾール 2 位置換基の最適化についてのみ論じる。また、LHS における アリール基の構造変換では、既報のジヒドロナフタレン誘導体およびキノリン誘導体の SAR も参考に、まずはハロゲン置換ベンゼン、ピリジンおよびピリミジンの効果を検証 し、その後、前章において活性増強に効果のあったチオフェン環の導入を試みた。以下の 項において詳細を論じる。 第2項 合成

4-アルコキシピリドン誘導体 54 の一般合成法を Scheme 13 に示した。共通中間体 44a-d の合成、およびヨウ化銅 (I) を用いたカップリング反応は前章第4節に示した手法 に倣い実施し、目的物を得た。

Scheme 13

54m R¹ = 3-Cl, R² = Me, R³ = ^cPr **54y** R¹ = H, R² = Me, R³ = Et

4位の効率的変換を目的とした 4-アルコキシピリドン 54 の別途合成法を Scheme 14 に示した。Scheme 13 において合成した化合物 541 もしくは 54y の加水素分解反応によ り合成した鍵中間体 56a および 56b に対し、塩基性条件下もしくは光延反応条件下でア ルキル化することにより目的物を得た。末端アリール部位にピリミジン環を有する化合物 54p は、ニトリル誘導体 54z をアミジン 54aa に変換した後、ジホルミル等価体との環 化反応に付す事により合成した。 Scheme 14

ベンズイミダゾール環 2 位の効率的構造変換を目的とした合成法による 4-アルコキシ ピリドン 54d および 54g の合成を Scheme 15 に示した。原料 57 に対するメチルアミ ンの S_NAr 反応により *p*-ニトロブロモベンゼン 58a を得、続くヨウ化銅 (I) によるカッ プリング反応、ニトロ基の還元反応 ⁴⁶ を経て中間体 60 を調製した。続いて、中間体 60 に対し 1 当量のカルボン酸を HATU によって縮合させた後、得られたアミドを酢酸中加 熱する事でベンズイミダゾール環を構築し、目的とする化合物 54d および 54g を得た。

6-ブロモベンズイミダゾール 55a-h は *p*-ニトロブロモベンゼン 58a-c を用い、 Scheme 16 に示した手法により合成した。*p*-ニトロブロモベンゼン 58a-c の還元反応によ りジアミン中間体を得、続いてオキシ塩化リン溶媒中、対応するカルボン酸と反応させる ことでイミダゾール環を構築し、目的物とした (path A および B)。また、*p*-ニトロブロモ

ベンゼン 58a もしくは 58b の還元の後、得られたジアミン中間体へのアミド化反応、酢酸中加熱条件下での環化反応により目的物を得た (path C)。さらに、*p*-ニトロブロモベン ゼン 58a をアミド化反応に付し、得られたアミドを亜鉛存在下において酢酸中加熱する ことで、ニトロ基の還元反応およびイミダゾール環構築が効率よく進行し、目的物へと導 くことも可能であった (path D)。

第3項 生物活性と考察

ベンズイミダゾール環 2 位の SAR を Table 9 に示した。初めにアルキル鎖長の検討 を行ったところ (54b-d)、メチル誘導体 54b の活性が中程度に留まったのに対し (hMCHR1: IC₅₀ = 77 nM)、エチル誘導体 54c および n-プロピル誘導体 54d では 2 倍程 度活性が高かった。次にシクロアルキル基の検討を行ったところ (54e-g)、シクロプロピ ル誘導体 54e では同アルキル鎖長のエチル誘導体 54c と比較して若干活性が向上した。 しかし、他のシクロアルキル基は環サイズ依存的な活性減弱を招くことが明らかとなった (54e > 54f > 54g)。また、シクロプロピルメチル誘導体 54h は同アルキル鎖長の n-プロピ ル誘導体 54d と比較して約 3 倍活性が減弱し、ネオペンチル誘導体 54i においては測 定濃度範囲内で活性が認められなかった。これらの結果から、ベンズイミダゾール 2 位 方向は狭い脂溶性領域に位置しており、立体的に小さな 2 ないし 3 アルキル鎖長から成 る脂溶性置換基、中でもシクロプロピル基が最適な置換基であることが明らかとなった。

続いてベンズイミダゾール 1 位の SAR を確認したところ、エチル基の導入で rMCHR1 に対する in vitro 活性が若干減弱し (54a vs 54j)、*n*-プロピル基の導入で活性が 大幅に減弱した (54a vs 54k)。これは、1 位の置換基許容性が低く、メチル基が最適であ ることを示している。

		R ¹			
Comment	n ¹	\mathbf{D}^2	D ³	IC ₅₀	$(nM)^a$
Compound	ĸ	К	K	hMCHR1 ^b	rMCHR1 ^c
54b	F	Me	Me	77	65
54c	F	Me	Et	48	38
54d	F	Me	"Pr	34	39
54e	F	Me	^c Pr	40	28
54f	F	Me	cyclobutyl	240	210
54g	F	Me	cyclopentyl	600	460
54h	F	Me	$CH_2^{\ c}Pr$	90	140
54i	F	Me	$CH_2^{t}Bu$	>1000	>1000
54j	Cl	Et	^c Pr	37	34
54k	Cl	ⁿ Pr	^c Pr	85	110
54a	Cl	Me	^c Pr	35	21

Table 9. In vitro binding affinities of compounds 54a-k

^a IC₅₀ values were calculated using an experiment performed in duplicate with a three-fold standard deviation. ^b Binding affinity for human MCHR1. ^c Binding affinity for rat MCHR1.

次に、LHS における末端アリール基の効果を検証した (Table 10)。 無置換体 54 の IC50 値がヒトおよびラットにおいて、それぞれ 45 nM および 43 nM であったのに対し、パラ 位へのフッ素原子 (54e) および塩素原子 (54a) の導入により活性が向上した。一方、メタ 位 (54m) およびオルト位 (54n) への塩素原子の導入により活性は大きく減弱した。末端 アリール基として芳香族複素環を導入したところ、活性は脂溶性が低下するのに従って減 弱した (54o: ClogP = 3.56、54p: ClogP = 2.56)⁴³。これらの結果は、LHS が狭い疎水的な環 境下にあり、ベンゼン環上への置換基導入はパラ位が最適であるという既報の塩基性 MCHR1 拮抗薬の結果とよく一致した²⁵。

	R ⁴ O	O N Me	\triangleleft		
	D ⁴	$IC_{50} (nM)^a$			
Compound	K	hMCHR1 ^b	rMCHR1 ^c		
541		45	43		
54e	F	40	28		
54a	CI	35	21		
54m	CI	100	72		
54n	CI	160	140		
540	CI	73	47		
54p		>1000	900		

Table 10. In vitro binding affinities of compounds 54a, 54e, and 54l-p

^{*a*} IC₅₀ values were calculated using an experiment performed in duplicate with a three-fold standard deviation. ^{*b*} Binding affinity for human MCHR1. ^{*c*} Binding affinity for rat MCHR1.

続いて末端アリール基としてチオフェン環を導入し、その活性に与える影響を評価した (Table 11)。2-チエニル誘導体 54q の活性が中程度であったのに対し、3-チエニル誘導体 54r はベンゼン誘導体 54l と比較して強力な活性を示した。続いてこれらのチオフェン環 上に塩素原子を導入したところ (54s-u)、いずれの化合物においても活性向上が認められ、 中でも 5-クロロ-3-チエニル誘導体 54u は最も強力な活性を示した。

	R ⁴ O	N N Me	
Commenced	p ⁴	IC ₅₀ ($(nM)^a$
Compound	K	hMCHR1 ^b	rMCHR1 ^c
54q	S	76	120
54r	S	28	29
54s	CI	19	11
54t	CI	17	18
54u	CI	14	9.3

Table 11. In vitro binding affinities of compounds 54q-u

^{*a*} IC₅₀ values were calculated using an experiment performed in duplicate with a three-fold standard deviation. ^{*b*} Binding affinity for human MCHR1. ^{*c*} Binding affinity for rat MCHR1.

本節における最適化研究の結果、リード化合物 54a の末端アリール基を種々のクロロ 置換チオフェンとすることにより、強力な MCHR1 結合活性を示す一連の化合物群を見 出すことに成功した。

第3節 チオフェン置換体の CYP3A4 時間依存的阻害回避の戦略

第1項 背景

強力な in vitro 活性を示した前節のチオフェン誘導体を精査した結果、化合物 54r、54t および 54u において CYP3A4 時間依存的阻害作用 (TDI 作用)^{*)} が認められることが明 らかとなった (Table 12)。

^{*)} 代謝物に由来する不可逆的な CYP3A4 阻害作用。臨床での重篤な薬物間相互作用に繋がる。

		Me
Compound	R^4	CYP3A4 TDI ^a (% remaining)
54q	⟨↓ S	NT^b
54r	S	74
54s	CI S	83
54t	CI	25
54u	CI	44

Table 12. CYP3A4 TDI risk of compounds 54q-u

^{*a*} CYP3A4 time-dependent inhibition assay (n = 2). The remaining activity of CYP3A4 after pre-incubation with a test compound was determined. ^{*b*} Not tested.

CYP3A4 は生体内に最も豊富に存在する CYP アイソフォームであり、様々な薬物の酸 化代謝に関与していることから、CYP3A4 に対する TDI リスクを有する薬剤には臨床での 薬物間相互作用が懸念され、開発が困難となる。ベンゼン誘導体 54e およびピリジン誘 導体 54o は TDI 作用を示さなかったことから、筆者はチオフェン環が TDI 作用の原因 構造であると考えた。チオフェン環が酸化代謝により反応性代謝物を生じやすく、これが 生体分子と結合することによる毒性発現や、CYP3A4 の不可逆的阻害による薬物間相互作 用を引き起こす懸念があるというこれまでの報告からも、チオフェン環の TDI 作用への 関与が疑われた⁴⁷。

そこで化合物 54t および 54u の CYP3A4 TDI 作用の機構を考察すべく、グルタチオ ントラップ試験を実施した。化合物 54t および 54u をヒト肝ミクロソーム存在下、グル タチオンと反応させた結果、化合物 54t からは "54t + GSH + O" の分子量に相当する GSH 付加体が、化合物 54u からは "54u + GSH – H₂" の分子量に相当する GSH 付加体 が確認された (Scheme 17)。さらに、GSH 付加体のイオンスペクトルより、GSH はチオ フェン環に付加していると考えられた。これらの結果から、化合物 54t からは酸化代謝 によりスルホキシド種が生じ、続く GSH の付加 ^{*)}によって GSH がチオフェン環上 3

^{*)} チオフェン環の開裂、再環化を経る多段階機構が報告されている⁴⁸。

位に結合していると考えられた。また、化合物 54u からは酸化代謝によりエポキシド種が生じ、続く GSH の付加、脱水反応を経て GSH 付加体が生じていると考えられた。これらの結果から、Table 4 で述べた CYP3A4 TDI 作用は、チオフェンの酸化代謝により反応性のスルホキシド種もしくはエポキシド種が発生し、これが CYP3A4 と共有結合性の 複合体を形成することにより酵素活性を阻害することに起因すると推察された。

Scheme 17. Plausible mechanisms of glutathione adduct formation by incubation of test compounds 54t and 54u with GSH and human liver microsomes (HLM). The test compounds (30 μ M) were incubated with HLM (1.0 mg/mL) in the presence of GSH (1 mM) at 37 °C for 60 min. The structures of the GSH adducts were estimated by LC/MS/MS analysis.

第2項 薬物設計

前項の CYP3A4 TDI 作用の機構解析に基づき、(1) チオフェン環上への嵩高い置換基導入、もしくは (2) チオフェン環の電子密度の低減により、チオフェン誘導体の CYP3A4 TDI 作用が回避可能と考えた。事実、前項の Table 12 に示した化合物 54s の TDI リスクは他の化合物と比較して低い。これはチオフェンの 2,5 位が置換されると同時に、比較的嵩高い塩素原子がチオフェン環への代謝酵素の接近を妨げている為であると考えられ、上記の (1) の有効性を支持する結果である。本項では上記 (2) の有効性を検証すべく、強力な電子求引基であるトリフルオロメチル基を導入したチオフェン誘導体を設計し、その CYP3A4 TDI 阻害作用回避に対する効果について検証した。

第3項 合成

トリフルオロメチル置換チオフェン誘導体 54v-x は、前項において合成した 4-ヒドロ キシピリドン誘導体 56a に対する光延反応、もしくは 56a より調製した 4-ブロモピリ ドン誘導体 63 に対するアルコキシ化反応により合成した (Scheme 18)。

第4項 生物活性および考察

トリフルオロメチル置換チオフェン誘導体 54v-x の in vitro 活性および CYP3A4 TDI 作用を Table 13 に示した。5-トリフルオロメチル-2-チエニル誘導体 54v は対応するクロ ロ置換体 54s と同等の in vitro 活性を示したが、4-トリフルオロメチル-2-チエニル誘導体 54w はクロロ置換体 54t と比較して活性が低かった。また、5-トリフルオロメチル-3-チ エニル誘導体 54x ではクロロ置換体 54u の比較して、およそ 3 倍低活性であった。続 いて、TDI 作用を評価した結果、2,5 位が置換された化合物 54v のみならず、2 位ある いは 5 位の一方が無置換であり、よりチオフェン環の酸化反応が進行しやすいと考えら れる化合物 54w および 54x においても 電子求引性のトリフルオロメチル基の導入によ り TDI 作用が大幅に軽減されることが明らかとなった。化合物 54w および 54x に対応 するクロロ置換体 54t および 54u が TDI 陽性であることからも (Table 12)、トリフルオ ロメチル基の TDI 作用回避における有効性は明らかといえる。

チオフェンは、その反応性代謝物生成の懸念より、しばしば薬物の部分構造として導入 することが避けられる傾向がある。本項での検討により、トリフルオロメチル置換チオフ ェンが反応性代謝物を生じる懸念の少ない安全性の高い building block として、創薬研究 に使用できる可能性が示された。

Comment	D ⁴	IC ₅₀ ($(nM)^a$	CYP3A4 TDI d			
Compound	K	hMCHR1 ^b rMCHR1 ^c		(% remaining)			
54v	F ₃ C	16	13	97			
54w	F ₃ C	34	17	87			
54x	F ₃ C-	41	29	96			
54s	CI S	19	11	83			

Table 13. In vitro binding affinities and CYP3A4 TDI risk of compounds 54s and 54v-x

^{*a*} IC₅₀ values were calculated using an experiment performed in duplicate with a three-fold standard deviation. ^{*b*} Binding affinity for human MCHR1. ^{*c*} Binding affinity for rat MCHR1. ^{*d*} CYP3A4 time-dependent inhibition assay (n = 2). The remaining activity of CYP3A4 after pre-incubation with a test compound was determined.

第4節 ベンズイミダゾール誘導体 54s の薬理作用

第1項 食餌性肥満 F344 ラットにおける二日間摂食抑制確認試験

上記の検討で見出された、強力な MCHR1 結合活性を示し、かつ CYP3A4 TDI 作用を 回避した化合物 54s および 54v を更なるプロファイリング試験に供した。これらは CHO 細胞を用いた細胞系試験において良好な MCHR1 拮抗活性を示し (54s: IC₅₀ = 24 nM、54v IC₅₀ = 18 nM)、またラットにおいて良好な経口吸収性と血中暴露を示した (Table 14)。

化合物 54s および 54v の in vivo における効果を確認すべく、両化合物を DIO F344 ラットにおける二日間摂食抑制確認試験に供した。化合物 54s (3 および 10 mg/kg) を一 日一回、二日間経口投与したところ、3 mg/kg 投与群で -11.6%、10 mg/kg 投与群で -36.5% の用量依存的な摂食量の低下が認められた (Figure 18)。一方、化合物 54v の 3 mg/kg 投与群は、化合物 54s とほぼ同等 (-12.6%) の摂食抑制作用を示したが、10 mg/kg 投与群の作用は化合物 54s の 10 mg/kg 投与群と比べて軽微であった (-20.3%)。これは、 化合物 54v の溶解性 (0.25 µg/mL at pH 6.8) が、化合物 54s (2.3 µg/mL at pH 6.8) より低い ことによる非線形動態により、化合物 54v の 10 mg/kg 投与群の血中濃度が不十分である 為と考えられた。これらの結果を受け、化合物 54s を続く連続投与試験用化合物として 選択した。

		iv (0.1 mg/kg)			po (1 mg/kg)			
Compound	\mathbf{F}^{b}		V_{ss}^{d}	_	C _{max} ^e	$T_{max}^{\ f}$	$AUC_{0-8 h}{}^{g}$	
Compound	(%)	$(mL \cdot h^{-1} \cdot kg^{-1})$	$(mL \cdot kg^{-1})$		$(ng \cdot mL^{-1})$	(h)	$(ng \cdot h \cdot mL^{-1})$	
54s	23	450	920		164.7	1.0	514.9	
54v	57	285	979		297.8	2.7	2015.6	

Table 14. Pharmacokinetic parameters of 54s and 54v in rats^a

^a n = 3; SD rats (male, eight weeks old). ^b Bioavailability. ^c Total clearance. ^d Volume of distribution at steady state. ^e Maximal plasma concentration. ^f Time of maximal concentration. ^g Area under the plasma concentration–time curve (0–8 h).

Figure 18. Effects of **54s** and **54v** in a two-day food intake study in DIO F344 rats. Inhibition of cumulative food intake over two days in DIO F344 rats. The compounds were administered once daily, and food intake from the initial administration to two days later was measured. The cumulative food intake inhibition rate was calculated by dividing the average food intake of each treatment group by that of the vehicle group (n = 6 for each group). (#) p < 0.025 vs. the vehicle group (Williams test).

第2項 食餌性肥満 F344 ラットにおける二週間連続投与試験

化合物 54s の抗肥満作用を DIO F344 ラットにおける二週間連続投与試験において評価した (Figure 19)。化合物 54s (1、3 および 10 mg/kg) を一日一回、二週間経口投与した ところ、有意かつ用量依存的な体重低下作用が 3 mg/kg 投与群から確認され、vehicle 群 に対して 3 mg/kg 投与群で 2.2%、10 mg/kg 投与群で 4.1% の体重低下が認められた。ま た、その時の摂餌量は vehicle 群と比較し、それぞれ 11.6% および 20.9% 低かった。 化合物 **54s** 10 mg/kg 投与群の血漿中薬物濃度のトラフ値^{*)} は 0.79 μ M であり、化合物 **54s** の非結合型分率が 0.02 であることから、フリー体換算で 15.8 nM と算出される。 この結果は、化合物 **54s** の 10 mg/kg 投与群では IC₅₀ 値の 1.44 倍の血漿中フリー体濃 度が試験を通じて担保されていることを示しており、これが 4.7% の体重低下に必要な薬 物濃度と考えられた。また、化合物 **54s** の脳/血中濃度比は 0.5 であることから、十分な BBB 透過性を有することが明らかとなった。

Figure 19. Effects of **54s** in a repeated-dose study in DIO F344 rats. A) Body weight change from initial value during two weeks of dosing. B) Cumulative food intake for two weeks of dosing. The compounds were administered once daily for two weeks and the body weight and food intake were measured before drug administration. Each data point represents mean \pm SD (n = 5 or 6 for each group). (#) p < 0.025 vs. the vehicle group (Williams test), (**) p < 0.01 vs. the vehicle group (Student's t-test). Sib = Sibutramine.

第3項 MCHR1 欠損マウスにおける選択性確認試験

前項における化合物 54s の摂食抑制作用および体重低下作用が MCHR1 を介した作 用であることを証明すべく、次に MCHR1 欠損マウスを用いて化合物 54s の作用を検証 した (Figure 20)。化合物 54s (10 および 30 mg/kg) を一日一回、三日間経口投与したとこ ろ、正常マウスでは用量依存的な抗肥満作用が認められたのに対し、MCHR1 欠損マウス においては作用が認められなかった。また、正常マウスでは統計的に有意ではないが用量 依存的な摂食抑制傾向が認められたのに対し、MCHR1 欠損マウスにおいては摂食抑制効 果が認められなかった。本結果は、化合物 54s の抗肥満作用が MCHR1 拮抗作用を介す る効果であることを示している。

^{*)} 薬物を反復投与したときの定常状態における最低血中薬物濃度。

Figure 20. Effects of **54s** in a three-day study in MCHR1-deficient (KO) and wild-type (WT) mice. The mice were fed a high-fat diet. The body weight change (A) and cumulative food intake (B) were measured for three days. Each data point represents mean + SD (n = 6 for each group). (#) p < 0.025 vs. the vehicle group (Williams test).

第5節 小括

イミダゾピリジン環に代わる低塩基性の二環性縮合環を見出すべく縮合環を探索した 結果、良好な in vitro 活性を有するベンズイミダゾール誘導体を見出した。また、続く最 適化において、末端アリール基にチオフェン環を有する化合物群が強力な in vitro 活性を 示すことが明らかとなった。これらのチオフェン誘導体は CYP3A4 TDI 作用を示したが、 チオフェン環 5 位への置換基導入、もしくは立体的に嵩高く、電子求引性のトリフルオ ロメチル基を導入することにより TDI 作用を回避できることを示した。チオフェンは反 応性代謝物生成の懸念より、しばしば薬物の部分構造として導入することが避けられる傾 向があるが、本章で見出したトリフルオロメチル置換チオフェンは反応性代謝物を生じる 懸念の少ない有用な building block となると考えられる。

強力な in vitro 活性を有し、TDI 作用が回避された化合物 54s は前章のイミダゾピリ ジン誘導体で認められた 10 μ M における可逆的 CYP3A4 阻害作用を示さず、また、in vitro において PLsis 惹起リスクおよび hERG 阻害作用を示さなかった。化合物 54s は DIO rat において強力な体重低下作用を示したことから、有望な薬剤候補化合物となり得 ると考えられる。 第4章 新規インダゾール誘導体の構造活性相関および薬理作用

第1節 新規インダゾール誘導体の発見

第1項 背景

安全性の高い新規抗肥満薬の創製を目的とした、非アミン性 MCHR1 拮抗薬の創薬研 究の結果、第2章においてはイミダゾピリジン環を、第3章においてはベンズイミダゾー ル環を RHS に有するピリドン誘導体について報告した (Figure 21)。インドール誘導体 64 の活性が大きく低下していることからも、当初の狙い通り化合物 10a および 54s は、 縮合環上窒素原子が受容体上の Asp123 もしくは Tyr272 と相互作用することにより活 性を示していると考えられた。一方、塩基性の異なる化合物 10a および 54s が同等の in vitro 結合活性を示していることから、本相互作用は縮合環上窒素原子の塩基性に影響を 受けないことが推測された。これらの非アミン性 MCHR1 拮抗薬では既存のアミン性 MCHR1 拮抗薬と異なり hERG 阻害作用および PLsis 惹起リスクが軽減しており、また 食餌性肥満ラットにおいて強力な摂食抑制作用と体重低下作用を示すことをこれまでに 論じた。

Figure 21. Chemical structures of amine-free MCHR1 antagonists (10a and 54s) and indole derivative 64. Dotted lines depict putative interactions with MCHR1.

一方、最近になって Washburn らは、hERG チャネル等に対しターゲット選択性が高い 中性 MCHR1 拮抗薬を報告している⁴⁹(第一章 Figure 3 における BMS-819881)。既報の MCHR1 拮抗薬において中性分子は非常に稀であるが、選択性および安全性の面において 中性分子は塩基性化合物に比べ有利と考えられた。そこで本章では、我々の非アミン性 MCHR1 拮抗薬を更に中性 MCHR1 拮抗薬へと発展させるべく化合物設計を行った。 中性 MCHR1 拮抗薬を創出する上では、これまでのイミダゾピリジン環およびベンズ イミダゾール環と同等の受容体親和性を保持した非塩基性縮合環の設計が重要である。受 容体との親和性に対する縮合環上窒素原子の塩基性の関与が大きくないとの考えの下、式 I 中の X^1 部分に受容体との相互作用が可能な窒素原子を有し、かつその共役酸の pK_a 値の低いピラゾロピリジン環 ($pK_a^{43} = 4.3$) およびインダゾール環 ($pK_a = 2.9$) を有する化 合物 65 および 66a を設計した (Figure 22)。なお、インダゾール誘導体研究の初期段階 では、インダゾール環 2 位へのシクロプロピル基導入法を構築するに至っていなかった ため、対応するメチル誘導体 66a を用いてインダゾール誘導体の効果を評価することと した。

Figure 22. Design of pyrazolo[1,5-*a*]pyridine derivative 65 and 2*H*-indazole derivative 66a.

第3項 合成

インドール誘導体 64、ピラゾロピリジン誘導体 65、インダゾール誘導体 66a および 67 は、第2章第4節に示したヨウ化銅 (I) を用いたカップリング反応により、ピリドン 44b から対応する臭化物 68、69、71a および 70 を用いて合成した (Scheme 19)。 Scheme 19

上記のインドール 6 位臭素体 68 は Scheme 20 に示した手法に基づいて合成した。ま ず、出発原料 72 のトリフラート化、菌頭カップリング反応に続く、ニトロ基の還元の三 工程を経て環化前駆体である *o*-アルキニルアニリン誘導体 75 を得た。環化前駆体 75 を用いたインドール環構築は、触媒量の塩化パラジウムに、0 価パラジウムから 2 価パ ラジウムへ再酸化する目的で塩化鉄 (III) を共存させて行い ⁵⁰、N-メチル化の後に目的と するインドール誘導体 68 へと導いた。

Scheme 20

ピラゾロピリジン 5 位臭素体 69 は、Scheme 21 に示したオキシム 79 を鍵中間体と する手法により合成した。原料の 2-メチルピリジン 77 のメチル基を NaHMDS により 脱プロトン化した後、シクロプロパンカルボン酸メチルエステルと反応させることでケト ン 78 とし、続くオキシム化反応を経て鍵中間体 79 を得た。続いて鍵中間体 79 を TFAA で処理することで反応性のアジリンを系中に発生させ、アジリンの熱的環拡大反応 を経てピラゾロピリジン環を構築した⁵¹。その後、Vilsmeier 試薬を用いたピラゾロピリ ジン環 3 位のホルミル化反応、続くホルミル 81 のシラン還元を経て目的物 69 を得た。

Scheme 21

なお、インダゾール 5 位臭素置換体 70 および 71a の合成法は、第2節において示す インダゾール環の一般合成法において述べた。

第4項 生物活性と考察

二環性縮合環部の構造変換結果を Table 15 に示した。ピラゾロピリジン誘導体 65 で は化合物 10a と比較して活性が 2–3 倍低くなった。一方、興味深いことに中性の 2H-イ ンダゾール誘導体 66a は化合物 10a とほぼ同等の活性を示した。縮合環の共役酸の pKa 値と in vitro 活性に相関関係が認められず、また中性分子 66a でも活性を示しているこ とから、活性発現には受容体と相互作用可能な窒素原子上の孤立電子対を適切な配向に配 置できる二環性縮合環が重要であると考えられる。一方、1H-インダゾール誘導体 67 で は、2H-インダゾール誘導体 66a と比較して 3 倍程度活性が低かった。これは、化合物 67 の 1 位窒素原子上の孤立電子対と受容体との相互作用が失われたためと考えられる。本 項における結果から、イミダゾピリジン環およびベンズイミダゾール環と同等の受容体親 和性を保持した非塩基性縮合環として、2H-インダゾール環を見出すことに成功した。

Compound	×5-X1	$IC_{50}(nM)^{a}$	$\mathbf{r} \mathbf{K}$ uplue on \mathbf{V}^{lc}				
Compound	X ⁴ -X ³	hMCHR1 ^b	$p_{\mathbf{A}_a}$ value on X				
65	CI C	69	4.3				
66a	CI C	35	2.9				
67	CI C	99	-				
10a		26	7.9				
54s		19	5.7				

Table 15. In vitro binding affinities and pK_a values of compounds 10a, 54s, 65, 66a, and 67

0

 x^{5}

^{*a*} IC₅₀ values were calculated using an experiment performed in duplicate, with a standard deviation of three-fold. ^{*b*} Binding affinity for human MCHR1. ^{*c*} pK_a values of conjugate acids on **X**¹ were calculated by ACD Labs ver. 12.0.⁴³

第2節 TA1537 株における遺伝毒性リスク回避の戦略

第1項 背景

インダゾール誘導体 66a を更なるプロファイリング試験に供したところ、TA1537 株を 用いた Ames 試験^{*)}において陽性であり、発がん性や催奇形性につながる遺伝毒性のリ

^{*)} 復帰突然変異試験。ヒスチジン要求性突然変異を有するネズミチフス菌を用い、被験物 質の変異原性を評価するための試験法。

スクを有することが明らかとなった (Figure 23)。

Ames test TA1537, S9-: positive TA1537, S9+: negative

Figure 23. Result of the Ames test of compound 66a using TA1537.

すなわち、S9^{*)} 非存在下、化合物 66a を TA1537 株に作用させた結果、250 μg/plate から2 倍以上の変異復帰コロニーの増加が確認された。一方、S9 存在下、すなわち代謝活性化条件下において化合物 66a は変異原性を示さなかったことから、化合物 66a 自体が変異原性を誘発していると考えられた。一般に TA1537 株は、DNAの塩基対間に入り込みその複製を阻害する DNA インターカレーターを検出し易い菌株として知られており、平面性の高い多環性芳香環である acridine や ellipticine が TA1537 株に対して DNA インターカレーションによるフレームシフト型変異を起こすことが知られている ⁵² (Figure 24)。また、化合物 66a は反応性の部分構造を持たず、DNA との共有結合形成反応を経てその複製を阻害する可能性は低いことから、化合物 66a で認められた変異原性は DNA インターカレーション作用に基づくものであると推察された。

一方、化合物 66a の推定代謝部位は LHS 上のベンジル位であり、主代謝物はヒドロ キシピリジン誘導体 82a と考えられる (Figure 25)。化合物 82a は TA1537 株を用いた Ames 試験にて評価した結果、陰性であった。よって、S9 存在下において化合物 66a が 陰性であった理由として、代謝により系中で生じた末端アリール基を持たない化合物 82a が変異原性を誘起しないからであると考えられた。

*) 肝ミクロソーム S9 画分

Figure 25. Chemical structure of a possible degradation product of compound 66a.

第2項 薬物設計

前項で論じた末端アリール基の変異原性への関与、および化合物 66a と既存 DNA イ ンターカレーターである ellipticine との重ね合わせより、変異原性は以下の結合様式に基 づく DNA インターカレーション作用により惹起されると考えた。すなわち、(1) インダ ゾール環から中央ピリドン環にわたる平面性の高い部分構造と、DNA の塩基対との π - π 相互作用、ならびに (2) LHS 上末端アリール基と DNA との付加的な π - π 相互作用であ る (Figure 26)。

Figure 26. Hypothesized binding mode of compound 66a to DNA.

ところで、Albertini らは 5HT_{2c} アゴニストの創薬研究において、インデノピロール誘 導体およびインデノピラゾール誘導体の母核のジェミナル位へジメチル基を導入して平 面構造を回避すると、TA1537 株における変異原性リスク回避に効果的であることを報告 している ^{52b}。

上述の化合物 66a と DNA との予想結合様式、および平面構造回避による TA1537 株 における変異原性リスク回避の報告例を踏まえ、下記に示す DNA インターカレーション 回避の戦略を立てた。

(1) 末端アリール部位の電子密度の低下。

(2) インダゾール環への立体的に嵩高い置換基導入による平面性構造の回避。

本節では、上述の TA1537 株における遺伝毒性リスク回避の戦略の有効性について論 じる。

第3項 合成

4-アルコキシピリドン誘導体 66 は、第2章・第4節で示したヨウ化銅 (I) を用いたカ ップリング反応により、共通中間体 44a、44b および 44e より合成した (Scheme 22)。 Scheme 22

4 位の効率的構造変換を目的とした 4-アルコキシピリドン誘導体の別途合成は、Scheme 23 に示す前章第3節と同様の手法により実施した。

Scheme 23

インダゾール 5 位臭素置換体 70 および 71a-c の合成法を Scheme 24 に示した。市 販のインダゾール 84 への塩基性条件下でのアルキル化反応は概ね 1 位選択的に進行し (化合物 70)、2 位アルキル化体の合成は低収率に留まった (化合物 71c)。そこで 2 位選 択的なアルキル化反応を検討した結果、Meerwein 試薬を用いることでアルキル化が 2 位 選択的に進行することを見出し、良好な収率で目的物 71a および 71b を得ることができ た。しかし、本手法で導入できる置換基は入手可能な Meerwein 試薬に依存し、限定され る為、引き続き、インダゾール環 2 位への選択的な置換基導入法の検討を継続した。

インダゾール環 2 位への置換基導入を可能とする Cadogan 反応 ⁵³ の改良法を Scheme 25 に示した。鍵となる環化前駆体 86 は市販の原料 85 より合成した。アセトフ ェノン 86 に対しチタンテトライソプロポキシドを用いエナミン形成を行った後、亜リン 酸トリエチル中 150 度で加熱することにより、系中で生じたナイトレン種の NH 基への 挿入反応を経て目的とする 2-シクロプロピルインダゾール 71d を得た。シクロプロピル 基等の嵩高い置換基を 2,3-置換-2*H*-インダゾール環の 2 位へ導入する手法、およびエナミ ンに対する Cadogan 反応はこれまでに報告が無い。今回筆者の見出した、エナミン形成 ーナイトレン種の挿入反応を経るワンポット Cadogan 反応改良法は、インダゾール 2 位 置換体の新規合成法として有用と考えられる。

Scheme 25

チオフェンメタノール CF₃ 置換体 90 および 94 は Scheme 26 ならびに 27 に示した 手法により合成した。3-トリフルオロメチルチオフェン (87) に対するホルミル化は非選 択的に進行し、ホルミル体 88 および 89 が 3:2 の比率で生成した (Scheme 26)。続く水 素化ホウ素ナトリウムによる還元、シリカゲルクロマトグラフィーによる精製を経て目的 物 90 を得た。また、ヨードチオフェン 92 に対してトリフルオロメチル基を導入する事 も 可 能 で あ る (Scheme 27)。 す な わ ち 、 ヨ ウ 化 銅 (I) と methyl 2,2-difluoro-2-(fluorosulfonyl)acetate から発生させた CF₃--Cu 種をヨードチオフェン 92 と 反応させることで化合物 93 を得 54、続く還元反応により目的物 94 を得た。

Scheme 26

第4項 生物活性と考察

本項での検討では、これまでの SAR 情報に基づき、強力な in vitro 活性が期待できる 置換基に検討範囲を限定した。まず、第2項で論じた DNA インターカレーション作用回 避を指向した第一の戦略に基づき、末端アリール基をトリフルオロメチル基もしくはフッ 素原子が置換した電子不足系芳香環へと置換した (Table 16)。

前章における最適化研究で見出したチオフェン環を導入した結果 (66b-d)、2,4-置換チ オフェン誘導体 66c および 66d が IC₅₀ 値 10⁻⁸ M オーダーの良好な活性を示したのに 対して、2,5-置換チオフェン誘導体 66b は活性が低かった。次に、電子密度が低下したチ アゾール誘導体 66e および 66f を評価したところ、いずれも対応するチオフェン誘導体 と比較して活性が弱かった (66c vs 66e、66d vs 66f)。ここで化合物 66d を選択し、TA1537 株を用いた Ames 試験に供したところ、313 µg/plate から 2 倍の変異復帰コロニーの増 加が認められ、陽性であることが確認された。以上の結果から、第一の戦略に基づく末端 アリール基の電子密度低減は、活性の低下を招き、また化合物 66d も依然 Ames 陽性反 応を示したことから、変異原性リスク回避の有効な手段ではないと判断した。

興味深いことに、4-フッ素置換ベンゼン誘導体 66g は 5000 μg/plate の濃度まで変異原 性リスクを示さず、Ames 陰性であった。詳細な理由は不明であるが、フッ素原子の強力 な電子求引性誘起効果によるベンゼン環の電子密度低下の他、Ellis らの報告にある様に、 分子長が短くなることによる末端アリール部分と DNA 主鎖との相互作用減弱が要因と 推測される⁵⁶。

Table 16. Biological activities of compounds 66a-g

		Ar	N Me	-Me
Compound	A <i>m</i>	IC ₅₀ (nM) ^a	A_{max} (TA 1527, SQ) ⁵⁵
Compound	Af	hMCHR1 ^b	rMCHR1 ^c	Ames (1A1557, 59–)
66a	CI	35	36	positive ^d
66b	F ₃ C S	170	90	NT^e
66c	F ₃ C	74	38	NT
66d	F ₃ C S	90	70	positive
66e	F ₃ C N S	130	76	NT
66f	F ₃ C ^{//} S	230	130	NT
66g	F	110	76	negative

^{*a*} IC₅₀ values were calculated using an experiment performed in duplicate, with a standard deviation of three-fold. ^{*b*} Binding affinity for human MCHR1. ^{*c*} Binding affinity for rat MCHR1. ^{*d*} >Two-fold increase of the revertant colony compared with vehicle control. ^{*e*} Not tested.

続いて第二の戦略に基づき、インダゾール環 2 位の置換基変換を実施した (Table 17)。 化合物 66a のメチル基を、エチル基、n-プロピル基と変換するに従い、鎖長依存的な活 性低下が認めらた (66h および 66i)。次に、2-シクロプロピルインダゾール誘導体 (66j-l) を設計し、その活性および変異原性に与える効果を検証した。計算上シクロプロピル基は、 インダゾール環の平面より 42-68° 立ち上がっていることが示されており、分子の平面性 低下に効果的と考えられた (Figure 27)。さらに、第二章、第三章における検討からも、シ クロプロピル基の導入は活性向上にも効果的なことが期待された。そこで、前項で論じた 2H-インダゾール環の新規合成経路に従い、化合物 66j-l を合成、評価に供した。2-シク ロプロピル誘導体 66j-l は対応するメチル体と比較して強力な MCHR1 結合活性を示し (66a vs 66j、66g vs 66k、66d vs 66l)、第2章のイミダゾピリジン誘導体、第3章のベンズ イミダゾール誘導体に続きシクロプロピル基の有効性が示された。さらに、これらの化合 物は TA1537 株を用いた Ames 試験において、5000 µg/plate まで変異原性リスクを示さ ず、陰性であった。

Ar O Me									
Compound	A r	\mathbf{p}^2	IC ₅₀ (nM) ^a	A_{mes} (TA 1537 SQ-) ⁵⁵				
Compound	AI	ĸ	hMCHR1 ^b	rMCHR1 ^c	Alles (1A1337, 39 ⁻)				
66h	CI	Et	140	65	\mathbf{NT}^{d}				
66 i	CI	ⁿ Pr	210	130	NT				
66j	CI	^c Pr	31	23	negative				
66k	F	^c Pr	43	35	negative				
661	F ₃ C	^c Pr	38	26	negative				
66a	CI	Me	35	36	positive ^e				

Table 17. In vitro binding affinities and results of the Ames test of compounds 66a and 66h-l

^a IC₅₀ values were calculated using an experiment performed in duplicate with a three-fold standard deviation. ^b Binding affinity for human MCHR1. ^c Binding affinity for rat MCHR1. ^dNot tested. ^e >Two-fold increase of the revertant colony compared with vehicle control.

Figure 27. The lowest energy conformers of 661' calculated using MOE³¹ (for the calculation cost, the structure was simplified).

本項で論じた結果により、分子の平面性を低下させ、DNA インターカレーションを回 避することが、TA1537株における変異原性リスク軽減に有効なことが証明された。また、

同目的ではインダゾール環 2 位へのシクロプロピル基導入が効果的であることを発見した。

第3節 インダゾール誘導体 661 の薬理作用

上記の検討から、強力な MCHR1 結合活性を示し、かつ TA1537 株における変異原性 リスクを回避した化合物 66l および 66j を in vivo における薬効試験に供した。これら は CHO 細胞を用いた細胞系試験において良好な MCHR1 拮抗活性を示し (66j: IC₅₀ = 33 nM、66l: IC₅₀ = 79 nM)^{*)}、ラットにおいて良好な経口吸収性と血中暴露を示した (Table 18)。これら 2 化合物のうち、DIO F344 ラット における二日間摂食抑制確認試験におい てより強力な摂食抑制作用 (66j: 7.8% at 3 mg/kg, 5.6% at 10 mg/kg, 66l: 21.5% at 3 mg/kg, 30.6% at 10 mg/kg) を示した化合物 66l を続く連続投与試験用化合物として選択した。

Table 18. Pharmacokinetic parameters of 66j and 66l in rats^a

		iv (0.1 mg/kg)			p	o (1 mg/l	kg)
Commound	F^{b}	CL _{total} ^c	V_{ss}^{d}		C _{max} ^e	$T_{max}^{\ \ f}$	$AUC_{0\!-\!8h}{}^g$
Compound	(%)	$(mL \cdot h^{-1} \cdot kg^{-1})$	$(mL \cdot kg^{-1})$		$(ng \cdot mL^{-1})$	(h)	$(ng \cdot h \cdot mL^{-1})$
66j	37	207	676		291	4.0	1813
661	78	296	949		426	2.7	2879

^a n = 3; SD rats (male, eight weeks old). ^b Bioavailability. ^c Total clearance. ^d Volume of distribution at steady state. ^e Maximal plasma concentration. ^f Time of maximal concentration. ^g Area under the plasma concentration–time curve (0–8 h).

化合物 661 の抗肥満作用を DIO F344 ラットにおける二週間連続投与試験において評価した (Figure 28)。化合物 661 (5 および 10 mg/kg) を一日一回、二週間経口投与したところ、有意かつ用量依存的な体重低下作用が 5 mg/kg 投与群から確認され、vehicle 群に対して 5 mg/kg 投与群で 3.9%、10 mg/kg 投与群で 7.6% の体重低下が認められた。また、その時の摂餌量は vehicle 群と比較し、それぞれ 12.2% および 23.2% 減少していた。化合物 661 の 10 mg/kg 投与群の血漿中薬物濃度のトラフ値は 3.36 µM であり、DIO F344 ラットにおける化合物 661 の非結合型分率は 0.022 であることから、フリー体換算で73.9 nM と算出される。この結果は、化合物 661 の 10 mg/kg 投与群では IC₅₀ 値の 2.8 倍の血漿中フリー体濃度が試験を通じて担保されており、これが 7.6% の体重低下に必要な薬物濃度と考えられる。また、化合物 661 の脳/血中濃度比は 0.66 であることから、+分な BBB 透過性を有することが明らかとなった。さらに、化合物 661 は正常マウスでは

^{*)} 化合物 66j の MCHR2 に対する拮抗活性は $IC_{50} > 10 \mu M$ であり、MCHR1 選択的であった。

摂食抑制作用を示したのに対し、MCHR1 欠損マウスにおいては作用が認められなかった。 よって、上述の摂食抑制作用および体重低下作用は MCHR1 拮抗作用を介する効果と考 えられる。

Figure 28. Effects of **661** in a repeated-dose study in DIO F344 rats. A) Body weight change from the initial value during two weeks of dosing. B) Cumulative food intake for two weeks of dosing. The compounds were administered once daily for two weeks and the body weight and food intake were measured before drug administration. Each data point represents mean \pm SD (n = 6 for each group). (#) p < 0.025 vs. the vehicle group (Williams test), (**) p < 0.01 vs. the vehicle group (Student's t-test). Sib = Sibutramine.

第4節 小括

ターゲット選択性および安全性の向上が期待できる中性 MCHR1 拮抗薬の探索を行っ た結果、良好な in vitro 活性を有するインダゾール誘導体を見出した。初期のリード化合 物 66a は TA1537 株を用いた Ames 試験において陽性であったが、DNA との予想結合 様式に基づき、変異原性リスクの回避を試みた結果、インダゾール環へシクロプロピル基 を導入することによる平面性の低下により、TA1537 株における変異原性を回避できるこ とが明らかとなった。これらの結果は、既知の DNA インターカレーターとしては多環性 の塩基性化合物が多数を占める中、2 環性骨格から成る中性分子も DNA と相互作用し得 ることを示しており、今後の創薬における重要な注意喚起となると考えられる。

強力な in vitro 活性を有し、Ames 試験における変異原性リスクが回避された化合物 661 は 10 μM において主要 CYP アイソフォーム (1A2/2C8/2C9/2D6/3A4) に対する可逆 的阻害作用を示さず、また CYP3A4 TDI 作用、PLsis 惹起リスクおよび hERG 阻害作用 を示さなかった。さらに、化合物 661 は DIO F344 ラットにおいて強力な体重低下作用を 示したことから、中性 MCHR1 拮抗薬として独自性の高い薬剤候補化合物となり得ると 考えられる。 抗肥満薬の創製を指向した MCHR1 拮抗薬の分子設計と合成を実施した。既報の MCHR1 拮抗薬と比較し、より安全性の高い化合物の創出を目的とし、強塩基性のアルキ ルアミン部位を有さない新規非アミン性 MCHR1 拮抗薬を設計した。リード化合物創出 の戦略として、アルキルアミンを用いない構造的制約に加え、塩基性の低減 ($pK_a < 8$) と 中枢薬を指向した物性パラメータ (PSA < 70、2 < ClogP < 4、MW < 450 および HBD 数 = 0 もしくは 1)を指標として薬物設計することで、良好な MCHR1 結合活性を有し、in vitro 評価において hERG 阻害作用および PLsis 惹起リスクを示さない新規イミダゾピ リジン誘導体を見出す事に成功した。また、続く二環性縮合環の構造変換によって、塩基 性が低減されたベンズイミダゾール誘導体、さらには中性分子であるインダゾール誘導体 を設計し、それぞれより in vitro における十分な安全性と肥満モデルラットにおける強力 な抗肥満作用を有する薬剤候補化合物 54s および 66l を見出した。

また、ベンズイミダゾール誘導体の合成研究においては、チオフェン環の代謝活性化の 機構を解析することで、チオフェン環 2,5 位への置換基導入、もしくは立体的に嵩高く電 子求引性のトリフルオロメチル基の導入により CYP3A4 TDI 作用の回避に成功した。さ らに、インダゾール誘導体の合成研究では、Ames 試験において TA1537 株で認められた 遺伝毒性リスクが、化合物の平面性に基づく DNA インターカレーションに起因すると考 え、平面性を低下させる部分構造を導入する事で遺伝毒性リスクを回避できることを見出 した。

以上、MCHR1 拮抗薬の研究により、有力な抗肥満薬となり得る複数の化合物を見いだ した。本論文で示したリード化合物創出に関する方法論や、チオフェン環の CYP3A4 TDI 作用回避の戦略、および TA1537 株における遺伝毒性リスク回避の戦略等の新たな知見は、 今後の創薬研究において非常に有用である。

謝辞

本研究の機会を与えて下さいました、武田薬品工業株式会社 元取締役研究開発統括職 大川滋紀博士、元化学研究所所長 加藤金芳博士、循環代謝創薬ユニット長兼再生医療ユ ニットグローバルヘッド 出雲正剛博士、循環代謝創薬副ユニット長 山田幸雄博士に深 謝いたします。

本研究は終始、循環代謝創薬ユニットリサーチマネージャー 前川毅志博士および循環 代謝創薬ユニット河西静夫博士のご指導のもとで行われたものであり、ここに厚く御礼申 し上げます。

化合物の合成や分子設計において多大なご協力と有益なご助言を頂きましたファーマ サイエンス PC 主席研究員 安間常雄氏、循環代謝創薬ユニット主任研究員 高橋昌志博 士、循環代謝創薬ユニット主任研究員 掛川佳子氏、循環代謝創薬ユニット主任研究員 喜名朝人博士、循環代謝創薬ユニット主任研究員 生駒実博士、中枢創薬ユニット 会田 淳平氏、循環代謝創薬ユニット主任研究員 西川洋一博士、TCG Lifesciences 社 Uttam Khamrai 博士、TCG Lifesciences 社 Mrinalkanti Kundu 博士、Global Customer Insights 部 インサイト I&O 主席部員 村田俊樹博士、化学研究所 竃浦政宏博士、中枢創薬ユニッ ト 鎌田信博士に深謝いたします。

本研究の薬理試験をご担当頂きましたジャパンファーマビジネスユニット循環代謝マ ーケティング部主席部員 渚康貴博士、循環代謝創薬ユニット主席部員 竹河志郎博士、 循環代謝創薬ユニット主席部員 奥田尚紀博士、ジャパンファーマビジネスユニット Global Medical Affairs–Japan 部医薬情報グループ課長代理 川田弥生氏、循環代謝創薬ユ ニット 野口聡裕氏、循環代謝創薬ユニット 堀田なつ氏、再生医療ユニット課長代理 芦名俊太郎氏に深謝いたします。

本研究の化合物スクリーニングをご担当頂きました生物分子研究所主席研究員 中山 政治氏、生物分子研究所課長代理 桜井卓博士に深謝いたします。

本研究の薬物動態試験、初期毒性評価をご担当頂きました薬物動態研究所主席研究員 平林英樹博士、薬物動態研究所主席研究員 天野信之氏、薬物動態研究所課長代理 藤岡 泰博士、薬物動態研究所 山本俊輔氏に深謝いたします。

本研究のグルタチオントラップ試験および Ames 試験をご担当頂きました薬物動態研 究所主任研究員 白崎幹雄氏、薬剤安全性研究所主席研究員 橋爪恒夫博士、薬剤安全性
研究所 加来博美氏に深謝いたします。

本研究のアライアンスおよび CRO マネジメントをご担当頂きました生物分子研究所 主席部員 島田満之博士、化学研究所 須崎智彦博士に深謝いたします。

本論文の執筆に際し、名古屋市立大学大学院薬学研究科 樋口恒彦教授には終始懇篤な ご指導、ご高配を賜りました。ここに厚く御礼申し上げます。また、本論文の作成にあた り、有益なご助言を頂きました名古屋市立大学大学院薬学研究科 中川秀彦教授、今川正 良教授、中村精一教授、武田薬品工業株式会社 循環代謝創薬ユニット主席研究員 松永 伸之博士、循環代謝創薬ユニット主任研究員 石地雄二博士に深く感謝いたします。

最後に、本論文作成に際して終始あたたかく応援していただいた 妻 井川亜矢、父 井 川正吉、母 井川秀子、義父 奥田健一、義母 奥田真理子に深く感謝いたします。

Experimental section

General. Melting points were determined on a Yanaco melting point apparatus Mp-500D and are uncorrected. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AVANCE III (300 MHz) or a Bruker Advance III plus (400 MHz) spectrometer. Chemical shifts are given in parts per million (ppm) downfield from tetramethysilane (δ) as the internal standard in deuterated solvent, and coupling constants (J) are in Hertz (Hz). Data are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet, dd = doublet of doublets, td = triplet of doublets, and bs = broad signal), and coupling constants. Protons of the methyl group on the 3 position of the imidazopyridine ring were frequently merged with solvent peak of DMSO, and not observed. Reagents and solvents were obtained from commercial sources and used without further purification. Reaction progress was determined by thin layer chromatography (TLC) analysis on Merck Kieselgel 60 F254 plates or Fuji Silysia NH plates. Chromatographic purification was performed on silica gel columns [(Merck Kieselgel 60, 70-230 mesh size or 230-400 mesh size, Merck) or (Chromatorex NH-DM 1020, 100-200 mesh size)] or on Purif-Pack (SI or NH, particle size: 60 µm, Fuji Silysia Chemical, Ltd.). LC-MS analysis was performed on a Shimadzu Liquid Chromatography-Mass Spectrometer System, operating in APCI (+ or -) or ESI (+ or -) ionization mode. Analytes were eluted using a linear gradient of 0.05% TFA containing water/acetonitrile or 5 mM ammonium acetate containing water/acetonitrile mobile phase and detected at 220 nm. Analytical HPLC was performed with Corona CAD (Charged Aerosol Detector) or photo diode array detector. The column was a Capcell Pak C18AQ (50 mm × 3.0 mm I.D., Shiseido, Japan) or L-column 2 ODS (30 mm × 2.0 mm I.D., CERI, Japan) with a temperature of 50 °C and a flow rate of 0.5 mL/min. Mobile phase A and B under a neutral condition were a mixture of 50 mmol/L Ammonium acetate, water and acetonitrile (1:8:1, v/v/v) and a mixture of 50 mmol/L ammonium acetate and acetonitrile (1:9, v/v), respectively. The ratio of mobile phase B was increased linearly from 5% to 95% over 3 min, 95% over the next 1 min. Mobile phase A and B under an acidic condition were a mixture of 0.2% formic acid in 10 mmol/L ammonium formate and 0.2% formic acid in acetonitrile, respectively. The ratio of mobile phase B was increased linearly from 14% to 86% over 3 min, 86% over the next 1 min. The purities of compounds submitted for biological evaluation were >95% as determined by elemental analyses within $\pm 0.4\%$ of the calculated values or analytical HPLC. Yields are not optimized.

Experiments concerning Chapter 2

2,3-Dimethylimidazo[1,2-*a***]pyridin-6-amine.** To a solution of **9b** (1.05 g, 3.85 mmol), cesium carbonate (2.51 g, 7.70 mmol), Xantphos (156 mg, 0.27 mmol) and Pd₂(dba)₃ (106 mg, 0.12 mmol) in DMF (12 mL) was added benzophenone imine (0.71 mL, 4.24 mmol) at ambient temperature. The mixture was stirred at 80 °C under Ar atmosphere overnight. The mixture was poured into water and extracted with EtOAc–THF. The organic layer was separated, washed with brine twice, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography (NH silica gel, hexane/EtOAc = 80/20 to 20/80) to give the title compound (448 mg, 72%) as a dark yellow solid. ¹H NMR (300 MHz, DMSO-*d*₆) δ 2.22 (3H, s), 2.25 (3H, s), 4.76 (2H, br s), 6.73 (1H, dd, *J* = 9.5, 1.9 Hz), 7.17 (1H, d, *J* = 9.5 Hz), 7.29 (1H, d, *J* = 1.9 Hz). MS (ESI/APCI) *m/z* 162.0 [M + H]⁺.

2-Cyclopropyl-3-methylimidazo[1,2-*a***]pyridin-6-amine.** A mixture of **9a** (900 mg, 3.02 mmol), diphenylmethanimine (602 mg, 3.32 mmol), cesium carbonate (1967 mg, 6.04 mmol), Pd₂(dba)₃ (41.5 mg, 0.05 mmol), Xantphos (52.4 mg, 0.09 mmol), and DMF (10 mL) was heated at 80 °C under Ar atmosphere for 5 h. The mixture was poured into water, and extracted with EtOAc. The mixture was washed with brine, dried over MgSO₄ and concentrated. The residue was dissolved in THF (5 mL), and treated with 3 N HCl (5 mL) at rt for 10 min. Then the mixture was poured into sat. NaHCO₃ solution, and extracted with EtOAc. The extract was washed with brine, dried over MgSO₄, concentrated, and purified by column chromatography (NH silica gel, hexane/EtOAc = 80/20 to 20/80) to give the title compound (360 mg, 64%) as a pale yellow solid. ¹H NMR (300 MHz, DMSO-*d*₆) δ 0.72–0.90 (4H, m), 1.90–2.02 (1H, m), 2.33 (3H, s), 4.76 (2H, s), 6.71 (1H, dd, *J* = 9.3, 2.1 Hz), 7.15 (1H, d, *J* = 9.4 Hz), 7.28 (1H, d, *J* = 1.5 Hz). MS (ESI/APCI) *m*/*z* 188.2 [M + H]⁺.

2-Cyclopropyl-3-methylindolizin-6-amine hydrochloride. 6-Methylpyridin-3-amine (3.2 g, 29.6 mmol) was dissolved in THF (50 mL) and a solution of sodium hexamethyldisilazane (1.9 M THF solution, 34.3 mL, 65.10 mmol) was added dropwise at rt with stirring over 15 min. After stirring for 10 min, a solution of di-*tert*-butyl dicarbonate (9.62 mL, 41.4 mmol) in THF (15 mL) was added dropwise over 10 min. After stirring for 3 h, the reaction solution was extracted with EtOAc, washed with brine, dried over MgSO₄, and concentrated. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 95/5 to 70/30) to give di-*tert*-butyl (6-methylpyridin-3-yl)imidodicarbonate (4.0 g, 44%) as a pale yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 1.42 (18H, s), 2.57 (3H, s), 7.15 (1H, d, *J* = 7.9 Hz), 7.36 (1H, dd, *J* = 7.9, 2.6 Hz), 8.29 (1H, d, *J* = 2.6 Hz). MS (ESI/APCI) *m/z* 309.2 [M + H]⁺.

A mixture of di-*tert*-butyl (6-methylpyridin-3-yl)imidodicarbonate (1.3 g, 4.22 mmol), 2-bromo-1-cyclopropylpropan-1-one (**50**, 1.12 g, 6.32 mmol) and sodium bicarbonate (0.850 g,

10.1 mmol) in 2-butanone (14 mL) was stirred under reflux overnight. The mixture was quenched with water at rt and extracted with EtOAc. The organic layer was separated, washed with water and brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 100/0 to 90/10) to give di-*tert*-butyl (2-cyclopropyl-3-methylindolizin-6-yl)imidodicarbonate (812 mg, 50%) as a green solid. ¹H NMR (300 MHz, CDCl₃) δ 0.58–0.69 (2H, m), 0.91–0.98 (2H, m), 1.45 (18H, s), 1.82–1.96 (1H, m), 2.45 (3H, s), 6.02 (1H, s), 6.42 (1H, dd, *J* = 9.4, 1.5 Hz), 7.21 (1H, d, *J* = 9.4 Hz), 7.51 (1H, s). MS (ESI/APCI) *m/z* 387.2 [M + H]⁺.

A mixture of di-*tert*-butyl (2-cyclopropyl-3-methylindolizin-6-yl)imidodicarbonate (400 mg, 1.03 mmol) and 4 N HCl in EtOAc (2.6 mL, 10.4 mmol) in EtOAc (1 mL) was stirred at rt for 2 h. The insoluble material was collected and washed with EtOAc to give the title compound (110 mg, 48%) as a brown solid. ¹H NMR (300 MHz, DMSO-*d*₆) δ 0.52–0.66 (2H, m), 0.87–1.00 (2H, m), 1.87–1.97 (1H, m), 2.44 (3H, s), 6.12 (1H, s), 6.59 (1H, dd, *J* = 9.4, 1.5 Hz), 7.39 (1H, d, *J* = 9.4 Hz), 8.02 (1H, s), 10.14 (3H, br s). MS (ESI/APCI) *m/z* 187.1 [M + H]⁺.

6-Iodo-3-methylimidazo[1,2-*a***]pyridine-2-carboxylic acid.** A mixture of 2-oxo-butyric acid (10.0 g, 98.0 mmol), EtOH (110 mL), benzene (50 mL) and *p*-toluenesulfonic acid (200 mg) was heated under reflux for 4 h. The reaction mixture was then cooled to rt and concentrated. The residue was diluted with a mixture of DCM (500 mL) and water (200 mL), and DCM layer was separated. DCM layer was washed with brine, dried over Na₂SO₄, and concentrated to give ethyl 2-oxobutanoate (10 g, 77 %) as colorless liquid that was used for the next step without further purification. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.97 (3H, t, *J* = 7.2 Hz), 1.26 (3H, t, *J* = 7.2 Hz), 2.82 (2H, q, *J* = 7.2 Hz), 4.21 (2H, q, *J* = 7.2 Hz).

To a stirred solution of ethyl 2-oxobutanoate (10.0 g, 77 mmol) in a mixture of EtOAc (100 mL) and CHCl₃ (50 mL) was added CuBr₂ (54 g, 231 mmol), and then the mixture was heated under reflux for 16 h. The reaction mixture was then cooled to rt, filtered through the Celite[®] pad, and the filtrate was concentrated to afford ethyl 3-bromo-2-oxobutanoate (15 g, 94%) as green oil that was used for the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 1.38 (3H, t, *J* = 7.2 Hz), 1.79 (3H, d, *J* = 7.2 Hz), 4.38 (2H, m), 5.15 (1H, q, *J* = 7.2 Hz).

To ethyl 3-bromo-2-oxobutanoate (16 g, 76.5 mmol) and 5-iodo-pyridin-2-ylamine (8.42 g, 38.25 mmol) was added EtOH (100 mL), and the mixture was heated under reflux for 16 h. The reaction mixture was cooled to rt and concentrated. The resulting residue was diluted with DCM (300 mL), and the DCM layer was washed with water and brine, successively. The DCM layer was dried over Na₂SO₄, concentrated, purified by column chromatography (silica gel, hexane/EtOAc = 75/25) to afford ethyl 6-iodo-3-methylimidazo[1,2-*a*]pyridine-2-carboxylate (4.0 g, 32%) as yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 1.44 (3H, t, *J* = 7.2 Hz), 2.77 (3H, s), 4.45 (2H, q, *J* = 7.2 Hz), 7.37

(1H, dd, J = 9.6, 1.2 Hz), 7.44 (1H, d, J = 9.2 Hz), 8.16 (1H, s). MS (ESI/APCI) *m*/z 331.0 [M + H]⁺.

To a stirred solution of ethyl 6-iodo-3-methylimidazo[1,2-*a*]pyridine-2-carboxylate (1.5 g, 4.54 mmol) in a mixture of THF (10 mL) and H₂O (10 mL) was added LiOH·H₂O (381 mg, 9.0 mmol), and the resulting mixture was stirred at rt for 16 h. The mixture was concentrated, and the residue was washed with EtOAc (10 mL) and then diluted with H₂O (10 mL). The aqueous layer was neutralized with 2 N HCl solution. The mixture was extracted with EtOAc, and the organic layer was dried over Na₂SO₄ and concentrated to give the title compound (1.0 g, 73%) as a yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.77 (3H, s), 7.60 (1H, d, *J* = 9.4 Hz), 7.99 (1H, d, *J* = 9.3 Hz), 9.02 (1H, s). MS (ESI/APCI) *m/z* 302.9 [M + H]⁺.

N-(2,3-Dimethylimidazo[1,2-*a*]pyridin-6-yl)-2-[4-(trifluoromethoxy)phenoxy]acetamide (6a). A mixture of **5** (146 mg, 0.62 mmol), 2-methyl-3-methylimidazo[1,2-*a*]pyridin-6-amine (100 mg, 0.62 mmol), WSC (238 mg, 12.4 mmol), HOBt (16.8 mg, 0.12 mmol) and DMF (4 mL) was stirred at rt overnight. The mixture was poured into water, and extracted with EtOAc. The extract was washed with brine, dried over MgSO₄, concentrated, and purified by column chromatography (NH silica gel, hexane/EtOAc = 90/10 to 50/50) followed by recrystallization from EtOAc–hexane to give the title compound **6a** (89.2 mg, 38%) as an off-white solid; mp 202–204 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 2.29 (3H, s), 2.34 (3H, s), 4.79 (2H, s), 7.08–7.16 (2H, m), 7.22 (1H, dd, *J* = 9.4, 1.9 Hz), 7.34 (2H, d, *J* = 8.3 Hz), 7.38–7.49 (1H, m), 8.72 (1H, d, *J* = 1.1 Hz), 10.23 (1H, s). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 7.9, 13.1, 67.3, 114.0, 115.6, 116.0, 116.1, 118.5, 120.1 (q, *J* = 256.5 Hz), 122.4, 124.9, 139.3, 140.7, 142.2, 156.6, 166.4. MS (ESI/APCI) *m*/*z* 380.1 [M + H]⁺. Anal. Calcd. for C₁₈H₁₆F₃N₃O₃: C, 56.99; H, 4.25; N, 11.08. Found: C, 56.92; H, 4.26; N, 11.03.

N-(2-Cyclopropyl-3-methylimidazo[1,2-a]pyridin-6-yl)-2-[4-(trifluoromethoxy)phenoxy]aceta mide 63% (6b). The title compound vield was prepared in using 2-cyclopropyl-3-methylimidazo[1,2-a]pyridin-6-amine in an analogous manner to **6a**. White solid; mp 158 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 0.82–0.92 (4H, m), 1.97–2.11 (1H, m), 2.42 (3H, s), 4.78 (2H, s), 7.12 (2H, d, J = 9.4 Hz), 7.20 (1H, dd, J = 9.4, 1.9 Hz), 7.31–7.43 (3H, m), 8.72 (1H, s), 10.22 (1H, s). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 7.8, 7.9, 8.0, 67.2, 113.7, 115.6, 115.9, 116.0, 118.4, 120.6 (q, J = 253.5 Hz), 122.5, 124.9, 140.8, 142.2, 144.4, 156.6, 166.4. MS (ESI/APCI) m/z 406.1 [M + H]⁺. Anal. Calcd. for C₂₀H₁₈F₃N₃O₃: C, 59.26; H, 4.48; N, 10.37. Found: C, 59.02; H, 4.49; N, 10.29.

N-(2-Cyclopropyl-3-methylindolizin-6-yl)-2-[4-(trifluoromethoxy)phenoxy]acetamide (6c). The title compound was prepared in 24% yield using 2-cyclopropyl-3-methylindolizin-6-amine hydrochloride in an analogous manner to **6a**. Off-white solid; mp 168–170 °C (EtOAc–hexane). ¹H NMR (300 MHz, DMSO- d_6) δ 0.45–0.62 (2H, m), 0.83–0.95 (2H, m), 1.84–1.97 (1H, m), 2.39 (3H, s), 4.75 (2H, s), 5.97 (1H, s), 6.69 (1H, dd, J = 9.5, 1.9 Hz), 7.04–7.16 (2H, m), 7.26 (1H, d, J

= 9.5 Hz), 7.34 (2H, d, J = 8.3 Hz), 8.50 (1H, s), 9.97 (1H, s). ¹³C NMR (75 MHz, DMSO- d_6) δ 7.4, 8.3, 9.2, 67.3, 94.7, 111.7, 112.4, 116.0, 117.6, 117.8, 120.1 (q, J = 253.5 Hz), 122.5, 123.4, 128.57, 128.61, 142.1, 142.2, 156.7, 166.1. MS (ESI/APCI) m/z 405.2 [M + H]⁺. Anal. Calcd. for C₂₁H₁₉F₃N₂O₃: C, 62.37; H, 4.74; N, 6.93. Found: C, 62.24; H, 4.71; N, 6.92.

N-(2,3-Dimethyl-1-benzofuran-5-yl)-2-[4-(trifluoromethoxy)phenoxy]acetamide (6d). The title compound was prepared in 62% yield using 2,3-dimethyl-1-benzofuran-5-amine in an analogous manner to **6a**; mp 156–159 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 2.09 (3H, s), 2.35 (3H, s), 4.74 (2H, s), 7.01 (2H, d, J = 9.0 Hz), 7.32–7.39 (4H, m), 7.81 (1H, s), 10.08 (1H, s). ¹³C NMR (75 MHz, DMSO- d_6) δ 7.5, 11.6, 67.4, 109.6, 109.9, 110.1, 116.0, 116.1, 120.1 (q, J = 253.5 Hz), 122.5, 129.9, 133.2, 142.11, 142.13, 149.8, 151.3, 156.7, 165.9. MS (ESI/APCI) *m/z* 380.2 [M + H]⁺. Anal. Calcd. for C₁₉H₁₆F₃NO₄: C, 60.16; H, 4.25; N, 3.69. Found: C, 59.89; H, 4.26; N, 3.69.

3-[(4-Chlorobenzyl)oxy]pyridin-2-ol (8). To a stirred solution of KOH (0.360 g, 9.00 mmol) in MeOH (10 mL) was added **7** (1.00 g, 9.00 mmol) portionwise. To the resulting red solution was added 4-chlorobenzyl bromide (1.85 g, 9.00 mmol), and the reaction mixture was stirred at rt for 30 min, then at 40 °C for 1.5 h. The mixture was concentrated, and partitioned between EtOAc, THF and water. The organic layer was washed with brine, dried over MgSO₄, and concentrated. The precipitate was collected by filtration, and washed with IPE to give the title compound (1.69 g, 80%) as an off-white solid. ¹H NMR (400 MHz, CDCl₃) δ 5.12 (2H, s), 6.14 (1H, d, *J* = 7.0 Hz), 6.74 (1H, d, *J* = 7.3 Hz), 7.02 (1H, d, *J* = 6.3 Hz), 7.31–7.40 (4H, m), 12.36–12.56 (1H, m). MS (ESI/APCI) *m/z* 236.0 [M + H]⁺.

2-Cyclopropyl-6-iodo-3-methylimidazo[1,2-*a***]pyridine (9a). A mixture of 2-bromo-1-cyclopropylpropan-1-one (50**, 1.00 g, 5.65 mmol), 5-iodopyridin-2-amine (1.24 g, 5.65 mmol) and EtOH (10 mL) was heated at 70 °C for 48 h. The mixture was poured into sat. NaHCO₃ solution, and extracted with EtOAc. The extract was washed with brine, dried over MgSO₄, concentrated, and purified by column chromatography (silica gel, hexane/EtOAc = 95/5 to 65/45) to give the title compound (520 mg, 31%) as a pale orange solid. ¹H NMR (300 MHz, DMSO-*d*₆) δ 0.81–0.94 (4H, m), 1.96–2.11 (1H, m), 2.46 (3H, s), 7.21–7.32 (2H, m), 8.44 (1H, s). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 8.3, 8.4, 8.5, 75.3, 116.3, 117.5, 128.6, 130.6, 142.1, 144.9. MS (ESI/APCI) *m/z* 299.0 [M + H]⁺.

2-Methyl-6-iodo-3-methylimidazo[1,2-*a***]pyridine (9b).** To a solution of 5-iodopyridin-2-amine (2.50 g, 11.4 mmol) in DMF (20 mL) was added 3-bromo-2-butanone (1.19 mL, 11.4 mmol), and the mixture was stirred at 90 °C overnight. The mixture was neutralized with sat. NaHCO₃ solution, and extracted with EtOAc/THF (1:1). The organic layer was separated, washed with water and brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 75/25 to 0/100) to give the title compound (980 mg, 32%) as a dark yellow solid. ¹H NMR (300 MHz, DMSO-*d*₆) δ 2.29 (3H, s), 2.38 (3H, s), 7.20–

7.39 (2H, m), 8.46 (1H, s). MS (ESI/APCI) *m/z* 272.9 [M + H]⁺.

2-Ethyl-6-iodo-3-methylimidazo[1,2-*a*]**pyridine** (9c). The title compound was prepared in 31% yield using 2-bromopentan-3-one in an analogous manner to 9a. Yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.19 (3H, t, *J* = 7.2 Hz), 2.38 (3H, s), 2.65 (2H, q, *J* = 7.2 Hz), 7.27–7.33 (2H, m), 8.47 (1H, s). MS (ESI/APCI) *m/z* 286.8 [M + H]⁺.

6-Iodo-3-methylimidazo[1,2-*a*]**pyridine-2-carbonitrile** (9d). To a stirred solution of 6-iodo-3-methylimidazo[1,2-*a*]**pyridine-2-carboxylic** acid (1.0 g, 3.3 mmol) in DMF (15 mL) were added HATU (1.88 g, 4.92 mmol) and Et₃N (1.38 mL, 9.9 mmol) at 0 °C. The mixture was allowed to warm to rt for 30 min, and then NH₄Cl (725 mg, 13.5 mmol) was added. The resultant mixture was stirred at the same temperature for 18 h. The mixture was then concentrated, and the residue was diluted with DCM (100 mL), and washed with sat. NH₄Cl solution (40 mL), sat. NaHCO₃ solution (20 mL), water (30 mL) and brine (50 mL) successively. DCM layer was then dried over Na₂SO₄, and concentrated to give 6-iodo-3-methylimidazo[1,2-*a*]pyridine-2-carboxamide (600 mg, 60%) as a yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.73 (3H, s), 7.33 (1H, br s), 7.39 (1H, d, *J* = 9.3 Hz), 7.49 (1H, d, *J* = 9.4 Hz), 7.63 (1H, br s), 8.63 (1H, s). MS (ESI/APCI) *m/z* 301.9 [M + H]⁺.

To a stirred solution of 6-iodo-3-methylimidazo[1,2-*a*]pyridine-2-carboxamide (600 mg, 1.99 mmol) was added POCl₃ (40 mL), and the mixture was heated at reflux for 3 h. The mixture was then cooled to rt, and concentrated. The residue was poured into ice-cold sat. NaHCO₃ solution (100 mL). The mixture was extracted with EtOAc (150 mL) twice, and the combined EtOAc layers were washed with water (100 mL) and brine (100 mL), dried over Na₂SO₄ and concentrated to give the title compound (500 mg, 88%) as a yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.60 (3H, s), 7.46 (1H, d, *J* = 9.5 Hz), 7.60 (1H, d, *J* = 9.3 Hz), 8.74 (1H, s). MS (ESI/APCI) *m*/*z* 283.9 [M + H]⁺.

6-Iodo-*N*,*N*,**3-trimethylimidazo**[1,2-*a*]**pyridine-2-carboxamide** (**9e**). To a stirred solution of 6-iodo-3-methylimidazo[1,2-*a*]**pyridine-2-carboxylic** acid (150 mg, 0.49 mmol) in DMF (5 mL) were added HATU (283 mg, 0.74 mmol), and DIPEA (0.17 mL, 0.99 mmol) at 0 °C. The mixture was allowed to warm to rt for 30 min, and dimethylamine (2 N THF solution, 0.25 mL, 0.49 mmol) was added. The resultant mixture was stirred at rt for 18 h. The mixture was concentrated, and the residue was diluted with DCM (100 mL), washed with sat. NH₄Cl solution (40 mL), sat. NaHCO₃ solution (20 mL), water (30 mL) and brine (50 mL). DCM layer was then dried over Na₂SO₄, and concentrated to give the title compound (150 mg, 93%) as brown oil. ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.52 (3H, s), 2.99 (3H, s), 3.18 (3H, s), 7.41 (1H, d, *J* = 9.3 Hz), 7.46 (1H, dd, *J* = 9.3, 1.2 Hz), 8.62 (1H, s). MS (ESI/APCI) *m/z* 329.8 [M + H]⁺.

6-Iodo-*N***-methoxy-***N***,3-dimethylimidazo**[**1**,**2**-*a*]**pyridine-2-carboxamide** (**9f**)**.** To a stirred solution of 6-iodo-3-methylimidazo[**1**,**2**-*a*]**pyridine-2-carboxylic acid (600 mg, 1.98 mmol) in**

DMF (10 mL) were added HATU (1.50 g, 3.97 mmol), DIEPA (1.30 mL, 7.94 mmol) and *N*,*O*-dimethylhydroxylamine hydrochloride (385 mg, 3.97 mmol) at 0 °C. The resultant mixture was stirred at rt for 16 h. The mixture was then diluted with water (60 mL), and extracted with EtOAc (100 mL) twice. The organic layers were successively washed with sat. NaHCO₃ solution (50 mL), water (50 mL), and brine (50 mL). The EtOAc layer was then dried over Na₂SO₄, and concentrated. The crude product was purified by column chromatography (silica gel, hexane/EtOAc = 80/20) to give the title compound (600 mg, 88%) as an off-white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.56 (3H, s), 3.39 (3H, s), 3.73 (3H, s), 7.42 (1H, d, *J* = 9.4 Hz), 7.48 (1H, d, *J* = 9.4 Hz), 8.64 (1H, s). MS (ESI/APCI) *m/z* 345.6 [M + H]⁺.

(6-Iodo-3-methylimidazo[1,2-*a*]pyridin-2-yl)methanol (9g). To a stirred solution of ethyl 6-iodo-3-methylimidazo[1,2-*a*]pyridine-2-carboxylate (2.0 g, 6.06 mmol) in DCM (20 mL) was added DIBAL-H (1.76 M toluene solution, 7.72 mL, 13.6 mmol) at -19 °C. The resultant mixture was stirred at the same temperature for 3 h, and then at rt for 4 h. The reaction mixture was quenched with MeOH and water (2 mL) at -40 °C. The mixture was acidified with a few drops of 5 N HCl solution, and pouted into sat. NaHCO₃ (20 mL) solution. The mixture was extracted with EtOAc (150 mL) three times, and the combined EtOAc layers were washed with brine (50 mL), dried over Na₂SO₄, and concentrated. The crude residue was purified by column chromatography (silica gel, DCM/MeOH = 98/2) to give the title compound (1.1 g, 62%) as a yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.45 (3H, s), 4.55 (2H, s), 5.03 (1H, br s), 7.31–7.39 (2H, m), 8.53 (1H, s). MS (ESI/APCI) *m/z* 288.9 [M + H]⁺.

6-Iodo-2-(methoxymethyl)-3-methylimidazo[1,2-*a***]pyridine (9h).** To a stirred solution of **9g** (200 mg, 0.69 mmol) in DCM (2 mL) was added SOCl₂ (56 μ L, 0.78 mmol) at rt, the mixture was stirred at the same temperature for 4 h. SOCl₂ (125 μ L, 0.78 mmol) was added, and stirred at rt for further 3 h. The reaction mixture was diluted with DCM (100 mL), washed with sat. NaHCO₃ (20 mL), dried over Na₂SO₄, and concentrated to give 2-(chloromethyl)-6-iodo-3-methylimidazo[1,2-*a*]pyridine (150 mg, 24%) as a yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.48 (3H, s), 4.88 (2H, s), 7.36 (1H, d, *J* = 9.3 Hz), 7.42 (1H, dd, *J* = 9.3, 1.3 Hz), 8.56 (1H, s). MS (ESI/APCI) *m/z* 306.6 [M + H]⁺.

To a stirred solution of 2-(chloromethyl)-6-iodo-3-methylimidazo[1,2-*a*]pyridine (150 mg, 0.49 mmol) and MeOH (2.5 mL) was added NaOMe (65 mg, 1.06 mmol), and the resulting mixture was heated at reflux for 3 h. The reaction mixture was then cooled to rt and concentrated. The mixture was poured into water (50 mL), and extracted with EtOAc (50 mL) twice. Combined EtOAc layers were washed with brine (30 mL), dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography (silica gel, DCM/MeOH = 97/3) to give the title compound (100 mg, 67%) as an off-white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.50 (3H, s), 3.30 (3H, s), 4.49 (2H, s), 7.33–7.38 (2H, m), 8.55 (1H, s). MS (ESI/APCI) *m/z* 303.0 [M + H]⁺.

4-[(4-Chlorobenzyl)oxy]-1-(2-cyclopropyl-3-methylimidazo[1,2-a]pyridin-6-yl)pyridin-2(1H)-

one (10a). Two batches of a mixture of 44b (1.00 g, 4.24 mmol), 9a (1.27 g, 4.24 mmol), DMEDA (0.48 mL, 4.24 mmol), CuI (0.81 g, 4.24 mmol), K₂CO₃ (1.76 g, 12.7 mmol), and DMSO (15 mL) were heated at 150 °C for 3 h. The two batches were combined, and poured into 14% NH₃ solution. The mixture was extracted with EtOAc/THF (1:1). The extract was washed with brine, dried over MgSO₄, concentrated, and purified by column chromatography (silica gel, hexane/EtOAc = 90/10 to 0/100, then EtOAc/MeOH = 100/0 to 85/15) followed by column chromatography (NH silica gel, hexane/EtOAc = 90/10 to 0/100) to give a crude product (350 mg).

A mixture of **44b** (200 mg, 0.85 mmol), **9a** (253 mg, 0.85 mmol), DMEDA (95.0 μ L, 0.85 mmol), CuI (162 mg, 0.85 mmol), K₂CO₃ (352 mg, 2.55 mmol), and DMSO (3 mL) was heated at 110 °C under microwave irradiation for 1 h. Another two batches of a mixture of **44b** (1.00 g, 4.24 mmol), **9a** (1.27 g, 4.24 mmol), DMEDA (0.48 mL, 4.24 mmol), CuI (0.81 g, 4.24 mmol), K₂CO₃ (1.76 mg, 12.7 mmol), and DMSO (13 mL) were heated at 110 °C under microwave irradiation for 1 h. The reaction mixtures were combined, and poured into 14% NH₃ solution. The mixture was extracted with EtOAc/THF (1:1). The extract was washed with brine, dried over MgSO₄, concentrated, and purified by column chromatography (silica gel, hexane/EtOAc = 90/10 to 0/100, then EtOAc/MeOH = 100/0 to 85/15) followed by column chromatography (NH silica gel, hexane/EtOAc = 90/10 to 0/100) to give a crude product (950 mg).

These two crude lots were combined, and recrystallized from EtOH–water to give the title compound (1.25 g, 17% in total) as a white solid; mp 230–232 °C. ¹H NMR (300 MHz, DMSO- d_6) δ 0.84–0.96 (4H, m), 2.01–2.13 (1H, m), 2.47 (3H, s), 5.16 (2H, s), 6.00 (1H, d, J = 2.6 Hz), 6.14 (1H, dd, J = 7.6, 2.6 Hz), 7.11 (1H, dd, J = 9.4, 1.9 Hz), 7.43 (1H, d, J = 9.4 Hz), 7.50 (4H, s), 7.66 (1H, d, J = 7.6 Hz), 8.36 (1H, d, J = 1.1 Hz). ¹³C NMR (75 MHz, DMSO- d_6) δ 7.8, 8.0, 8.1, 68.8, 97.7, 100.2, 114.9, 116.6, 121.9, 123.2, 127.2, 128.5, 129.7, 132.8, 134.9, 139.7, 141.9, 145.0, 162.8, 167.0. MS (ESI/APCI) *m/z* 406.1 [M + H]⁺. Anal. Calcd. for C₂₃H₂₀ClN₃O₂·H₂O: C, 65.17; H, 5.23; N, 9.91. Found: C, 65.09; H, 5.24; N, 9.87.

1-(2-Cyclopropyl-3-methylimidazo[1,2-*a***]pyridin-6-yl)-4-[4-(trifluoromethoxy)phenoxy]pyrid in-2(1***H***)-one (10b). A mixture of 46 (100 mg, 0.29 mmol), 4-(trifluoromethoxy)phenol (103 mg, 0.58 mmol), DMEDA (31.0 µL, 0.29 mmol), K₂CO₃ (120 mg, 0.87 mmol), CuI (55.3 mg, 0.29 mmol), and DMSO (3 mL) was heated at 150 °C for 3 h. The mixture was purified by column chromatography (NH silica gel, hexane/EtOAc = 90/10 to 0/100) to give the title compound (39.6 mg, 31%) as a white solid; mp 227–228 °C. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 0.85–0.96 (4H, m), 2.08 (1H, br s), 5.58 (1H, d,** *J* **= 2.4 Hz), 6.26 (1H, dd,** *J* **= 7.4, 2.6 Hz), 7.13 (1H, d,** *J* **= 9.5 Hz), 7.35–7.48 (3H, m), 7.53 (2H, d,** *J* **= 8.7 Hz), 7.82 (1H, d,** *J* **= 7.5 Hz), 8.41 (1H, s). ¹³C NMR (75 MHz, DMSO-***d***₆) \delta 7.8, 7.97, 8.05, 99.5, 100.6, 115.0, 116.6, 120.0 (q,** *J* **= 254.3 Hz),122.0, 122.8, 123.0, 123.2, 127.0, 141.2, 141.9, 145.2, 145.6, 151.7, 162.4, 167.1. MS (ESI/APCI)** *m/z* **442.3 [M** + H]⁺. Anal. Calcd. for C₂₃H₁₈F₃N₃O₃: C, 62.58; H, 4.11; N, 9.52. Found: C, 62.46; H, 4.10; N, 9.48.

4-(Benzyloxy)-1-(2-cyclopropyl-3-methylimidazo[1,2-*a*]pyridin-6-yl)pyridin-2(1*H*)-one (10c). A mixture of **9a** (1.48 g, 4.97 mmol), **44e** (1.00 g, 4.97 mmol), CuI (946 mg, 4.97 mmol), DMEDA (0.534 ml, 4.97 mmol), K₂CO₃ (2.06 g, 14.9 mmol), and DMSO (13 mL) was heated at 110 °C for 1 h under microwave irradiation. The mixture was quenched with 28% NH₃ solution, and extracted with EtOAc/THF (1:1). The organic layer was separated, washed with water and brine, dried over MgSO₄, passed through silica gel pad (EtOAc), and concentrated in vacuo. The residue was purified by silica gel column chromatography (silica gel, EtOAc/MeOH = 100/0 to 85/15) and recrystallized from EtOH (80 mL) to give the title compound (1.03 g, 56%) as an off-white solid; mp 233–235 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 0.83–0.96 (4H, m), 2.02–2.12 (1H, m), 2.47 (3H, s), 5.16 (2H, s), 6.01 (1H, d, *J* = 2.6 Hz), 6.09–6.18 (1H, m), 7.11 (1H, dd, *J* = 9.4, 1.9 Hz), 7.32–7.53 (6H, m), 7.66 (1H, d, *J* = 7.5 Hz), 8.37 (1H, d, *J* = 1.1 Hz). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 7.8, 7.9, 8.1, 69.7, 97.7, 100.3, 114.8, 116.6, 121.9, 123.2, 127.2, 127.9, 128.2, 128.5, 135.8, 139.7, 141.8, 145.1, 162.8, 167.2. MS (ESI/APCI) *m*/z 372.2 [M + H]⁺. Anal. Calcd. for C₂₃H₂₁N₃O₂: C, 74.37; H, 5.70; N, 11.31. Found: C, 74.21; H, 5.65; N, 11.28.

1-(2-Cyclopropyl-3-methylimidazo[**1,2**-*a*]**pyridin-6-yl)-4-((4-fluorobenzyl)oxy)pyridin-2(1***H***)one (10d**). To a stirred mixture of **44a** (200 mg, 0.912 mmol), **9a** (285 mg, 0.956 mmol), and K₂CO₃ (378 mg, 2.73 mmol) in DMF (6 mL) was added CuI (34.7 mg, 0.182 mmol) and *trans-N,N'*-dimethylcyclohexane-1,2-diamine (26 mg, 0.182 mmol). The reaction vessel was sealed and heated at 130 °C for 16 h. DMF was removed in vacuo, and then the residue was partitioned between EtOAc (100 mL) and water (20 mL). The organic layer was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. Two batches were combined and purified by preparative HPLC to give the title compound (80 mg, 11%) as an off-white solid; mp 233–235 °C. ¹H NMR (300 MHz, CDOD₃) δ 0.95–0.99 (4H, m), 2.06 (1H, m), 2.51 (3H, s), 5.14 (2H, s), 6.11 (1H, d, *J* = 2.6 Hz), 6.28 (1H, dd, *J* = 7.6, 2.6 Hz), 7.14 (2H, t, *J* = 8.7 Hz), 7.21 (1H, dd, *J* = 9.4, 1.9 Hz), 7.46–7.51 (3H, m), 7.60 (1H, d, *J* = 7.6 Hz), 8.33 (1H, d, *J* = 1.3 Hz). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 7.8, 7.9, 8.0, 68.9, 97.6, 100.2, 115.3 (d, *J* = 21.2 Hz), 114.8, 116.5, 121.9, 123.1, 127.2, 130.2 (d, *J* = 9.1 Hz), 132.0 (d, *J* = 3.0 Hz), 139.7, 141.9, 145.0, 161.9 (d, *J* = 245.4 Hz), 162.7, 167.1. MS (ESI/APCI) *m/z* 389.8 [M + H]⁺. Purity > 99.9% (HPLC).

4-[(4-Bromobenzyl)oxy]-1-(2-cyclopropyl-3-methylimidazo[1,2-*a***]pyridin-6-yl)pyridin-2(1***H***)one (10e). To a solution of 45** (500 mg, 1.78 mmol) in THF (5 mL) was added 4-bromobenzyl alcohol (332 mg, 1.78 mmol), (E)-bis(2-methoxyethyl) diazene-1,2-dicarboxylate (541 mg, 2.31 mmol), and PPh₃ (606 mg, 2.31 mmol) at rt, and the mixture was stirred for 16 h at rt. The mixture was poured into water and extracted with EtOAc. The organic layer was separated, washed with water and brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc/MeOH = 90/10), and the product was crystalized from EtOAc to give the title compound (502 mg, 63 %) as white crystals; mp 228–229 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 0.82–0.96 (4H, m), 2.07 (1H, br s), 2.47 (3H, s), 5.15 (2H, s), 5.99 (1H, d, J = 2.4 Hz), 6.14 (1H, dd, J = 7.9, 2.5 Hz), 7.06–7.15 (1H, m), 7.43 (3H, d, J = 8.8 Hz), 7.59–7.69 (3H, m), 8.37 (1H, s). ¹³C NMR (75 MHz, DMSO- d_6) δ 7.8, 8.0, 8.1, 68.8, 97.7, 100.2, 114.9, 116.6, 121.3, 121.9, 123.2, 127.2, 130.0, 131.4, 131.5, 135.3, 139.8, 141.9, 145.1. MS (ESI/APCI) m/z 450.3 [M + H]⁺. Anal. Calcd. for C₂₃H₂₀BrN₃O₂: C, 61.34; H, 4.48; N, 9.33. Found: C, 61.14; H, 4.40; N, 9.25.

1-(2-Cyclopropyl-3-methylimidazo[1,2-*a***]pyridin-6-yl)-4-{[4-(propan-2-yl)benzyl]oxy}pyridin -2(1***H***)-one (10f). To a solution of 45** (200 mg, 0.71 mmol) in DMF (3 mL) was added 1-(bromomethyl)-4-(*tert*-butyl)benzene (0.131 mL, 0.78 mmol) and K₂CO₃ (197 mg, 1.42 mmol), and the mixture was stirred at rt for 16 h. The mixture was poured into water, and the resultant solid was collected by filtration. The solid was recrystallized from acetone–MeOH to give the title compound (114 mg, 39%) as white crystals; mp 244–246 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.84–0.99 (4H, m), 1.21 (6H, d, *J* = 6.9 Hz), 2.08 (1H, d, *J* = 5.5 Hz), 2.47 (3H, br s), 2.91 (1H, dt, *J* = 13.7, 6.8 Hz), 5.11 (2H, s), 6.00 (1H, d, *J* = 2.5 Hz), 6.12 (1H, dd, *J* = 7.5, 2.4 Hz), 7.05–7.16 (1H, m), 7.24–7.33 (2H, m), 7.35–7.40 (2H, m), 7.43 (1H, d, *J* = 9.5 Hz), 7.65 (1H, d, *J* = 7.7 Hz), 8.37 (1H, s). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 7.8, 7.9, 8.0, 23.8, 33.1, 69.6, 97.6, 100.2, 114.8, 116.5, 121.9, 123.2, 126.4, 127.2, 128.0, 133.1, 139.6, 141.9, 145.0, 148.5, 162.8, 167.2. MS (ESI/APCI) *m*/*z* 414.4 [M + H]⁺. Anal. Calcd. for C₂₆H₂₇N₃O₂·0.1H₂O: C, 75.19; H, 6.60; N, 10.12. Found: C, 75.19; H, 6.54; N, 10.10.

1-(2-Cyclopropyl-3-methylimidazo[1,2-*a***]pyridin-6-yl)-4-{[4-(trifluoromethyl)benzy]oxy}pyri din-2(1***H***)-one (10g). To a stirred mixture of 44c (110 mg, 0.409 mmol), 9a (121 mg, 0.409 mmol), K_2CO_3 (168 mg, 1.22 mmol), and dioxane (10 mL) was added CuI (15 mg, 0.079 mmol) and** *trans-N,N'***-dimethylcyclohexane-1,2-diamine (11 mg, 0.079 mmol). The reaction vessel was sealed and heated at 110 °C for 16 h. The mixture was filtered through Celite[®], and the filtrate was concentrated in vacuo. The residue was diluted with water, and extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (silica gel, DCM/MeOH = 98/2) to give the title compound (40 mg, 22%) as an off-white solid; mp 240–242 °C. ¹H NMR (400 MHz, CDOD₃) \delta 0.95–1.01 (4H, m), 2.06 (1H, m), 2.51 (3H, s), 5.28 (2H, s), 6.10 (1H, d,** *J* **= 2.4 Hz), 6.33 (1H, dd,** *J* **= 7.6, 2.4 Hz), 7.21 (1H, dd,** *J* **= 9.2, 2.0 Hz), 7.47 (1H, d,** *J* **= 9.6 Hz), 7.62–7.67 (3H, m), 7.72 (2H, d,** *J* **= 8.4 Hz), 8.33 (1H, s). ¹³C NMR (75 MHz, DMSO-***d***₆) \delta 7.8, 8.0, 8.1, 68.7, 97.8, 100.1, 114.9, 116.6, 121.9, 123.2, 124.2 (q,** *J* **= 270.8 Hz), 125.4 (q,** *J* **= 3.8 Hz), 127.2, 128.2, 128.6 (q,** *J* **= 31.5 Hz), 139.8, 140.7, 141.9, 145.1, 162.8, 166.9. MS (ESI/APCI)** *m/z* **440.2 [M + H]⁺. Anal. Calcd. for C₂₄H₂₀F₃N₃O₂: C, 65.50; H, 4.59; N, 9.56. Found: C, 65.45; H, 4.65; N, 9.53.**

4-(Benzyloxy)-1-(2,3-dimethylimidazo[1,2-*a***]pyridin-6-yl)pyridin-2(1***H***)-one (10h). The title compound was prepared in 50% yield using 9b** and **44e** in an analogous manner to **10g**. Off-white solid; mp 220–221 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.33 (3H, s), 2.39 (3H, s), 5.17 (2H, s), 5.99 (1H, d, *J* = 2.4 Hz), 6.14 (1H, dd, *J* = 7.6, 2.3 Hz), 7.12–7.14 (1H, m), 7.45–7.49 (5H, m), 7.67 (1H, d, *J* = 7.6 Hz), 8.38 (1H, s). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 7.9, 13.1, 68.8, 97.7, 100.2, 114.9, 117.0, 122.2, 123.1, 127.2, 128.5, 129.6, 132.7, 134.8, 139.7, 140.0, 141.7, 162.7, 167.0. MS (ESI/APCI) *m/z* 379.8 [M + H]⁺. Anal. Calcd. for C₂₁H₁₈ClN₃O₂·H₂O: C, 63.40; H, 5.07; N, 10.56. Found: C, 63.36; H, 5.07; N, 10.50.

4-(**Benzyloxy**)-**1**-(**2**-ethyl-3-methylimidazo[**1**,2-*a*]pyridin-6-yl)pyridin-2(1*H*)-one (**10**i). The title compound was prepared in 25% using **9**c and **44e** in an analogous manner to **10**g. Off-white solid; mp 218–220 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.22 (3H, t, *J* = 7.5 Hz), 2.39 (3H, s), 2.69 (2H, dd, *J* = 14.9, 7.3 Hz), 5.16 (2H, s), 5.99 (1H, d, *J* = 2.6 Hz), 6.14 (1H, dd, *J* = 7.6, 2.6 Hz), 7.13 (1H, dd, *J* = 9.4, 1.9 Hz), 7.48–7.49 (5H, m), 7.67 (1H, d, *J* = 7.6 Hz), 8.38 (1H, d, *J* = 1.3 Hz). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 7.8, 14.1, 20.3, 68.8, 97.7, 100.2, 115.1, 116.2, 122.3, 123.1, 127.2, 128.5, 129.6, 132.7, 134.8, 139.7, 141.8, 145.5, 162.7, 167.0. MS (ESI/APCI) *m*/*z* 394.0 [M + H]⁺. Anal. Calcd. for C₂₂H₂₀ClN₃O₂·0.25H₂O: C, 66.33; H, 5.19; N, 10.55. Found: C, 66.22; H, 5.10; N, 10.54.

6-{4-[(4-Fluorobenzyl)oxy]-2-oxopyridin-1(2*H***)-yl}-3-methylimidazo[1,2-***a***]pyridine-2-carboni trile (10j). The title compound was prepared in 34% yield using 9d and 44a in an analogous manner to 10g. Off-white solid; mp 230–232 °C. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 2.63 (3H, s), 5.15 (2H, s), 6.04 (1H, d,** *J* **=2.4 Hz), 6.18 (1H, dd,** *J* **=2.5, 1.6 Hz), 7.23–7.28 (2H, m), 7.47 (1H, dd,** *J* **= 9.7, 1.7 Hz), 7.51–7.54 (2H, m), 7.67–7.69 (2H, m), 8.69 (1H, s). ¹³C NMR (101 MHz, DMSO-***d***₆) \delta 8.7, 69.0, 97.6, 100.6, 115.1, 115.2, 115.3 (d,** *J* **= 21.2 Hz), 116.5, 123.7, 128.0, 129.6, 130.2 (d,** *J* **= 9.1 Hz), 131.2, 132.0 (d,** *J* **= 3.0 Hz), 139.3, 143.1, 161.9 (d,** *J* **= 245.4 Hz), 162.6, 167.3. MS (ESI/APCI)** *m***/***z* **375.0 [M + H]⁺. Anal. Calcd. for C₂₁H₁₅FN₄O₂·0.25H₂O: C, 66.57; H, 4.12; N, 14.79. Found: C, 66.74; H, 4.09; N, 14.78.**

6-{4-[(4-Fluorobenzyl)oxy]-2-oxopyridin-1(2*H***)-yl}-***N***,***N***,3-trimethylimidazo[1,2-***a***]pyridine-2-carboxamide (10k).** The title compound was prepared in 34% yield using **9e** and **44a** in an analogous manner to **10g**. White solid; mp 252–254 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.54 (3H, s), 3.01 (3H, s), 3.22 (3H, s), 5.15 (2H, s), 6.03 (1H, d, *J* = 2.4 Hz), 6.16 (1H, dd, *J* = 7.5, 2.4 Hz), 7.24–7.31 (3H, m), 7.51–7.54 (2H, m), 7.62 (1H, d, *J* = 9.6 Hz), 7.69 (1H, d, *J* = 7.6 Hz), 8.56 (1H, s). ¹³C NMR (101 MHz, DMSO-*d*₆) 8.8, 35.0, 38.3, 69.0, 97.6, 100.4, 115.3 (d, *J* = 21.2 Hz), 116.4, 123.0, 123.5, 125.5, 128.4, 130.2 (d, *J* = 9.1 Hz), 132.0 (d, *J* = 4.0 Hz), 137.2, 139.5, 141.0, 161.9 (d, *J* = 245.4 Hz), 162.7, 164.7, 167.2. MS (ESI/APCI) *m*/*z* 421.4 [M + H]⁺. Anal. Calcd. for C₂₃H₂₁FN₄O₃·0.15H₂O: C, 65.29; H, 5.07; N, 13.24. Found: C, 65.29; H, 5.02; N, 13.21.

6-{4-[(4-Fluorobenzyl)oxy]-2-oxopyridin-1(2*H***)-yl}-***N*-**methoxy-***N*,**3-dimethylimidazo[1,2-***a***]py ridine-2-carboxamide (101).** To a stirred mixture of **44b** (500 mg, 2.28 mmol), **9f** (945 mg, 2.73 mmol), K₂CO₃ (945 mg, 6.84 mmol), and dioxane (20 mL) were added CuI (174 mg, 0.91 mmol) and *trans-N*,*N'*-dimethyl-cyclohexane-1,2-diamine (130 mg, 0.91 mmol). The reaction vessel was sealed, and heated at 110 °C for 16 h. The reaction mixture was then cooled to rt, filtered through Celite[®], and the concentrated. The residue was diluted with EtOAc (150 mL), washed with brine (50 mL), dried over Na₂SO₄, and concentrated. The crude product was purified by column chromatography (silica gel, DCM/MeOH = 98/2) to give the title compound (320 mg, 32%) as an off-white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.57 (3H, s), 3.41 (3H, s), 3.75 (3H, s), 5.15 (2H, s), 6.03 (1H, d, *J* = 2.6 Hz), 6.16 (1H, dd, *J* = 7.6, 2.6 Hz), 7.23–7.32 (3H, m), 7.51–7.54 (2H, m), 7.62 (1H, d, *J* = 9.6 Hz), 7.70 (1H, d, *J* = 7.5 Hz), 8.58 (1H, s). MS (ESI/APCI) *m/z* 437.4 [M + H]⁺.

1-(2-Acetyl-3-methylimidazo[1,2-*a*]pyridin-6-yl)-4-[(4-fluorobenzyl)oxy]pyridin-2(1*H*)-one

(10m). To a stirred solution of 10l (150 mg, 0.34 mmol) in THF (10 mL) was added a solution of MeMgBr (3 M in ether, 344 μ L, 1.03 mmol) at -78 °C, and the resulting mixture was stirred at same temperature for 2 h. The reaction mixture was then quenched with sat. NH₄Cl solution (40 mL), and allowed to warm to rt. The reaction mixture was concentrate, and extracted with EtOAc (100 mL). The organic layer was washed with brine (40 mL), dried over Na₂SO₄, and concentrated. The resulting residue was purified by column chromatography (silica gel, DCM/MeOH = 97/3) to give the title compound (55 mg, 40%) as a white solid; mp 249–251 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.61 (3H, s), 2.73 (3H, s), 5.15 (2H, s), 6.04 (1H, d, *J* = 2.2 Hz), 6.16 (1H, dd, *J* = 7.7, 2.6 Hz), 7.24–7.28 (2H, m), 7.35 (1H, dd, *J* = 9.7, 1.7 Hz), 7.51–7.54 (2H, m), 7.68–7.71 (2H, m), 8.63 (1H, s). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 9.2, 27.7, 69.0, 97.6, 100.5, 115.3 (d, *J* = 21.2 Hz), 117.1, 123.3, 125.6, 126.7, 126.6, 129.2, 130.2 (d, *J* = 8.1 Hz), 132.0 (d, *J* = 3.0 Hz), 139.1, 139.4, 141.4, 161.9 (d, *J* = 245.4 Hz), 162.6, 167.2, 196.8. MS (ESI/APCI) *m/z* 392 [M + H]⁺. Purity 98.9% (HPLC).

1-[2-(Cyclopropylcarbonyl)-3-methylimidazo[1,2-*a***]pyridin-6-yl]-4-[(4-fluorobenzyl)oxy]pyri din-2(1***H***)-one (10n).** The title compound was prepared in 39% yield using ^cPrMgBr in an analogous manner to **10m**. White solid; mp 233–234 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.04 (4H, m), 2.73 (3H, s), 3.34 (1H, m), 5.15 (2H, s), 6.04 (1H, d, *J* = 2.5 Hz), 6.16 (1H, dd, *J* = 7.5, 2.4 Hz), 7.24–7.28 (2H, m), 7.37 (1H, dd, *J* = 9.5, 1.5 Hz), 7.51–7.54 (2H, m), 7.69 (1H, d, *J* = 3.9 Hz), 7.72 (1H, d, *J* = 1.6 Hz), 8.64 (1H, s). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 9.2, 11.0, 17.4, 69.0, 97.6, 100.5, 115.3 (d, *J* = 21.2 Hz), 117.2, 123.3, 125.4, 126.6, 129.2, 130.2 (d, *J* = 8.1 Hz), 132.0 (d, *J* = 3.0 Hz), 139.1, 139.4, 141.6, 161.9 (d, *J* = 245.4 Hz), 162.6, 167.2, 198.0. MS (ESI/APCI) *m/z* 418 [M + H]⁺. Purity 98.3% (HPLC).

 $\label{eq:constraint} 4-[(4-Fluorobenzyl)oxy]-1-[2-(hydroxymethyl)-3-methylimidazo[1,2-a]pyridin-6-yl]pyridin-2(hydroxymethyl)-3-methylimidazo[1,2-a]pyridin-6-yl]pyridin-2(hydroxymethyl)-3-methylimidazo[1,2-a]pyridin-6-yl]pyridin-2(hydroxymethyl)-3-methylimidazo[1,2-a]pyridin-6-yl]pyridin-2(hydroxymethyl)-3-methylimidazo[1,2-a]pyridin-6-yl]pyridin-2(hydroxymethyl)-3-methylimidazo[1,2-a]pyridin-6-yl]pyridin-2(hydroxymethyl)-3-methylimidazo[1,2-a]pyridin-6-yl]pyridin-2(hydroxymethyl)-3-methylimidazo[1,2-a]pyridin-6-yl]pyridin-2(hydroxymethyl)-3-methylimidazo[1,2-a]pyridin-6-yl]pyridin-2(hydroxymethyl)-3-methylimidazo[1,2-a]pyridin-6-yl]pyridin-2(hydroxymethyl)-3-methylimidazo[1,2-a]pyridin-6-yl]pyridin-2(hydroxymethyl)-3-methylimidazo[1,2-a]pyridin-6-yl]pyridin-2(hydroxymethyl)-3-methylimidazo[1,2-a]pyridin-6-yl]pyridin-2(hydroxymethyl)-3-methylimidazo[1,2-a]pyridin-6-yl]pyridin-2(hydroxymethyl)-3-methylimidazo[1,2-a]pyridin-6-yl]pyridin-2(hydroxymethyl)-3-methylimidazo[1,2-a]pyridin-6-yl]pyridin-2(hydroxymethyl)-3-methylimidazo[1,2-a]pyridin-6-yl]pyridin-3(hydroxymethyl)-3-methylimidazo[1,2-a]pyridin-6-yl]pyridin-3(hydroxymethyl)-3-methylimidazo[1,2-a]pyridin-6-yl]pyridin-6-yl]pyridin-3(hydroxymethyl)-3-methylimidazo[1,2-a]pyridin-6-yl]pyridin-3(hydroxymethyl)-3-methylimidazo[1,2-a]pyridin-6-yl]pyridin-3(hydroxymethyl)-3-methylimidazo[1,2-a]pyridin-6-yl]pyridin-3(hydroxymethyl)-3-methylimidazo[1,2-a]pyridin-3(hydroxymethyl)-3-methylimidazo[1,2-a]pyridin-3(hydroxymethyl)-3-methylimidazo[1,2-a]pyridin-3(hydroxymethyl)-3-methylimidazo[1,2-a]pyridin-3(hydroxymethylimidazo[1,2-a]pyridin-3(hydroxymethylimidazo[1,2-a]pyridin-3(hydroxymethylimidazo[1,2-a]pyridin-3(hydroxymethylimidazo[1,2-a]pyridin-3(hydroxymethylimidazo[1,2-a]pyridin-3(hydroxymethylimidazo[1,2-a]pyridin-3(hydroxymethylimidazo[1,2-a]pyridin-3(hydroxymethylimidazo[1,2-a]pyridin-3(hydroxymethylimidazo[1,2-a]pyridin-3(hydroxymethylimidazo[1,2-a]pyridin-3(hydroxymethylimidazo[1,2-a]pyridin-3(hydroxymethylimidazo[1,2-a]pyridin-3(hydroxymethylimidazo[1,2-a]$

1H)-one (100). The title compound was prepared in 43% yield using 9g and 44a in an analogous manner to **10g**. White solid; mp 270–273 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.46 (3H, s), 4.58 (2H, d, J = 5.3 Hz), 5.04 (1H, m), 5.14 (2H, s), 6.02 (1H, d, J = 2.5 Hz), 6.13 (1H, dd, J = 7.6, 2.6 Hz), 7.18 (1H, dd, J = 9.5, 1.6 Hz), 7.24–7.28 (2H, m), 7.51–7.54 (3H, m), 7.68 (1H, d, J = 7.6 Hz), 8.44 (1H, s). ¹³C NMR (101 MHz, DMSO- d_6) δ 8.1, 57.0, 68.9, 97.6, 100.3, 115.3 (d, J = 22.2 Hz), 115.6, 122.6, 123.7, 127.6, 130.2 (d, J = 9.1 Hz), 132.0 (d, J = 3.0 Hz), 139.6, 141.6, 143.7, 161.9 $(d, J = 245.4 \text{ Hz}), 162.7, 167.1. \text{ MS (ESI/APCI)} m/z 380.0 [M + H]^+$. Anal. Calcd. for C₂₁H₁₈FN₃O₃·0.5H₂O: C, 64.94; H, 4.93; N, 10.82. Found: C, 64.89; H, 4.74; N, 10.87.

4-[(4-Fluorobenzyl)oxy]-1-[2-(methoxymethyl)-3-methylimidazo[1,2-a]pyridin-6-yl]pyridin-2(1H)-one (10p). The title compound was prepared in 26% yield using 9h and 44a in an analogous manner to **10g**. White solid. ¹H NMR (400 MHz, DMSO- d_6) δ 2.49 (3H, s), 3.42 (3H, s), 4.65 (2H, s), 5.01 (2H, s), 6.04 (1H, d, J = 2.5 Hz), 6.08 (1H, dd, J = 7.5, 2.5 Hz), 7.08–7.14 (3H, m), 7.26 (1H, m), 7.39 (2H, dd, J = 8.4, 5.4 Hz), 7.63 (1H, d, J = 9.4 Hz), 7.98 (1H, s). MS (ESI/APCI) m/z $394.0 [M + H]^+$.

(6-{4-[(4-Fluorobenzyl)oxy]-2-oxopyridin-1(2H)-yl}-3-methylimidazo[1,2-a]pyridin-2-yl)aceto nitrile (10q). To a stirred solution of compound 10o (120 mg, 0.31 mmol) in DCM (1 mL) was added SOCl₂ (1 mL), and the mixture was stirred at rt for 18 h. The mixture was concentrated, diluted with DCM (100 mL), and quenched with sat. NaHCO₃ solution (50 mL). The organic layer was separated, washed successively with water (50 mL) and brine (50 mL), dried over Na_2SO_4 , concentrated and to give 1-[2-(chloromethyl)-3-methylimidazo[1,2-a]pyridin-6-yl]-4-[(4-fluorobenzyl)oxy]pyridin-2(1H)-o ne (120 mg, 96%) as an off-white solid. ¹H NMR (400 MHz, DMSO- d_6) δ 4.91 (2H, s), 5.14 (2H, s), 6.02 (1H, d, J = 2.4 Hz), 6.15 (1H, dd, J = 7.6, 2.5 Hz), 7.23–7.28 (3H, m), 7.51–7.57 (3H, m), 7.68 (1H, d, J = 7.6 Hz), 8.48 (1H, s). MS (ESI/APCI) m/z 398.2 [M + H]⁺. То of

stirred

a

solution

1-[2-(chloromethyl)-3-methylimidazo[1,2-a]pyridin-6-yl]-4-[(4-fluorobenzyl)oxy]pyridin-2(1H)-o ne (150 mg, 0.32 mmol) in THF (5 mL) were added TMSCN (115 µL, 1.13 mmol) and TBAF (1 M solution in THF, 1.13 mL, 1.13 mmol) at rt, and the resulting mixture was stirred for 4 h. The reaction mixture was then quenched with sat. FeSO₄ solution (10 mL), and extracted with DCM (100 mL) twice. The combined organic layers were washed with brine (30 mL), dried over Na₂SO₄, and concentrated. The crude material was purified by column chromatography (silica gel, DCM/MeOH = 97/3) to afford the title compound (60 mg, 48%) as a white solid; mp 220–222 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.46 (3H, s), 4.15 (2H, s), 5.14 (2H, s), 6.03 (1H, s), 6.15 (1H, d, J = 7.2 Hz), 7.24–7.28 (3H, m), 7.51–7.59 (3H, m), 7.67 (1H, d, J = 7.6 Hz), 8.48 (1H, s). ¹³C NMR (75 MHz, DMSO- d_6) δ 7.7, 16.4, 69.0, 97.6, 100.4, 115.4 (d, J = 21.0 Hz), 115.6, 118.3, 118.5, 122.9, 124.8, 128.0, 130.0 (d, J = 9.0 Hz), 132.0 (d, J = 3.8 Hz), 133.6, 139.6, 142.2, 162.0

(d, J = 243.0 Hz), 162.7, 167.2. MS (ESI/APCI) m/z 389.4 [M + H]⁺. Anal. Calcd. for $C_{22}H_{17}FN_4O_2 \cdot 0.25H_2O$: C, 67.25; H, 4.49; N, 14.26. Found: C, 67.30; H, 4.46; N, 14.18.

1-(2-Cyclopropyl-3-methylimidazo[1,2-*a***]pyridin-6-yl)-4-(pyridin-2-ylmethoxy)pyridin-2(1***H***) -one** (**10r**). The title compound was prepared in 32% yield using 2-(bromomethyl)pyridine hydrobromide in an analogous manner to **10f**. White crystals; mp 217–220 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.05 (2H, d, *J* = 3.8 Hz), 1.16 (2H, d, *J* = 8.3 Hz), 2.23–2.32 (1H, m), 2.58 (3H, s), 5.29 (2H, s), 6.07 (1H, d, *J* = 2.3 Hz), 6.30 (1H, dd, *J* = 7.7, 2.4 Hz), 7.41–7.53 (1H, m), 7.62 (1H, d, *J* = 7.9 Hz), 7.72 (1H, d, *J* = 7.8 Hz), 7.85–7.92 (1H, m), 7.93–8.01 (2H, m), 8.65 (1H, d, *J* = 4.5 Hz), 9.00 (1H, s). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 5.9, 7.7, 8.1, 68.6, 97.8, 100.9, 110.5, 120.1, 123.8, 124.5, 124.8, 131.2, 132.1, 135.5, 137.0, 139.3, 141.0, 146.4, 152.9, 162.4, 167.2. MS (ESI/APCI) *m/z* 373.2 [M + H]⁺. Anal. Calcd. for C₂₂H₂₀N₄O₂·2HCl·H₂O: C, 57.03; H, 5.22; N, 12.09. Found: C, 57.13; H, 5.19; N, 12.09.

1-(2-Cyclopropyl-3-methylimidazo[1,2-*a***]pyridin-6-yl)-4-(pyridin-3-ylmethoxy)pyridin-2(1***H***) -one (10s).** To a solution of **45** (150 mg, 0.53 mmol), pyridin-3-yl-methanol (116 mg, 1.06 mmol), and tributyl phosphine (322 mg, 1.59 mmol) in THF (15 mL) was added ADDP (401 mg, 1.59 mmol). The mixture was stirred under sonication at 60 °C for 4 h. The reaction mixture was then cooled to rt and concentrated. The residue was diluted with DCM (60 mL), washed with water (30 mL) twice and brine (30 mL), dried over Na₂SO₄, and concentrated. The resulting residue was purified by column chromatography (silica gel, DCM/MeOH = 96/4) to give the title compound (61 mg, 31%) as an off-white solid; mp 210–212 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.88–0.92 (4H, m), 2.07 (1H, m), 5.21 (2H, s), 6.05 (1H, d, *J* = 2.5 Hz), 6.14 (1H, dd, *J* = 7.5, 2.6 Hz), 7.11 (1H, dd, *J* = 9.4, 1.7 Hz), 7.42–7.48 (2H, m), 7.67 (1H, d, *J* = 7.6 Hz), 7.89–7.91 (1H, m), 8.37 (1H, s), 8.61 (1H, br s), 8.70 (1H, br s). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 7.8, 8.0, 8.1, 67.4, 97.7, 100.2, 114.9, 116.6, 122.0, 123.2, 123.6, 127.2, 131.5, 135.9, 139.8, 141.9, 145.1, 149.2, 149.5, 162.8, 167.0. MS (ESI/APCI) *m/z* 373.4 [M + H]⁺. Anal. Calcd. for C₂₂H₂₀N₄O₂·0.1H₂O: C, 70.61; H, 5.44; N, 14.97. Found: C, 70.75; H, 5.38; N, 14.89.

1-(2-Cyclopropyl-3-methylimidazo[1,2-*a***]pyridin-6-yl)-4-(pyridin-4-ylmethoxy)pyridin-2(1***H***) -one** (**10t**). The title compound was prepared in 28% yield using pyridin-4-yl-methanol in an analogous manner to **10s**. White solid; mp 251–253 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.98– 1.08 (4H, m), 1.98–2.02 (1H, m), 2.50 (3H, s), 5.11 (2H, s), 6.02 (1H, d, *J* = 2.6 Hz), 6.15 (1H, dd, *J* = 7.6, 2.7 Hz), 7.06 (1H, dd, *J* = 9.4, 1.8 Hz), 7.31 (1H, d, *J* = 7.6 Hz), 7.36 (2H, d, *J* = 5.6 Hz), 7.57 (1H, d, *J* = 9.4 Hz), 7.94 (1H, s), 8.68 (2H, d, *J* = 5.8 Hz). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 7.8, 8.0, 8.1, 67.8, 97.8, 100.1, 114.9, 116.6, 121.8, 122.0, 123.2, 127.1, 139.9, 141.9, 144.9, 145.1, 149.8, 162.7, 166.8. MS (ESI/APCI) *m*/*z* 373.3 [M + H]⁺. Anal. Calcd. for C₂₂H₂₀N₄O₂·0.5H₂O: C, 69.28; H, 5.55; N, 14.69. Found: C, 69.33; H, 5.50; N, 14.57.

1-(2-Cyclopropyl-3-methylimidazo [1,2-a] pyridin-6-yl)-4-(pyrimidin-5-ylmethoxy) pyridin-2(1-2) pyridin-2(1-2

H)-one (10u). The title compound was prepared in 33% yield using pyrimidin-5-yl-methanol in an analogous manner to 10s. White solid; mp 236–238 °C.¹H NMR (400 MHz, DMSO- d_6) δ 0.88–0.92 (4H, m), 2.05–2.09 (1H, m), 2.48 (3H, s), 5.26 (2H, s), 6.08 (1H, d, J = 2.5 Hz), 6.16 (1H, dd, J = 7.5, 2.6 Hz), 7.11 (1H, dd, J = 9.5, 1.8 Hz), 7.43 (1H, d, J = 9.4 Hz), 7.68 (1H, d, J = 7.8 Hz), 8.38 (1H, s), 8.95 (2H, s), 9.22 (1H, s). ¹³C NMR (75 MHz, DMSO- d_6) δ 7.8, 8.0, 8.1, 65.1, 97.7, 100.1, 114.9, 116.6, 122.0, 123.2, 127.1, 129.7, 139.9, 141.9, 145.1, 156.5, 158.3, 162.8, 166.8. MS (ESI/APCI) *m*/*z* 374.2 [M + H]⁺. Anal. Calcd. for C₂₁H₁₉N₅O₂.0.75H₂O: C, 65.19; H, 5.34; N, 18.10. Found: C, 65.32; H, 5.22; N, 18.11.

1-(2-Cyclopropyl-3-methylimidazo[1,2-*a***]pyridin-6-yl)-4-(thiophen-2-ylmethoxy)pyridin-2(1***H***)-one (10v). The title compound was prepared in 22% yield using thiophen-2-yl-methanol in an analogous manner to 10s**. Off-white solid; mp 225 °C (decomposition). ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.88–0.92 (4H, m), 2.06–2.08 (1H, m), 5.35 (2H, s), 6.07–6.12 (2H, m), 7.07 (1H, dd, *J* = 4.8, 3.5 Hz), 7.09–7.13 (1H, m), 7.27 (1H, d, *J* = 3.1 Hz), 7.43 (1H, d, *J* = 9.4 Hz), 7.61 (1H, d, *J* = 4.9 Hz), 7.64 (1H, d, *J* = 7.5 Hz), 8.37 (1H, s). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 7.8, 7.9, 8.0, 64.5, 97.7, 100.1, 114.8, 116.5, 121.9, 123.2, 126.9, 127.1, 127.3, 128.3, 137.7, 139.7, 141.9, 145.0, 162.7, 166.7. MS (ESI/APCI) *m/z* 378.3 [M + H]⁺. Anal. Calcd. for C₂₁H₁₉N₃O₂S·0.4H₂O: C, 65.57; H, 5.19; N, 10.92. Found: C, 65.57; H, 5.01; N, 10.86.

1-(2-Cyclopropyl-3-methylimidazo[1,2-*a***]pyridin-6-yl)-4-(thiophen-3-ylmethoxy)pyridin-2(1***H***)-one (10w). The title compound was prepared in 40% yield using thiophen-3-yl-methanol in an analogous manner to 10s. White solid; mp 234 °C (decomposition). ¹H NMR (400 MHz, DMSO-***d***₆) \delta 0.88–0.94 (4H, m), 2.04–2.10 (1H, m), 5.15 (2H, s), 6.02 (1H, d,** *J* **= 2.6 Hz), 6.10 (1H, dd,** *J* **= 7.6, 2.6 Hz), 7.07 (1H, dd,** *J* **= 9.5, 1.8 Hz), 7.19 (1H, d,** *J* **= 4.9 Hz), 7.43 (1H, d,** *J* **= 9.4 Hz), 7.59 (1H, dd,** *J* **= 4.8, 2.9 Hz), 7.64–7.66 (2H, m), 8.37 (1H, s). ¹³C NMR (101 MHz, DMSO-***d***₆) \delta 7.8, 7.9, 8.0, 65.2, 97.5, 100.2, 114.8, 116.5, 121.9, 123.2, 124.7, 126.8, 127.2, 127.5, 136.6, 139.6, 141.9, 145.0, 162.8, 167.1. MS (ESI/APCI)** *m***/***z* **378.3 [M + H]⁺. Anal. Calcd. for C₂₁H₁₉N₃O₂S·0.6H₂O: C, 64.96; H, 5.24; N, 10.82. Found: C, 64.84; H, 5.01; N, 10.71.**

4-[(5-Chloropyridin-2-yl)methoxy]-1-(2-cyclopropyl-3-methylimidazo[1,2-*a***]pyridin-6-yl)pyri din-2(1***H***)-one (10x). The title compound was prepared in 53% yield using (5-chloropyridin-2-yl)methanol in an analogous manner to 10s. White solid; mp 200–201 °C. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 0.84–0.96 (4H, m), 2.01–2.12 (1H, m), 2.47 (3H, s), 5.24 (2H, s), 5.99 (1H, d,** *J* **= 2.6 Hz), 6.18 (1H, dd,** *J* **= 7.6, 2.7 Hz), 7.11 (1H, dd,** *J* **= 9.5, 1.8 Hz), 7.43 (1H, d,** *J* **= 9.5 Hz), 7.61 (1H, d,** *J* **= 8.3 Hz), 7.68 (1H, d,** *J* **= 7.7 Hz), 8.03 (1H, dd,** *J* **= 8.3, 2.4 Hz), 8.37 (1H, s), 8.67 (1H, d,** *J* **= 2.4 Hz). ¹³C NMR (75 MHz, DMSO-***d***₆) \delta 7.8, 8.0, 8.1, 69.8, 97.8, 100.1, 114.9, 116.6, 121.9, 123.2, 123.5, 127.1, 130.5, 136.9, 139.9, 141.9, 145.1, 147.8, 154.0, 162.7, 166.9. MS (ESI/APCI)** *m***/***z* **407.1 [M + H]⁺. Anal. Calcd. for C₂₂H₁₉ClN₄O₂: C, 64.94; H, 4.71; N, 13.77. Found: C, 64.80; H, 4.72; N, 13.69.** **4-[(5-Chlorothiophen-3-yl)methoxy]-1-(2-cyclopropyl-3-methylimidazo[1,2-***a***]pyridin-6-yl)py ridin-2(1***H***)-one (10y). The title compound was prepared in 41% yield using (5-chloro-thiophen-3-yl)-methanol in an analogous manner to 10s. White solid; mp 233–235 °C. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 0.88–0.92 (4H, m), 2.05–2.09 (1H, m), 2.47 (3H, s), 5.06 (2H, s), 6.01 (1H, d,** *J* **= 2.6 Hz), 6.10 (1H, dd,** *J* **= 7.6, 2.7 Hz), 7.11 (1H, dd,** *J* **= 9.5, 1.9 Hz), 7.20 (1H, d,** *J* **= 1.7 Hz), 7.43 (1H, d,** *J* **= 9.4 Hz), 7.56 (1H, d,** *J* **= 1.2 Hz), 7.65 (1H, d,** *J* **= 7.7 Hz), 8.36 (1H, d,** *J* **= 1.3 Hz). ¹³C NMR (75 MHz, DMSO-***d***₆) \delta 7.8, 8.0, 8.1 65.1, 97.5, 100.2, 114.9, 116.6, 121.9, 123.2, 124.3, 127.0, 127.2, 128.9, 136.4, 139.7, 141.9, 145.1, 162.8, 166.9. MS (ESI/APCI)** *m/z* **412.0 [M + H]⁺. Anal. Calcd. for C₂₁H₁₈ClN₃O₂S·0.4H₂O: C, 60.18; H, 4.52; N, 10.03. Found: C, 60.01; H, 4.47; N, 10.08.**

1-(2-Cyclopropyl-3-methylimidazo[1,2-*a*]pyridin-6-yl)-4-{[5-(trifluoromethyl)thiophen-3-yl] methoxy}pyridin-2(1*H*)-one (10z). A mixture of 46 (111 mg, 0.32 mmol), 2-(trifluoromethylthiophen-4-yl)methanol (88 mg, 0.48 mmol) and KO'Bu (109 mg, 0.97 mmol) in toluene (3 mL) was heated at 100 °C for 1 h. The mixture was poured into water, and extracted with EtOAc/THF (1:1). The extract was washed with brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography (NH silica gel, hexane/EtOAc = 97/3to 0/100). The solid was recrystallized from IPA-IPE to give the title compound (47.5 mg, 33 %) as a white solid; mp 209–210 °C. ¹H NMR (400 MHz, DMSO-d₆) δ 0.83–0.99 (4H, m), 2.07 (1H, br s), 5.17 (2H, s), 6.05 (1H, s), 6.13 (1H, d, J = 5.0 Hz), 7.12 (1H, d, J = 9.9 Hz), 7.44 (1H, d, J = 9.3 Hz), 7.67 (1H, d, J = 7.5 Hz), 7.81 (1H, s), 8.07 (1H, s), 8.37 (1H, s). ¹³C NMR (101 MHz, DMSO- d_6) δ 7.8, 7.9, 8.0, 64.6, 97.5, 100.1, 114.8, 116.5, 121.9, 122.4 (q, J = 269.7 Hz), 123.1, 127.1, 129.6, 129.8 (q, J = 38.4 Hz), 130.3 (q, J = 4.0 Hz), 137.1, 139.7, 141.9, 145.1, 162.7, 166.9. MS (ESI/APCI) m/z 446.4 [M + H]⁺. Anal. Calcd. for C₂₂H₁₈F₃N₃O₂S: C, 59.32; H, 4.07; N, 9.43. Found: C, 59.46; H, 4.20; N, 9.35.

3-[(4-Chlorobenzyl)oxy]-1-(2-cyclopropyl-3-methylimidazo[1,2-*a***]pyridin-6-yl)pyridin-2(1***H***)one (11a). The title compound was prepared in 15% yield using 8** and **9a** in an analogous manner to **10a**. White solid. 180 °C (decomposition). ¹H NMR (400 MHz, CDCl₃) δ 0.94–1.11 (4H, m), 1.94–2.04 (1H, m), 2.48 (3H, s), 5.13 (2H, s), 6.15 (1H, t, *J* = 7.2 Hz), 6.73 (1H, d, *J* = 7.3 Hz), 7.03 (1H, d, *J* = 6.8 Hz), 7.08 (1H, d, *J* = 9.4 Hz), 7.31–7.44 (4H, m), 7.56 (1H, d, *J* = 9.4 Hz), 7.99 (1H, s). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 7.8, 8.0, 8.1, 69.0, 104.2, 115.1, 116.0, 116.7, 122.0, 122.9, 127.4, 128.4, 129.6, 131.0, 132.5, 135.5, 141.9, 145.2, 148.1, 157.3. MS (ESI/APCI) *m/z* 406.1 [M + H]⁺. Anal. Calcd. for C₂₃H₂₀ClN₃O₂·0.5H₂O: C, 66.58; H, 5.10; N, 10.13. Found: C, 66.30; H, 5.22; N, 10.21.

1-(2-Cyclopropyl-3-methylimidazo[1,2-*a*]pyridin-6-yl)-3-[4-(trifluoromethoxy)phenoxy]pyrid in-2(1*H*)-one (11b). The title compound was prepared in 13% yield using 9a and 14 in an analogous manner to 10a. Pale yellow crystals; mp 188–190 °C (EtOAc–hexane). ¹H NMR (400 MHz, DMSO- d_6) δ 0.83–0.96 (4H, m), 2.03–2.14 (1H, m), 6.39 (1H, t, J = 7.1 Hz), 7.09 (2H, d, J = 9.0 Hz), 7.16–7.24 (1H, m), 7.34 (2H, d, J = 8.7 Hz), 7.46 (2H, t, J = 9.5 Hz), 7.70 (1H, d, J = 5.5 Hz), 8.49 (1H, s). ¹³C NMR (101 MHz, DMSO- d_6) δ 7.8, 7.9, 8.0, 104.2, 115.0, 116.7, 117.7, 120.1 (q, J = 256.5 Hz), 122.0, 122.5, 122.7, 127.0, 128.2, 136.2, 141.9, 143.1 (q, J = 2.0 Hz), 144.1, 145.3, 155.6, 157.3. MS (ESI/APCI) m/z 442.3 [M + H]⁺. Anal. Calcd. for C₂₃H₁₈F₃N₃O₃: C, 62.58; H, 4.11; N, 9.52. Found: C, 62.43; H, 4.30; N, 9.35.

2-Chloro-3-[4-(trifluoromethoxy)phenoxy]pyridine (13). To a solution of **12** (2.00 g, 8.35 mmol) and 4-(trifluoromethoxy)phenol (1.19 mL, 9.19 mmol) in CH₃CN (50 mL) was added Cu(OAc)₂ (3.03 g, 16.7 mmol), MS3A (2.00 g) and pyridine (3.38 mL, 41.8 mmol) at rt, and the mixture was vigorously stirred at rt for 10 days. The insoluble material was removed by filtration, and the filtrate was concentrate in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 100/0 to 0/100) to give the title compound (1.15 g, 47%) as an orange oil. ¹H NMR (400 MHz, DMSO-*d*₆) δ 6.82 (1H, d, *J* = 8.9 Hz), 7.16 (3H, d, *J* = 9.0 Hz), 7.42 (2H, d, *J* = 8.8 Hz), 7.46–7.54 (1H, m), 7.65 (1H, dd, *J* = 8.0, 1.3 Hz), 8.29 (1H, dd, *J* = 4.5, 1.3 Hz). MS (ESI/APCI) *m*/*z* 289.9 [M + H]⁺.

3-[4-(Trifluoromethoxy)phenoxy]pyridin-2(1*H***)-one (14). A mixture of 13 (1.02 g, 3.52 mmol), KO'Bu (1.19 g, 10.1 mmol), water (0.19 mL, 10.1 mmol) and ^tBuOH (15 mL) was heated at 150 °C for 1 h under microwave irradiation. The mixture was poured into water, and extracted with EtOAc. The organic layer was separated, washed with water and brine successively, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 100/0 to 75/25) to give the title compound (0.702 g, 73%) as white crystals. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 6.21 (1H, d,** *J* **= 6.8 Hz), 6.97 (2H, d,** *J* **= 9.0 Hz), 7.26–7.36 (4H, m), 12.02 (1H, br s). MS (ESI/APCI)** *m/z* **272.9 [M + H]⁺.**

5-Hydroxy-2-(tetrahydro-2H-pyran-2-yl)pyridazin-3(2H)-one (15). To a stirred solution of 4,5-dichloropyridazin-3(2H)-one (2.0 g, 12.1 mmol) in THF (12 mL) was added 3,4-dihydro-2*H*-pyran (1.4 mL, 15.4 mmol) and *p*-toluenesulfonic acid (185 mg, 0.97 mmol), and the reaction mixture was heated under reflux for 16 h. Additional 3,4-dihydro-2H-pyran (1.4 mL, 15.4 mmol) was added to the reaction mixture, and the reaction mixture was heated under reflux for further 24 h. The mixture was then cooled to rt, concentrated under reduced pressure, and poured into sat. NaHCO₃ solution (100 mL). The mixture was extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄, concentrated, and purified by column chromatography (silica gel, hexane/EtOAc = 90/10) to give 4,5-dichloro-2-(tetrahydro-2H-pyran-2-yl)pyridazin-3(2H)-one (2.3 g, 76%) as an off-white solid. ¹H NMR (400 MHz, DMSO-d₆) δ 1.43–1.52 (2H, m), 1.65–1.70 (2H, m), 1.92–1.95 (1H, m), 2.01-2.05 (1H, m), 3.58-3.64 (1H, m), 3.94-3.97 (1H, m), 5.82 (1H, dd, J = 10.3, 1.8 Hz), 8.23(1H, s). MS (ESI/APCI) m/z 249.0 [M + H]⁺.

To a stirred solution of 4,5-dichloro-2-(tetrahydro-2H-pyran-2-yl)pyridazin-3(2H)-one (2.3 g, 9.27 mmol) in MeOH (26 mL) was added KOH (519 mg, 9.27 mmol) at 0 °C. The reaction mixture was heated at 50 °C for 30 min and then stirred at rt for 19 h. The mixture was concentrated, diluted with water (50 mL), and extracted with EtOAc. The organic layer was washed with brine, dried with 10% over Na_2SO_4 , concentrated, and triturated ether-hexane to give 4-chloro-5-methoxy-2-(tetrahydro-2H-pyran-2-yl)pyridazin-3(2H)-one (2.1 g, 92%) as a light yellow solid. ¹H NMR (400 MHz, DMSO-d₆) δ 1.50–1.52 (2H, m), 1.63–1.66 (2H, m), 1.93–2.05 (2H, m), 3.59–3.60 (1H, m), 3.93–3.96 (1H, m), 4.09 (3H, s), 5.87 (1H, dd, J = 10.8, 2.0 Hz), 8.29 (1H, s). MS (ESI/APCI) m/z 245.0 [M + H]⁺.

To a stirred suspension of 4-chloro-5-methoxy-2-(tetrahydro-2*H*-pyran-2-yl)pyridazin-3(2*H*)-one (2.1 g, 8.6 mmol) in water (20 mL) was added KOH (578 mg, 10.3 mmol) at rt and the reaction mixture was heated under reflux for 3 h. The mixture was cooled to rt and acidified with 1 N HCl solution to pH = 5. The mixture was extracted with EtOAc, and the organic layer was washed with water and brine, dried over Na₂SO₄, concentrated, and triturated with ether to give 4-chloro-5-hydroxy-2-(tetrahydro-2*H*-pyran-2-yl)pyridazin-3(2*H*)-one (1.9 g, 96%) as an off-white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.44–1.49 (2H, m), 1.59–1.70 (2H, m), 1.90–2.09 (2H, m), 3.53–3.62 (1H, m), 3.91–3.94 (1H, m), 5.82 (1H, d, *J* = 10.2 Hz), 7.78 (1H, s). MS (ESI/APCI) *m*/z 231.0 [M + H]⁺.

To a stirred solution of 4-chloro-5-hydroxy-2-(tetrahydro-2*H*-pyran-2-yl)pyridazin-3(2*H*)-one (1.0 g, 4.34 mmol) in MeOH (20 mL) and Et₃N (606 μ L, 4.34 mmol) was added Pd-C (10%, 25 mg), and the mixture was stirred under hydrogen atmosphere at rt for 16 h. The insoluble material was filtered through the Celite[®] pad, and the filtrate was concentrated and purified by column chromatography (silica gel, DCM/MeOH = 96/4) to give the title compound (600 mg, 70%) as an off-white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.44–1.49 (2H, m), 1.54–1.57 (1H, m), 1.61–1.69 (1H, m), 1.90–1.93 (1H, m), 1.99–2.08 (1H, m), 3.51–3.57 (1H, m), 3.90–3.94 (1H, m), 5.81 (1H, dd, *J* = 9.6, 1.8 Hz), 5.94 (1H, d, *J* = 2.5 Hz), 7.68 (1H, d, *J* = 2.5 Hz), 11.57 (1H, br s). MS (ESI/APCI) *m/z* 197.2 [M + H]⁺.

5-(4-Chlorobenzyloxy)-2-(tetrahydro-pyran-2-yl)-2*H***-pyridazin-3-one (16). To a stirred solution of 15** (200 mg, 1.02 mmol) and 4-chlorobenzyl bromide (209 mg, 1.02 mmol) in MeCN (8 mL) and DMF (1 mL) was added K₂CO₃ (282 mg, 2.04 mmol), and the resulting mixture was stirred at rt for 16 h. The reaction mixture was then concentrated, diluted with water (30 mL), and extracted with EtOAc (75 mL) three times. The organic layers were washed with water (50 mL) and brine (50 mL) successively, dried over Na₂SO₄, and concentrated to give the title compound (210 mg, 64%) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.44–1.49 (2H, m), 1.56–1.59 (1H, m), 1.62–1.66 (1H, m), 1.90–1.93 (1H, m), 2.00–2.10 (1H, m), 3.52–3.59 (1H, m), 3.91–3.94 (1H, m), 5.14 (2H, s), 5.81 (1H, dd, *J* = 10.5, 2.0 Hz), 6.38 (1H, d, *J* = 2.7 Hz), 7.48 (4H, s), 7.83

(1H, d, J = 2.7 Hz). MS (ESI/APCI) m/z 321.2 $[M + H]^+$.

5-(4-Chlorobenzyloxy)-2H-pyridazin-3-one (17). To a stirred suspension of **16** (210 mg, 0.65 mmol) in MeOH (5 mL) was added conc. HCl (0.5 mL) at rt, and then the reaction mixture was heated at reflux for 3 h. The mixture was cooled to rt, concentrated, and neutralized with sat. NaHCO₃ (20 mL). The resulting precipitate was collected by filtration, washed with water, and dried to give the title compound (140 mg, 91%) as an off-white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 5.12 (2H, s), 6.27 (1H, s), 7.48 (4H, s), 7.72 (1H, d, *J* = 2.5 Hz), 12.6 (1H, br s). MS (ESI/APCI) *m/z* 237.2 [M + H]⁺.

5-[(4-Chlorobenzyl)oxy]-2-(2-cyclopropyl-3-methylimidazo[1,2-a]pyridin-6-yl)pyridazin-3(2

H)-one (18). The title compound was prepared in 70% yield using 9a and 17 in an analogous manner to 10g. White solid; mp 190–192 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.88–0.92 (4H, m), 2.06–2.09 (1H, m), 2.47 (3H, s), 5.23 (2H, s), 6.54 (1H, d, *J* = 2.6 Hz), 7.23 (1H, dd, *J* = 9.3, 1.7 Hz), 7.46 (1H, d, *J* = 9.4 Hz), 7.50–7.55 (4H, m), 8.01 (1H, d, *J* = 2.7 Hz), 8.46 (1H, s). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 7.7, 7.9, 8.0, 69.5, 104.7, 114.8, 116.5, 121.3, 121.8, 127.9, 128.6, 130.0, 133.1, 133.6, 134.0, 141.8, 145.2, 159.0, 160.7. MS (ESI/APCI) *m*/*z* 407.2 [M + H]⁺. Anal. Calcd. for C₂₂H₁₉ClN₄O₂: C, 64.94; H, 4.71; N, 13.77. Found: C, 64.88; H, 4.82; N, 13.55.

6-[(4-Chlorobenzyl)oxy]pyrimidin-4(3*H***)-one (20).** To a stirred solution of **19** (2.5 g, 22.3 mmol) in THF (25 mL) was added Ag₂CO₃ (15.33 g, 55.75 mmol) and 4-chlorobenzyl bromide (4.58 g, 22.3 mmol). The resultant mixture was heated at reflux for 2 h. The reaction mixture was then cooled to rt, filtered through Celite[®], and concentrated. The crude material was purified by column chromatography (silica gel, DCM/MeOH = 95/5 to 90/10) to afford the title compound (500 mg, 10%) as a white solid; mp 217–219 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 5.23 (2H, s), 5.60 (1H, s), 7.44 (4H, m), 8.11 (1H, s), 12.39 (1H, s). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 67.4, 91.7, 128.4, 129.6, 132.6, 135.3, 150.4, 163.1, 169.2. MS (ESI/APCI) *m/z* 237.2 [M + H]⁺. Anal. Calcd. for C₁₁H₉ClN₂O₂·0.6H₂O: C, 55.49; H, 3.88; N, 11.77. Found: C, 55.53; H, 3.89; N, 11.70.

(2-Cyclopropyl-3-methylimidazo[1,2-*a*]pyridin-6-yl)boronic acid (21). To a solution of 9a (10 g, 33.5 mmol) in THF (335 mL) was added *n*-BuLi (1.6 M hexane solution, 62.9 mL, 101 mmol) at -78 °C. The mixture was stirred at the same temperature under N₂ atmosphere for 30 min. Boric acid triisopropyl ester (11.5 mL, 50.3 mmol) was added, and the mixture was stirred at -78 °C for 30 min and then at rt for 3 h. The mixture was neutralized with 6 N HCl solution and then concentrated in vacuo. The residue was dissolved with MeOH (30 mL) and then 3 N HCl solution (30 mL) was added to the mixture. The mixture was stirred at 60 °C overnight. The mixture was neutralized with 8 N NaOH solution at 0 °C and MeOH was evaporated. The mixture was basified with 8 N NaOH solution and washed with ether. The aqueous layer was neutralized with 6 N HCl solution 4 0 °C. The precipitate was collected, and washed with water and ether to give the title compound (6.12 g, 84%) as a brown solid; mp 215 °C (decomposition). ¹H NMR (300 MHz,

CD₃OD) δ 0.93–1.00 (2H, m), 1.19 (2H, dd, *J* = 8.9, 2.1 Hz), 2.11–2.24 (1H, m), 2.61 (3H, s), 7.54 (1H, s), 7.87–8.01 (1H, m), 8.23 (1H,s). MS (ESI/APCI) *m/z* 217.3 [M + H]⁺.

6-[(4-Chlorobenzyl)oxy]-3-(2-cyclopropyl-3-methylimidazo[1,2-*a***]pyridin-6-yl)pyrimidin-4(3** *H***)-one (22). To a mixture of 20 (150 mg, 0.63 mmol) and 21 (275 mg, 1.26 mmol) in a mixture of DCM (15 mL) and MeOH (15 mL) were added Cu(OAc)₂ (346 mg, 1.89 mmol) and pyridine (0.5 mL, 6.3 mmol). The resulting reaction mixture was stirred at rt for 16 h. The insoluble material was then filtered through Celite[®] and the filtrate was poured into 1 N HCl solution. The mixture was extracted with DCM (100 mL) twice, and the combined DCM layers were washed with sat. NaHCO₃ solution (50 mL) and brine (50 mL) successively, dried over Na₂SO₄, and concentrated. The resulting residue was purified by preparative HPLC to afford the title compound (15 mg, 6%) as an off-white solid; mp 225–226 °C. ¹H NMR (400 MHz, CD₃OD) \delta 0.95–1.02 (4H, m), 2.05 (1H, m), 2.52 (3H, s), 5.37 (2H, s), 5.88 (1H, s), 7.24 (1H, dd,** *J* **= 9.5, 1.8 Hz), 7.38–7.49 (5H, m), 8.42 (2H, d,** *J* **= 6.2 Hz). ¹³C NMR (75 MHz, DMSO-***d***₆) \delta 7.8, 8.00, 8.04, 67.8, 91.0, 114.9, 116.6, 122.5, 123.0, 123.7, 128.5, 129.7, 132.7, 135.2, 142.1, 145.3, 152.4, 161.9, 168.6. MS (ESI/APCI)** *m***/***z* **407.0 [M + H]⁺. Anal. Calcd. for C₂₂H₁₉ClN₄O₂: C, 64.94; H, 4.71; N, 13.77. Found: C, 64.71; H, 4.74; N, 13.62.**

2-Chloro-4-[(4-chlorobenzyl)oxy]pyrimidine (24). To a stirred solution of **23** (10.4 g, 70.1 mmol) and (4-chlorophenyl)methanol (10 g, 70.0 mmol) in DMF (50 mL) was added K₂CO₃ (14.5 g, 105.2 mmol), and the resulting mixture was stirred at rt for 16 h. The mixture was then diluted with water (100 mL), and the resulting precipitate was collected by filtration and dried to give the title compound (4.8 g, 27%) as an off-white solid; mp 112–120 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 5.40 (2H, s), 7.06 (1H, d, *J* = 5.6 Hz), 7.46–7.52 (4H, m), 8.49 (1H, d, *J* = 5.7 Hz). MS (ESI/APCI) *m/z* 255.2 [M + H]⁺.

4-[(4-Chlorobenzyl)oxy]pyrimidin-2-ol (25). To a stirred mixture of **24** (2.8 g, 11.0 mmol) in dioxane and water (1:4, 30 mL) was added NaOH (440 mg, 11 mmol), and the mixture was heated at reflux for 3 h. The reaction mixture was then cooled to 0 °C, and the precipitate was collected by filtration, washed with cold water and dried under vacuum to give the title compound (130 mg, 5%) as an off-white solid; mp 206–208 °C.¹H NMR (400 MHz, DMSO-*d*₆) δ 5.29 (2H, s), 5.92 (1H, d, *J* = 7.0 Hz), 7.45 (4H, s), 7.72 (1H, d, *J* = 6.8 Hz), 11.36 (s, 1H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 66.3, 93.5, 128.4, 130.0, 132.6, 135.2, 146.1, 156.1, 171.1. MS (ESI/APCI) *m/z* 237.2 [M + H]⁺. Anal. Calcd. for C₁₁H₉ClN₂O₂·0.14H₂O: C, 55.24; H, 3.91; N, 11.71. Found: C, 55.23; H, 3.84; N, 11.92.

4-[(4-Chlorobenzyl)oxy]-1-(2-cyclopropyl-3-methylimidazo[1,2-*a***]pyridin-6-yl)pyrimidin-2(1** *H***)-one (26). The title compound was prepared in 18% using 9a and 25 in an analogous manner to 10g. Off-white solid; mp 205–207 °C. ¹H NMR (400 MHz, DMSO-d_6) \delta 0.85–0.92 (4H, m), 2.05–2.09 (1H, m), 2.47 (3H, s), 5.40 (2H, s), 6.21 (1H, d,** *J* **= 7.2 Hz), 7.19 (1H, dd,** *J* **= 9.5, 1.6 Hz),**

7.44–7.52 (5H, m), 8.11 (1H, d, J = 7.2 Hz), 8.47 (1H, s). ¹³C NMR (75 MHz, DMSO- d_6) δ 7.8, 8.0, 8.1, 66.9, 94.7, 115.0, 116.6, 122.1, 122.8, 127.1, 128.5, 130.1, 132.8, 134.9, 141.9, 145.2, 150.1, 154.9, 171.1. MS (ESI/APCI) m/z 407.2 [M + H]⁺. Anal. Calcd. for $C_{22}H_{19}CIN_4O_2 \cdot 0.18H_2O$: C, 64.43; H, 4.76; N, 13.66. Found: C, 64.42; H, 4.70; N, 13.57.

4-Bromo-3-methyl-pyridine 1-oxide (28). To a stirred solution of **27** (3.00 g, 19.4 mmol) in acetic acid (36 mL) was added dropwise acetyl bromide (23 mL) at 0 °C. After complete addition, the reaction mixture was heated at 80 °C for 3 h. The reaction mixture was cooled to rt and poured over crushed ice (200 g). The resulting mixture was neutralized with 1 N NaOH solution, and extracted with DCM (100 mL) twice. The organic layer was washed with water (100 mL) and brine (100 mL), dried over Na₂SO₄, and concentrated to give the title compound (2.2 g, 60%) as a light yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.24 (3H, s), 7.62 (1H, d, *J* = 6.8 Hz), 7.97 (1H, dd, *J* = 6.8, 1.7 Hz), 8.28 (1H, s). MS (ESI/APCI) *m/z* 188.1 [M + H]⁺.

4-[(4-Chlorobenzyl)oxy]-3-methylpyridine 1-oxide (29). The title compound was prepared in 28% yield using **28** and 4-chlorobenzyl alcohol in an analogous manner to **43b**. Off-white solid. ¹H NMR (400 MHz, DMSO- d_6) δ 2.10 (3H, s), 5.19 (2H, s), 7.04 (1H, d, J = 7.1 Hz), 7.47 (4H, s), 8.01 (1H, d, J = 7.0 Hz), 8.07 (1H, s). MS (ESI/APCI) m/z 250.2 [M + H]⁺.

4-[(4-Chlorobenzyl)oxy]-5-methylpyridin-2(1*H***)-one (30). To 29 (500 mg, 1.9 mmol) was added acetic anhydride (5 mL), and the solution was heated at reflux for 4 h. The reaction mixture was then cooled to rt, and concentrated. The residue was diluted with a mixture of MeOH (20 mL) and 1 N NaOH solution (10 mL), and the resulting solution was heated at reflux for 1 h. The mixture was cooled to rt, and concentrated. The residue was diluted with water (30 mL), and extracted with DCM (75 mL) three times. The combined DCM layers were concentrated, and purified by preparative HPLC to afford the title compound (20 mg, 4%) as a white solid. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 1.89 (3H, s), 5.08 (2H, s), 5.76 (1H, s), 7.09 (1H, s), 7.47 (4H, s), 10.95 (1H, s). MS (ESI/APCI)** *m/z* **250.2 [M + H]⁺.**

4-[(4-Chlorobenzyl)oxy]-1-(2-cyclopropyl-3-methylimidazo[1,2-*a***]pyridin-6-yl)-5-methylpyrid in-2(1***H***)-one (31). The title compound was prepared in 42% yield using 9a** and **30** in an analogous manner to **10g**. Off-white solid; mp 238–239 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.88–0.92 (4H, m), 1.97 (3H, s), 2.06 (1H, m), 2.47 (3H, s), 5.19 (2H, s), 5.98 (1H, s), 7.10 (1H, dd, *J* = 9.4, 1.9 Hz), 7.42 (1H, d, *J* = 9.4 Hz), 7.50 (4H, s), 7.54 (1H, s), 8.35 (1H, d, *J* = 1.3 Hz). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 7.8, 8.0, 8.1, 112.2, 68.7, 97.2, 108.3, 114.8, 116.5, 121.9, 123.3, 127.3, 128.6, 129.3, 132.6, 135.1, 136.9, 141.9, 145.0, 162.5, 166.1. MS (ESI/APCI) *m/z* 420.2 [M + H]⁺. Purity 99.8% (HPLC).

1-(4-Chlorophenyl)-3-(2,4-dichloropyridin-3-yl)propan-1-one (33). To a solution of **32** (1.12 g, 4.09 mmol) in DMF (40 mL) were added 1-(4-chlorophenyl)prop-2-en-1-ol (1.03 g, 6.13 mmol), NaHCO₃ (0.687 g, 8.18 mmol), and Pd(OAc)₂ (0.092 g, 0.41 mmol), and the mixture was heated at

120 °C for 15 h. The mixture was poured into water, and extracted with EtOAc. The organic layer was separated, washed with water and brine, dried over MgSO₄, and concentrated. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 100/0 to 85/15) to give the title compound (0.772 g, 60%) as a light brown amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ 3.20–3.26 (2H, m), 3.32–3.39 (2H, m), 7.29 (1H, d, *J* = 5.1 Hz), 7.45 (2H, d, *J* = 8.5 Hz), 7.92 (2H, d, *J* = 8.5 Hz), 8.19 (1H, d, *J* = 5.1 Hz).

1-(4-Chlorophenyl)-3-(2,4-dichloropyridin-3-yl)propan-1-ol (34). To a solution of **33** (100 mg, 0.32 mmol) in THF (3 mL) was added LiBH₄ (6.92 mg, 0.32 mmol) at rt. After 1 h, the mixture was quenched with sat. NaHCO₃ solution, and extracted with EtOAc. The organic layer was separated, washed with sat. NaHCO₃ and brine, dried over MgSO₄, and concentrated. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 100/0 to 70/30) to give the title compound (83 mg, 82%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 1.93–2.10 (3H, m), 2.85–2.98 (1H, m), 3.01–3.14 (1H, m), 4.81 (1H, t, *J* = 7.8 Hz), 7.24 (1H, d, *J* = 5.1 Hz), 7.34 (4H, s), 8.13 (1H, d, *J* = 5.1 Hz).

5-Chloro-2-(4-chlorophenyl)-3,4-dihydro-2H-pyrano[3,2-*c***]pyridine (35).** To a solution of **34** (678 mg, 2.14 mmol) in DMF (5 mL) was added NaH (60% oil dispersion, 86 mg, 2.14 mmol) at 0 °C, and the mixture was allowed to warm to rt with vigorous stirring. After 17 h, the mixture was quenched with water and extracted with EtOAc. The organic layer was separated, washed with 0.1 N NaOH solution and brine, dried over MgSO₄, and concentrated. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 100/0 to 70/30) to give the title compound (386 mg, 64%) as a pale yellow amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ 1.95–2.13 (1H, m), 2.26–2.37 (1H, m), 2.79–3.02 (2H, m), 5.21 (1H, d, *J* = 9.9 Hz), 6.99 (1H, d, *J* = 5.4 Hz), 7.29–7.47 (4H, m), 7.97–8.11 (1H, m).

2-(4-Chlorophenyl)-2,3,4,6-tetrahydro-5*H***-pyrano[3,2-***c***]pyridin-5-one (36). The mixture of 35 (384 mg, 1.37 mmol), ammonium acetate (528 mg, 6.85 mmol) and AcOH (5 mL) was heated at 200 °C for 1 h under microwave irradiation. The solvent was evaporated and the residue was dissolved to EtOAc. The mixture was poured into sat. NaHCO₃ solution, and extracted with EtOAc. The organic layer was separated, washed with sat. NaHCO₃ solution and brine, dried over MgSO₄, and concentrated. The residue was purified by column chromatography (silica gel, EtOAc/MeOH = 100/0 to 90/20) to give the title compound (112 mg, 31%) as a pale orange amorphous solid. ¹H NMR (400 MHz, CDCl₃) \delta 1.86–2.00 (1H, m), 2.25 (1H, dt,** *J* **= 13.9, 2.7 Hz), 2.48–2.80 (2H, m), 4.99–5.06 (1H, m), 6.01 (1H, d,** *J* **= 7.3 Hz), 7.15–7.19 (1H, m), 7.27 (1H, s), 7.29–7.35 (2H, m), 7.35–7.40 (2H, m). MS (ESI/APCI)** *m/z* **279.8 [M + H]⁺.**

2-(4-Chlorophenyl)-6-(2-cyclopropyl-3-methylimidazo[1,2-*a***]pyridin-6-yl)-2,3,4,6-tetrahydro-5***H***-pyrano[3,2-***c***]pyridin-5-one (37). A mixture of 36 (30 mg, 0.11 mmol), 9a (68.3 mg, 0.23 mmol), DMEDA (0.018 mL, 0.17 mmol), CuI (24.0 mg, 0.13 mmol), K₂CO₃ (47.5 mg, 0.34 mmol)** and DMSO (2 mL) was heated at 150 °C for 1 h under microwave irradiation. The reaction mixture was filtered through NH silica gel (EtOAc/MeOH = 90/10). The filtrate was poured into 1 N NaOH solution, and extracted with EtOAc. The organic layer was separated, washed with 0.1 N NaOH solution and brine, dried over MgSO₄, and concentrated. The residue was purified by column chromatography (NH silica gel, EtOAc/MeOH = 100/0 to 90/10) to give the title compound (28.4 mg, 57%) as white crystals. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.81–0.97 (4H, m), 1.88–2.02 (1H, m), 2.02–2.15 (1H, m), 2.22 (1H, d, *J* = 14.6 Hz), 2.48 (3H, s), 2.53–2.60 (2H, m), 5.23 (1H, d, *J* = 8.3 Hz), 6.12 (1H, d, *J* = 7.5 Hz), 7.13 (1H, d, *J* = 9.4 Hz), 7.40–7.54 (5H, m), 7.59 (1H, d, *J* = 7.7 Hz), 8.37 (1H, s). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 7.8, 8.0, 8.1, 19.2, 27.9, 76.7, 99.9, 106.7, 114.9, 116.5, 122.0, 123.3, 127.5, 128.0, 128.5, 132.5, 137.2, 139.4, 141.9, 145.1, 161.8, 162.1. MS (ESI/APCI) *m*/*z* 432.4 [M + H]⁺. Anal. Calcd. for C₂₅H₂₂ClN₃O₂·0.55H₂O: C, 67.91; H, 5.25; N, 9.47. Found: C, 67.96; H, 5.27; N, 9.51.

3-[5-(4-Chlorophenyl)furan-2-yl]prop-2-enoyl azide (39). To a solution of **38** (1 g, 4.02 mmol) and triethylamine (0.729 mL, 5.23 mmol) in acetone (20 mL) at 0 °C was added dropwise isobutyl carbonochloridate (0.684 mL, 5.23 mmol). After stirring for 1 h at 0 °C, sodium azide (0.340 g, 5.23 mmol) in water (4 mL) was added, and the resultant mixture was stirred for further 30 min at 0 °C and at rt for 30 min. Water (40 mL) was added, and the resulting precipitate was collected by filtration, washed with water and dried to give the title compound (1.10 g, quant.) as a yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 6.37 (1H, d, *J* = 15.5 Hz), 6.71–6.82 (2H, m), 7.35–7.42 (1H, m), 7.49 (1H, d, *J* = 15.5 Hz), 7.60–7.71 (2H, m). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 109.9, 115.5, 120.8, 126.2, 127.9, 129.1, 132.2, 133.4, 149.8, 155.3, 171.1.

2-(4-Chlorophenyl)furo[3,2-*c***]pyridin-4(5***H***)-one (40). To a stirred mixture of diphenylether (40 mL) and tributylamine (10.0 mL, 41.7 mmol) at 200 °C was added dropwise a solution of 39** (3.83 g, 14.0 mmol) in diphenylether (60 mL) and THF (20 mL). After addition, the resulting brown mixture was stirred for 30 min before cooling to rt. Hexane (200 mL) was added, and the resulting suspension was filtered. The precipitate was washed with EtOH, filtered and dried to give the title compound (340 mg, 9.9%) as a light brown amorphous solid. ¹H NMR (300 MHz, DMSO-*d*₆) δ 6.70 (1H, d, *J* = 7.9 Hz), 7.34 (1H, d, *J* = 7.2 Hz), 7.49–7.59 (3H, m), 7.87 (2H, d, *J* = 8.7 Hz), 11.51 (1H, br s). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 94.4, 103.0, 117.3, 125.8, 128.0, 129.0, 132.1, 133.0, 152.2, 159.1, 159.8. MS (ESI/APCI) *m/z* = 246.0 [M + H]⁺.

2-(4-Chlorophenyl)-5-(2-cyclopropyl-3-methylimidazo[1,2-*a***]pyridin-6-yl)furo[3,2-***c***]pyridin-4 (5***H***)-one (41). A mixture of 40 (100 mg, 0.41 mmol), 21 (106 mmol, 0.49 mmol), Cu(OAc)₂ (4.99 mg, 0.04 mmol), pyridine (66.0 \muL, 0.81 mmol), MS4A (48.9 mg), and DMF (5 mL) was stirred at rt for 4 h and at 50 °C overnight. After filtration of the reaction mixture through Celite[®], the filtrate was poured into 1 N HCl at rt and extracted with EtOAc. the organic layer was separated, washed with sat. NaHCO₃ solution and brine successively, dried over MgSO₄ and concentrated in vacuo.**

The residue was purified by column chromatography (silica gel, hexane/EtOAc = 20/80 to 0/100). The solid was collected and washed with EtOH to give the title compound (10 mg, 5%) as an off-white solid; mp 278–279 °C. ¹H NMR (300 MHz, DMSO- d_6) δ 0.84–0.99 (4H, m), 2.04–2.14 (1H, m), 6.94 (1H, dd, *J* = 7.6, 0.8 Hz), 7.21 (1H, dd, *J* = 9.4, 1.9 Hz), 7.49 (1H, d, *J* = 9.4 Hz), 7.53–7.59 (2H, m), 7.66 (1H, s), 7.75 (1H, d, *J* = 7.6 Hz), 7.88–7.96 (2H, m), 8.48 (1H, d, *J* = 1.5 Hz). ¹³C NMR (75 MHz, DMSO- d_6) δ 7.8, 8.0, 8.1, 95.3, 103.4, 115.0, 116.6, 117.1, 122.4, 123.3, 125.9, 127.3, 128.0, 129.1, 133.0, 137.1, 142.0, 145.2, 153.2, 158.4, 159.2. MS (ESI/APCI) *m*/*z* = 416.1 [M + H]⁺. Anal. Calcd. for C₂₄H₁₈ClN₃O₂: C, 69.31; H, 4.36; N, 10.10. Found: C, 69.11; H, 4.48; N, 10.09.

4-[(4-Fluorobenzyl)oxy]pyridine 1-oxide (43a). The title compound was prepared in 6% yield using (4-fluorophenyl)methanol in an analogous manner to **43b**. ¹H NMR (300 MHz, DMSO- d_6) δ 5.15 (2H, s), 7.04–7.13 (2H, m), 7.19–7.30 (2H, m), 7.46–7.57 (2H, m), 8.07–8.14 (2H, m). MS (ESI/APCI) m/z 220.1 [M + H]⁺.

4-[(4-Chlorobenzyl)oxy]pyridine 1-oxide (43b). A solution of (4-chloropheny)methanol (49.5 g, 347 mmol) in THF (200 mL) was added dropwise to a suspension of NaH (60% oil dispersion, 16.7 g, 419 mmol) in THF (200 mL) at 0 °C. After the mixture was stirred at 0 °C for 30 min, **7b** (45.0 g, 347 mmol) was added portionwise to the reaction mixture. After completion of the addition, the mixture was stirred at rt for 5 h. The mixture was quenched with water (400 mL) at 0 °C, and extracted with EtOAc/THF (1:1) four times. The organic layers were combined, passed through NH-silica gel pad (EtOAc/MeOH) and concentrated. The filtrate was concentrated, and the residual solid was washed with IPE and dried to give the title compound (54.3 g, 66%) as a brown solid. ¹H NMR (400 MHz, CDCl₃) δ 5.17 (2H, s), 7.08 (2H, d, *J* = 6.9 Hz), 7.48 (4H, s), 8.10 (2H, d, *J* = 7.0 Hz). MS (ESI/APCI) *m*/*z* 236.0 [M + H]⁺.

4-{[4-(Trifluoromethyl)benzyl]oxy}pyridine 1-oxide (43c). The title compound was prepared in 29% yield using [4-(trifluoromethyl)phenyl]methanol in an analogous manner to **43b**. Yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 5.29 (2H, s), 7.10 (2H, d, *J* = 7.6 Hz), 7.67 (2H, d, *J* = 8.0 Hz), 7.78 (2H, d, *J* = 8.4 Hz), 8.11 (2H, d, *J* = 7.6 Hz). MS (ESI/APCI) *m/z* = 270.2 [M + H]⁺.

4-[(4-Fluorobenzyl)oxy]pyridine-2(1*H***)-one (44a).** The title compound was prepared in 58% yield using **43a** in an analogous manner to **44b**. ¹H NMR (300 MHz, DMSO-*d*₆) δ 5.04 (2H, s), 5.78 (1H, d, *J* = 2.3 Hz), 5.90 (1H, dd, *J* = 7.2, 2.7 Hz), 7.17–7.28 (3H, m), 7.43–7.53 (2H, m), 11.10 (1H, br s). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 68.5, 97.9, 99.1, 115.3 (d, *J* = 21 Hz), 130.2 (d, *J* = 8.3 Hz), 132.2 (d, *J* = 3 Hz), 135.4, 161.9 (d, *J* = 242.3 Hz), 164.0, 167.3. MS (ESI/APCI) *m*/*z* = 220.1 [M + H]⁺.

4-[(4-Chlorobenzyl)oxy]pyridine-2(1*H***)-one (44b).** A mixture of **43b** (54.3 g, 230 mmol), and acetic anhydride (540 mL, 5.71 mol) was stirred at 140 °C for 2 h. After concentration of the mixture, the residue was dissolved in MeOH (300 mL). Water (450 mL) was added to the mixture,

followed by stirring at rt for 1 h. The resulting precipitate was collected by filtration, washed with IPA, and dried to give the title compound (29.3 g, 54%) as a gray solid. ¹H NMR (300 MHz, CDCl₃) δ 4.99 (2H, s), 5.93 (1H, d, *J* = 2.3 Hz), 6.03 (1H, dd, *J* = 7.4, 2.5 Hz), 7.23 (1H, d, *J* = 7.2 Hz), 7.29–7.44 (4H, m). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 68.4, 98.0, 99.1, 128.5, 129.7, 132.7, 135.0, 135.5, 163.9, 167.2. MS (ESI/APCI) *m*/*z* 236.0 [M + H]⁺.

4-{[4-(Trifluoromethyl)benzyl]oxy}pyridin-2(1*H***)-one (44c). The title compound was prepared in 31% yield using 43c in an analogous manner to 44b. Off-white solid. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 5.19 (2H, s), 5.77 (1H, d,** *J* **= 2.4 Hz), 5.93 (1H, dd,** *J* **= 7.2, 2.4 Hz), 7.26 (1H, d,** *J* **= 7.6 Hz), 7.64 (2H, d,** *J* **= 8.0 Hz), 7.77 (2H, d,** *J* **= 8.4 Hz), 11.12 (1H, s). MS (ESI/APCI)** *m***/***z* **270.0 [M + H]⁺.**

1-(2-Cyclopropyl-3-methylimidazo[1,2-*a***]pyridin-6-yl)-4-hydroxypyridin-2(1***H***)-one (45). A mixture of 10c** (2.2 g, 5.92 mmol), 10% Pd-C (0.22 g, 2.07 mmol) and MeOH (40 mL) was stirred under H₂ atmosphere at ambient temperature for 1 h. The catalyst was removed by filtration, and the filtrate was concentrated in vacuo to give the title compound (1.65 g, 99%) as off-white amorphous solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.82–0.98 (4H, m), 2.02–2.12 (1H, m), 2.47 (3H, s), 5.64 (1H, s), 5.97 (1H, d, *J* = 5.6 Hz), 7.10 (1H, d, *J* = 9.3 Hz), 7.41 (1H, d, *J* = 9.4 Hz), 7.57 (1H, d, *J* = 7.5 Hz), 8.33 (1H, s), 11.07 (1H, br s). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 7.8, 8.0, 8.1, 98.1, 101.2, 114.7, 116.5, 121.8, 123.5, 127.6, 139.6, 141.9, 144.9, 163.1, 168.7. MS (ESI/APCI) *m/z* 345.0 [M + H]⁺.

4-Bromo-1-(2-cyclopropyl-3-methylimidazo[1,2-*a***]pyridin-6-yl)pyridin-2(1***H***)-one (46). To a solution of 45** (1.95 g, 6.93 mmol) in DMF (20 mL) was added phosphorus (V) tribromide oxide (1.77 mL, 17.4 mmol) at rt, and the mixture was heated at 110 °C for 1 h. The mixture was poured into sat. NaHCO₃ solution, and extracted with EtOAc. The organic layer was separated, washed with water and brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography (NH silica gel, hexane/EtOAc = 90/10 to 0/100) to give the title compound (1.70 g, 71%) as an off-white solid; mp 198–200 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.83–0.98 (4H, m), 2.04–2.12 (1H, m), 2.47 (3H, s), 6.60 (1H, d, *J* = 7.3 Hz), 6.88 (1H, s), 7.16 (1H, d, *J* = 9.5 Hz), 7.46 (1H, d, *J* = 9.3 Hz), 7.74 (1H, d, *J* = 7.3 Hz), 8.47 (1H, s). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 7.8, 7.99, 8.04, 109.3, 115.0, 116.7, 121.9, 122.1, 122.7, 126.7, 136.0, 140.3, 142.0, 145.3, 160.4. MS (ESI/APCI) *m/z* 345.0 [M + H]⁺.

Experiments concerning Chapter 3

4-[(3-Chlorobenzyl)oxy]pyridine-2(1*H***)-one (44d).** The title compound was prepared in 49% yield using (3-chloropheny)methanol in an analogous manner to **44b**. Off-white solid. ¹H NMR (400 MHz, DMSO- d_6) δ 5.07 (2H, s), 5.76 (1H, d, *J* = 2.4 Hz), 5.92 (1H, dd, *J* = 7.2 2.4 Hz), 7.25 (1H, d, *J* = 7.3 Hz), 7.34–7.45 (3H, m), 7.50 (1H, br s), 11.10 (1H, br s). MS (ESI/APCI) *m*/*z* = 236.0 [M + H]⁺.

6-Bromo-2-cyclopropyl-3-methylimidazo[1,2-*b*]**pyridazine** (47a). To a solution of 49a (1.0 g, 5.75 mmol) in DMA (10 mL) was added 50 (1.40 mL, 11.5 mmol) and NaHCO₃ (0.97 g, 11.5 mmol) at rt, and the mixture was stirred at 80 °C for 16 h. The mixture was poured into water and extracted with EtOAc. The organic layer was separated, washed with water and brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 100/0 to 70/30) to give the title compound (1.10 g, 76%) as yellow crystals. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.87–1.01 (4H, m), 2.14 (1H, br s), 2.51–2.53 (3H, s), 7.28 (1H, d, *J* = 9.3 Hz), 7.90 (1H, d, *J* = 9.3 Hz). MS (ESI/APCI) *m/z* = 252.0 [M + H]⁺.

6-Bromo-2-cyclopropyl-3-methylimidazo[1,2-*a*]**pyrazine** (47b). To a solution of 53 (1.24 g, 2.92 mmol) in THF (10 mL) was added TFAA (0.826 mL, 5.84 mmol) at 0 °C, and the mixture was heated at 60 °C for 3 h. The mixture was poured into sat. NaHCO₃ solution at rt and extracted with EtOAc. The organic layer was separated, washed with 1 N NaOH solution and brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 100/0 to 50/50) to give the title compound (0.59 g, 80%) as pale yellow crystals. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.81–1.07 (4H, m), 2.15 (1H, t, *J* = 4.8 Hz), 2.53 (3H, s), 8.61 (1H, s), 8.68 (1H, s). MS (ESI/APCI) *m/z* = 252.2 [M + H]⁺.

6-Bromo-2-cyclopropyl-3-methylimidazo[1,2-*a*]**pyrimidine** (47c). To a solution of 49b (500 mg, 2.87 mmol) in DMF (10 mL) was added **50** (0.70 mL, 5.75 mmol) at rt, and the mixture was stirred at 100 °C for 24 h. The mixture was poured into 1 N NaOH solution and extracted with EtOAc. The organic layer was separated, washed with 1 N NaOH solution and brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography (NH silica gel, hexane/EtOAc = 100/0 to 50/50) to give the title compound (89 mg, 12%) as pale yellow crystals. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.84–1.02 (4H, m), 2.04–2.15 (1H, m), 2.50 (3H, br s), 8.41 (1H, s), 8.98 (1H, s).

4-[(4-Chlorobenzyl)oxy]-1-(2-cyclopropyl-3-methylimidazo[1,2-*b***]pyridazin-6-yl)pyridin-2(1** *H***)-one (48a). The title compound was prepared in 28% yield using 44b and 47a in an analogous manner to 48c. Pale yellow crystals; mp 234–236 °C (EtOAc–hexane). ¹H NMR (400 MHz, DMSO-***d***₆) \delta 0.87–1.08 (4H, m), 2.17 (1H, br s), 2.52 (3H, br s), 5.19 (2H, s), 6.04 (1H, s), 6.23 (1H, d,** *J* **= 7.8 Hz), 7.30 (1H, d,** *J* **= 9.3 Hz), 7.50 (4H, s), 7.82 (1H, d,** *J* **= 7.8 Hz), 8.02 (1H, d,** *J* **=**

9.4 Hz). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 7.6, 8.29, 8.31, 69.0, 97.7, 101.1, 115.6, 120.9, 124.0, 128.6, 129.8, 132.8, 134.7, 136.5, 137.8, 146.2, 148.1, 162.5, 167.5. MS (ESI/APCI) *m/z* = 407.3 [M + H]⁺. Anal. Calcd for C₂₂H₁₉ClN₄O₂: C, 64.94; H, 4.71; N, 13.77. Found: C, 64.86; H, 4.63; N, 13.70.

4-[(4-Chlorobenzyl)oxy]-1-(2-cyclopropyl-3-methylimidazo[1,2-*a***]pyrazin-6-yl)pyridin-2(1***H***)one (48b). The title compound was prepared in 42% yield using 44b and 47b in an analogous manner to 48c. Pale yellow crystals; mp 221–222 °C. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 0.92–1.04 (4H, m), 2.14–2.24 (1H, m), 2.54 (3H, s), 5.18 (2H, s), 6.01 (1H, d,** *J* **= 2.4 Hz), 6.17 (1H, dd,** *J* **= 7.7, 2.6 Hz), 7.50 (4H, s), 7.78 (1H, d,** *J* **= 7.7 Hz), 8.68 (1H, s), 8.83 (1H, s). ¹³C NMR (101 MHz, DMSO-***d***₆) \delta 7.5, 8.1, 8.7, 68.8, 97.7, 100.4, 115.1, 119.4, 128.5, 129.7, 132.8, 134.8, 135.8, 138.0, 138.3, 138.9, 149.2, 162.5, 166.9. MS (ESI/APCI)** *m/z* **= 407.4 [M + H]⁺. Purity 97.8% (HPLC).**

4-[(4-Chlorobenzyl)oxy]-1-(2-cyclopropyl-3-methylimidazo[1,2-*a***]pyrimidin-6-yl)pyridin-2(1** *H***)-one (48c). A mixture of 44b (83 mg, 0.35 mmol), 47c (89 mg, 0.35 mmol), DMEDA (0.075 mL, 0.71 mmol), CuI (66.6 mg, 0.35 mmol), K₂CO₃ (146 mg, 1.06 mmol), and DMSO (3 mL) was heated at 150 °C for 1 h under microwave irradiation. The mixture was poured into 28% NH₃ solution at rt and extracted with EtOAc. The organic layer was separated, washed with 0.1 N NaOH solution and brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography (NH silica gel, hexane/EtOAc = 50/50) to give the title compound (1.1 mg, 0.77 %) as white crystals. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 0.95 (4H, d,** *J* **= 2.0 Hz), 2.06–2.17 (1H, m), 2.45 (3H, s), 5.18 (2H, s), 6.01–6.06 (1H, m), 6.16–6.24 (1H, m), 7.50 (4H, s), 7.68–7.75 (1H, m), 8.34–8.41 (1H, m), 8.87–8.94 (1H, m). MS (ESI/APCI)** *m***/***z* **= 407.4 [M + H]⁺. Purity 99.2% (HPLC).**

N-(5-Bromopyrazin-2-yl)-4-methylbenzenesulfonamide (52). To a solution of 51 (2.0 g, 11.5 mmol) in pyridine (40 mL) was added TsCl (3.29 g, 17.2 mmol) at rt, and the mixture was stirred at rt overnight. The solvent was evaporated, and the residue was poured into sat. NH₄Cl solution, extracted with EtOAc, washed with water and brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 100/0 to 50/50) to give the title compound (1.92 g, 51%) as white crystals. ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.36 (3H, s), 7.40 (2H, d, *J* = 8.2 Hz), 7.82 (2H, d, *J* = 8.3 Hz), 8.18 (1H, s), 8.44 (1H, s), 11.67 (1 H, br s). MS (ESI/APCI) *m/z* = 328.0 [M – H]⁻.

N-[(2*E*)-5-Bromo-1-(1-cyclopropyl-1-oxopropan-2-yl)pyrazin-2(1*H*)-ylidene]-4-methylbenzen esulfonamide (53). To a solution of 52 (1.73 g, 5.27 mmol) in DMF (20 mL) was added NaH (60% oil dispersion, 0.32 g, 7.9 mmol) at 0 °C, and the mixture was stirred at rt for 30 min. To the mixture was added 50 (1.87 g, 10.5 mmol) at rt and the resulting mixture was stirred overnight. The mixture was poured into water and extracted with EtOAc. The organic layer was separated, washed with water and brine, dried over MgSO₄, and concentrated in vacuo. The residue was

purified by column chromatography (silica gel, hexane/EtOAc = 100/0 to 50/50) to give the title compound (1.02 g, 46%) as a white solid. ¹H NMR (400 MHz, DMSO- d_6) δ 0.74–1.00 (4H, m), 1.71 (3H, t, *J* = 7.3 Hz), 2.21–2.29 (1H, m), 2.36 (3H, s), 5.63 (1H, d, *J* = 7.3 Hz), 7.34 (2H, d, *J* = 8.0 Hz), 7.69 (2H, d, *J* = 8.2 Hz), 8.31 (1H, s), 8.76 (1H, s).

4-[(4-Chlorobenzyl)oxy]-1-(2-cyclopropyl-1-methyl-1*H***-benzimidazol-6-yl)pyridin-2(1***H***)-one** (**54a).** To a stirred degassed mixture of **55a** (502 mg, 2.0 mmol), **44a** (470 mg, 2.0 mmol), and K₂CO₃ (552 mg, 4.0 mmol) in dioxane (15 mL) were added CuI (76 mg, 0.4 mmol) and *trans-N,N'*-dimethyl-cyclohexane-1,2-diamine (56 mg, 0.4 mmol). The reaction vessel was sealed and heated at 110 °C for 16 h. The reaction mixture was cooled to rt and concentrated. The resulting residue was diluted with DCM (250 mL), washed with brine (100 mL), dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography (silica gel, DCM/MeOH = 97/3 to 96/4) to give the title compound (150 mg, 18%) as a white solid. ¹H NMR (400 MHz, CD₃OD) δ 1.14–1.20 (4H, m), 2.24 (1H, m), 3.90 (3H, s), 5.16 (2H, s), 6.09 (1H, d, *J* = 2.6 Hz), 6.27 (1H, dd, *J* = 7.6, 2.7 Hz), 7.15 (1H, dd, *J* = 8.5, 2.0 Hz), 7.41–7.50 (5H, m), 7.69 (2H, t, *J* = 8.3 Hz). MS (ESI/APCI) *m*/*z* = 406.0 [M + H]⁺. Anal. Calcd for C₂₃H₂₀N₃O₂Cl: C, 68.06; H, 4.97; N, 10.35. Found: C, 67.96; H, 5.01; N, 10.30.

1-(1,2-Dimethyl-1*H*-benzimidazol-6-yl)-4-[(4-fluorobenzyl)oxy]pyridin-2(1*H*)-one (54b). The title compound was prepared in 25% yield using 44c and 55d in an analogous manner to 54e. White solid; mp 256–258 °C (EtOAc–hexane). ¹H NMR (300 MHz, DMSO- d_6) δ 2.55 (3H, s), 3.73 (3H, s), 5.14 (2H, s), 5.99 (1H, s), 6.09 (1H, d, J = 6.8 Hz), 7.06 (1H, d, J = 8.5 Hz), 7.26 (2H, t, J = 8.7Hz), 7.45–7.64 (5H, m). ¹³C NMR (101 MHz, DMSO- d_6) δ 13.4, 29.7, 68.8, 97.8, 99.8, 108.6, 115.4 (d, J = 22.2 Hz), 117.8, 120.2, 130.2 (d, J = 8.1 Hz), 132.1 (d, J = 3.0 Hz), 134.6, 135.6, 139.7, 141.5, 141.5, 153.6, 161.9 (d, J = 245.4 Hz), 162.7, 166.6. MS (ESI/APCI) m/z = 364.3 [M+H]⁺. Anal. Calcd for C₂₁H₁₈N₃O₂F: C, 69.41; H, 4.99; N, 11.56. Found: C, 69.29; H, 5.04; N, 11.45.

1-(2-Ethyl-1-methyl-1*H***-benzimidazol-6-yl)-4-[(4-fluorobenzyl)oxy]pyridin-2(1***H***)-one (54c). A suspension of 56b** (5.00 g, 18.6 mmol), 1-(chloromethyl)-4-fluorobenzene (5.37 g, 37.1 mmol), K_2CO_3 (7.70 g, 55.7 mmol), and DMF (50 mL) was stirred at rt for 19 h. The resulting precipitate was collected by filtration, and the solid was washed with IPE and water successively to give a crude product (3.89 g). Other two bathes using 35 g and 50 g of **9b** gave 33.2 g and 50.0 g of crude product, respectively. Three lots were combined and recrystallized from MeOH–water to give the title compound (71.4 g, 57%, three bathes) as a white solid; mp 228–229 °C. ¹H NMR (300 MHz, CDCl₃) δ 1.46 (3H, t, *J* = 7.6 Hz), 2.93 (2H, q, *J* = 7.5 Hz), 3.73 (3H, s), 5.02 (2H, s), 6.01–6.11 (2H, m), 7.05–7.16 (3H, m), 7.24–7.45 (6H, m), 7.77 (1H, d, *J* = 8.5 Hz). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 11.3, 20.1, 29.5, 68.9, 97.8, 99.8, 108.8, 115.4 (d, *J* = 21.0 Hz), 118.1, 120.3, 130.3 (d, *J* = 8.3 Hz), 132.2 (d, *J* = 3.0 Hz), 134.7, 135.7, 139.7, 141.5, 157.8, 162.0 (d, *J* = 243.0 Hz), 162.8, 166.7. MS (ESI/APCI) $m/z = 378.3 [M + H]^+$. Anal. Calcd for C₂₂H₂₀FN₃O₂: C, 70.01; H, 5.34; N, 11.13. Found: C, 69.90; H, 5.26; N, 11.12.

4-[(4-Fluorobenzyl)oxy]-1-(1-methyl-2-propyl-1H-benzimidazol-6-yl)pyridin-2(1H)-one (54d). The mixture of **61** (90 mg, 0.27 mmol), HATU (106 mg, 0.28 mmol), *n*-butyric acid (0.024 mL, 0.27 mmol), DIPEA (0.136 mL, 0.80 mmol), and DMF (2 mL) was stirred at ambient temperature for 1 h. The mixture was quenched with water and extracted with EtOAc. The organic layer was separated, washed with water and brine, dried over MgSO₄, and concentrated in vacuo. The residue was dissolved with AcOH (2.0 mL) and stirred at 90 °C for 1 h. After evaporating, the residue was purified by column chromatography (NH silica gel, hexane/EtOAc = 90/10 to 0/100). The residual solid was recrystallized from EtOAc–MeOH to give the title compound (48.7 mg, 47%) as an off-white solid; mp 217–219 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 1.00 (3H, t, *J* = 7.4 Hz), 1.74–1.88 (2H, m), 2.86 (2H, t, *J* = 7.6 Hz), 3.74 (3H, s), 5.13 (2H, s), 5.98 (1H, s), 6.09 (1H, dd, *J* = 7.6, 3.0 Hz), 7.06 (1H, dd, *J* = 8.5, 2.1 Hz), 7.21–7.31 (2H, m), 7.50–7.56 (3H, m), 7.56–7.61 (2H, m). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 13.7, 20.1, 28.4, 29.6, 68.8, 97.8, 99.8, 108.7, 115.3 (d, *J* = 21.2 Hz), 118.0, 120.3, 130.2 (d, *J* = 8.1 Hz), 132.1 (d, *J* = 3.0 Hz), 134.6, 135.6, 135.6, 139.7, 141.5, 156.7, 161.9 (d, *J* = 245.4 Hz), 162.7, 162.8, 166.6. MS (ESI/APCI) *m*/*z* = 392.2 [M + H]⁺. Anal. Calcd for C₂₃H₂₂FN₃O₂ ·0.1H₂O: C, 70.25; H, 5.69; N, 10.69. Found: C, 70.28; H, 5.57; N, 10.71.

1-(2-Cyclopropyl-1-methyl-1*H*-benzimidazol-6-yl)-4-[(4-fluorobenzyl)oxy]pyridin-2(1*H*)-one (54e). To a solution of 44c (2.44 g, 11.2 mmol), 55a (2.8 g, 11.15 mmol), K₂CO₃ (4.62 g, 33.5 mmol), and DMEDA (1.20 mL, 11.15 mmol) in DMSO (56 mL) was added CuI (2.12 g, 11.2 mmol), and the mixture was stirred at 150 °C under Ar atmosphere for 2 h. After cooling to 0 °C, 28% NH₃ solution (56.0 mL) was added, and the mixture was allowed to warm to rt for 2 h. The precipitate was collected by filtration, washed with water and IPE, dissolved in THF (500 mL), and filtered through a short NH silica-gel column (EtOAc). The filtrate was concentrated and the residue was purified by column chromatography (NH silica gel, hexane/EtOAc = 90/10 to 0/100), followed by recrystallized from EtOH-water to give the title compound (1.60 g, 37%) as an off-white solid; mp 221–223 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.99–1.15 (4H, m), 2.20–2.33 (1H, m), 3.85 (3H, s), 5.13 (2H, s), 5.98 (1H, d, *J* = 2.6 Hz), 6.09 (1H, dd, *J* = 7.7, 2.8 Hz), 7.00–7.09 (1H, m), 7.21–7.32 (2H, m), 7.43–7.67 (5H, m). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 7.0, 8.3, 29.6, 68.8, 97.8, 99.8, 108.6, 115.3 (d, *J* = 22.2 Hz), 117.6, 120.5, 130.2 (d, *J* = 9.1 Hz), 132.1 (d, *J* = 3.0 Hz), 134.5, 135.7, 139.6, 141.0, 158.2, 161.9 (d, *J* = 245.4 Hz), 162.7, 166.6. MS (ESI/APCI) *m/z* = 390.2 $[M + H]^+$. Anal. Calcd for $C_{23}H_{20}N_3O_2F \cdot 0.1H_2O$: C, 70.61; H, 5.20; N, 10.74. Found: C, 70.53; H, 5.19; N, 10.69.

1-(2-Cyclobutyl-1-methyl-1*H*-benzimidazol-6-yl)-4-[(4-fluorobenzyl)oxy]pyridin-2(1*H*)-one (54f). The title compound was prepared in 22% yield using 44c and 55g in an analogous manner to 54a. White solid; mp 246–249 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.91–1.94 (1H, m), 2.05–2.12

(1H, m), 2.39–2.46 (4H, m), 3.66 (3H, s), 3.89 (1H, m), 5.13 (2H, s), 5.98 (1H, d, J = 2.8 Hz), 6.08 (1H, dd, J = 7.6, 2.8 Hz), 7.07 (1H, dd, J = 8.4, 2.0 Hz), 7.26 (2H, t, J = 8.8 Hz), 7.51–7.55 (3H, m), 7.57–7.63 (2H, m). ¹³C NMR (101 MHz, DMSO- d_6) δ 18.1, 26.4, 29.4, 31.5, 68.8, 97.8, 99.8, 108.7, 115.3 (d, J = 21.2 Hz), 118.2, 120.3, 130.2 (d, J = 9.1 Hz), 32.1 (d, J = 3.0 Hz), 134.7, 135.9, 139.6, 141.4, 159.2, 161.9 (d, J = 245.4 Hz), 162.7, 166.6. MS (ESI/APCI) m/z = 404.0 [M + H]⁺. Anal. Calcd for C₂₄H₂₂FN₃O₂·0.11H₂O: C, 71.10; H, 5.52; N, 10.36. Found: C, 71.14; H, 5.42; N, 10.32.

1-(2-Cyclopentyl-1-methyl-1*H*-benzimidazol-6-yl)-4-[(4-fluorobenzyl)oxy]pyridin-2(1*H*)-one (54g). The title compound was prepared in 22% yield using cyclopentanecarboxylic acid in an analogous manner to 54d. White solid; mp 262–263 °C (EtOAc–hexane). ¹H NMR (300 MHz, DMSO-*d*₆) δ 1.59–1.85 (4H, m), 1.88–1.99 (2H, m), 2.07 (2H, br s), 3.45 (1H, t, *J* = 7.7 Hz), 3.76 (3H, s), 5.13 (2H, s), 5.99 (1H, d, *J* = 2.6 Hz), 6.09 (1H, dd, *J* = 7.5, 2.6 Hz), 7.06 (1H, dd, *J* = 8.5, 2.1 Hz), 7.26 (2H, t, *J* = 8.9 Hz), 7.46–7.64 (5H, m). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 25.3, 29.6, 31.1, 36.2, 68.8, 97.8, 99.8, 108.7, 115.3 (d, *J* = 21.2 Hz), 118.1, 120.2, 130.2 (d, *J* = 8.1 Hz), 132.1 (d, *J* = 3.0 Hz), 134.6, 135.9, 139.7, 141.3, 160.3, 161.9 (d, *J* = 245.4 Hz), 162.7, 166.6 MS (ESI/APCI) *m*/*z* = 418.1 [M + H]⁺. Anal. Calcd for C₂₅H₂₄FN₃O₂·0.14H₂O: C, 71.49; H, 5.83; N, 10.00. Found: C, 71.48; H, 5.67; N, 10.04.

1-[2-(Cyclopropylmethyl)-1-methyl-1*H*-benzimidazol-6-yl]-4-[(4-fluorobenzyl)oxy]pyridin-2(1*H*)-one (54h). The title compound was prepared in 37% yield using 44c and 55e in an analogous manner to 54j. Pale yellow solid; mp 206–214 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.27–0.37 (2H, m), 0.57–0.68 (2H, m), 1.12–1.25 (1H, m), 2.87 (2H, d, *J* = 6.4 Hz), 3.75 (3 H, s), 5.02 (2 H, s), 5.96–6.13 (2H, m), 7.04–7.16 (3H, m), 7.31 (1 H, d, *J* = 7.2 Hz), 7.35–7.45 (3 H, m), 7.79 (1 H, d, *J* = 8.3 Hz). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 4.5, 8.9, 29.8, 31.1, 68.8, 97.8, 99.8, 108.8, 115.3 (d, *J* = 21.2 Hz), 118.1, 120.3, 130.2 (d, *J* = 8.1 Hz), 132.1 (d, *J* = 3.0 Hz), 134.7, 135.6, 139.7, 141.6, 156.4, 161.9 (d, *J* = 245.4 Hz), 162.7, 166.6. MS (ESI/APCI) *m*/*z* = 404.2 [M + H]⁺. Anal. Calcd for C₂₄H₂₂N₃O₂F: C, 71.45; H, 5.50; N, 10.42. Found: C, 70.88; H, 5.57; N, 10.13.

1-[2-(2,2-Dimethylpropyl)-1-methyl-1*H*-benzimidazol-6-yl]-4-[(4-fluorobenzyl)oxy]pyridin-2(1*H*)-one (54i). The title compound was prepared in 34% yield using 44c and 55f in an analogous manner to 54e. White solid; mp 238–239 °C. ¹H NMR (300 MHz, DMSO- d_6) δ 1.04 (9H, s), 2.81 (2H, s), 3.77 (3H, s), 5.14 (2H, s), 5.99 (1H, d, *J* = 2.6 Hz), 6.09 (1H, dd, *J* = 7.6, 2.6 Hz), 7.08 (1H, dd, *J* = 8.5, 2.1 Hz), 7.20–7.32 (2H, m), 7.48–7.56 (3H, m), 7.61 (2H, dd, *J* = 7.9, 5.3 Hz). ¹³C NMR (101 MHz, DMSO- d_6) δ 29.4, 30.4, 32.4, 39.0, 68.8, 97.8, 99.8, 109.0, 115.3 (d, *J* = 21.2 Hz), 118.1, 120.4, 130.2 (d, *J* = 8.1 Hz), 132.1 (d, *J* = 3.0 Hz), 134.6, 135.3, 139.7, 141.6, 155.0, 161.9 (d, *J* = 245.4 Hz), 162.8, 166.7. MS (ESI/APCI) *m*/*z* = 420.2 [M + H]⁺. Anal. Calcd for C₂₅H₂₆FN₃O₂: C, 71.58; H, 6.25; N, 10.02. Found: C, 71.46; H, 61.7; N, 9.97.

4-[(4-Chlorobenzyl)oxy]-1-(2-cyclopropyl-1-ethyl-1H-benzimidazol-6-yl)pyridin-2(1H)-one

(**54j**). A mixture of **44a** (100 mg, 0.42 mmol), **55b** (124 mg, 0.47 mmol), CuI (81 mg, 0.42 mmol), DMEDA (0.048 mL, 0.42 mmol), K₂CO₃ (147 mg, 1.06 mmol), and DMSO (2.5 mL) was heated 120 °C for 1 h under microwave irradiation. The mixture was quenched with 28% ammonia solution at rt and extracted with EtOAc. The organic layer was separated, washed with brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography (NH silica gel, hexane/EtOAc = 75/25 to 0/100). The solid was crystallized from IPA–hexane to give the title compound (85 mg, 48%) as a light pink solid; mp 203–204 °C. ¹H NMR (300 MHz, CDCl₃) δ 1.08–1.19 (2H, m), 1.20–1.31 (2H, m), 1.46 (3H, t, *J* = 7.4 Hz), 1.93–2.05 (1H, m), 4.29 (2H, q, *J* = 7.2 Hz), 5.02 (2H, s), 6.01–6.08 (2H, m), 7.10 (1H, dd, *J* = 8.7, 1.9 Hz), 7.28–7.42 (6H, m), 7.70 (1H, d, *J* = 8.3 Hz). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 7.0, 7.1, 8.4, 15.0, 37.7, 68.7, 97.9, 99.8, 108.4, 117.8, 120.4, 128.5, 129.7, 132.7, 134.5, 134.8, 135.0, 139.8, 141.5, 157.6, 162.8, 166.6. MS (ESI/APCI) *m*/*z* = 420.1 [M + H]⁺. Anal. Calcd for C₂₄H₂₂ClN₃O₂: C, 68.65; H, 5.28; N, 10.01. Found: C, 68.53; H, 5.29; N, 9.73.

4-[(4-Chlorobenzyl)oxy]-1-(2-cyclopropyl-1-propyl-1*H***-benzimidazol-6-yl)pyridin-2(1***H***)-one (54k). The title compound was prepared in 11% yield using 44a and 55c in an analogous manner to 54j. Off-white solid. ¹H NMR (300 MHz, CDCl₃) \delta 1.00 (3H, t,** *J* **= 7.5 Hz), 1.08–1.20 (2H, m), 1.23–1.33 (2H, m), 1.85–1.96 (2H, m), 1.96–2.04 (1H, m), 4.20 (2H, t,** *J* **= 7.3 Hz), 5.02 (2H, s), 6.00–6.13 (2H, m), 7.01–7.16 (3H, m), 7.28–7.36 (2H, m), 7.37–7.45 (2H, m), 7.70 (1H, d,** *J* **= 8.3 Hz). MS (ESI/APCI)** *m***/***z* **= 434.2 [M + H]⁺.**

4-(Benzyloxy)-1-(2-cyclopropyl-1-methyl-1H-benzimidazol-6-yl)pyridin-2(1H)-one (54l). The title compound was prepared in 87% yield using **44e** and **55a** in an analogous manner to **54a**. White solid; mp 210–211 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.95–1.19 (4H, m), 2.18–2.34 (1H, m), 3.85 (3H, s), 5.15 (2H, s), 5.98 (1H, d, *J* = 3.0 Hz), 6.10 (1H, dd, *J* = 7.6, 2.6 Hz), 6.96–7.11 (1H, m), 7.29–7.66 (8H, m). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 7.1, 8.3, 29.5, 69.6, 97.8, 99.8, 108.5, 117.7, 120.3, 127.8, 128.1, 128.5, 134.5, 135.8, 135.9, 139.6, 141.4, 158.3, 162.8, 166.7. MS (ESI/APCI) *m*/*z* = 372.0 [M + H]⁺. Anal. Calcd for C₂₃H₂₁N₃O₂: C, 74.37; H, 5.70; N, 11.31. Found: C, 74.19; H, 5.76; N, 11.16.

4-[(3-Chlorobenzyl)oxy]-1-(2-cyclopropyl-1-methyl-1*H***-benzimidazol-6-yl)pyridin-2(1***H***)-one (54m). The title compound was prepared in 29% yield using 44b and 55a in an analogous manner to 54a. White solid; mp 220–222 °C. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 1.02–1.11 (4H, m), 2.25–2.29 (1H, m), 3.85 (3H, s), 5.18 (2H, s), 5.97 (1H, d,** *J* **= 2.4 Hz), 6.12 (1H, dd,** *J* **= 7.5, 2.5 Hz), 7.04 (1H, dd,** *J* **= 8.5, 1.6 Hz), 7.43–7.48 (3H, m), 7.49–7.55 (3H, m), 7.59 (1H, d,** *J* **= 7.6 Hz). ¹³C NMR (75 MHz, DMSO-***d***₆) \delta 7.1, 8.4, 29.6, 68.6, 97.9, 99.8, 108.6, 117.8, 120.4, 126.4, 127.5, 128.1, 130.5, 133.1, 134.4, 135.8, 138.5, 139.8, 141.4, 158.3, 162.8, 166.5. MS (ESI/APCI)** *m***/***z* **= 405.8 [M + H]⁺. Anal. Calcd for C₂₃H₂₀ClN₃O₂: C, 68.06; H, 4.97; N, 10.35. Found: C, 67.94; H, 4.91; N, 10.31.**

4-[(2-Chlorobenzyl)oxy]-1-(2-cyclopropyl-1-methyl-1H-benzimidazol-6-yl)pyridin-2(1H)-one

(**54n**). To a suspension of **56a** (100 mg, 0.36 mmol) and (2-chlorophenyl)methanol (101 mg, 0.71 mmol) in THF (2 mL) were added tributylphosphine (0.266 mL, 1.07 mmol) and ADDP (269 mg, 1.07 mmol) at 60 °C, and the mixture was stirred at the same temperature for 3 h. After solvent was removed by evaporation, the residue was purified by column chromatography (silica gel, hexane/EtOAc = 90/10 to 0/100, then EtOAc/MeOH = 100/0 to 85/15), followed by column chromatography (NH silica gel, hexane/EtOAc = 90/10 to 0/100, then EtOAc/MeOH = 100/0 to 85/15). The residual solid was recrystallized by EtOH–hexane to give the title compound (60.0 mg, 42%) as an off-white solid; mp 199–201 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.01–1.13 (4H, m), 2.23–2.31 (1H, m), 3.85 (3H, s), 5.20 (2H, s), 6.02 (1H, d, *J* = 2.6 Hz), 6.10 (1H, dd, *J* = 7.5, 2.5 Hz), 7.06 (1H, dd, *J* = 8.6, 1.6 Hz), 7.40–7.48 (2H, m), 7.50–7.57 (3H, m), 7.59 (1H, d, *J* = 7.5 Hz), 7.61–7.66 (1H, m). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 7.1, 8.4, 29.6, 67.3, 97.7, 99.6, 108.6, 117.8, 120.4, 127.5, 129.5, 130.4, 130.7, 133.0, 133.1, 134.4, 135.8, 139.8, 141.4, 158.3, 162.8, 166.7. MS (ESI/APCI) *m*/*z* = 406.1 [M + H]⁺. Anal. Calcd for C₂₃H₂₀N₃O₂Cl: C, 68.06; H, 4.97; N, 10.35. Found: C, 68.11; H, 4.88; N, 10.31.

4-[(5-Chloropyridin-2-yl)methoxy]-1-(2-cyclopropyl-1-methyl-1*H***-benzimidazol-6-yl)-pyridin** -2(1*H*)-one (540). The title compound was prepared in 14% yield using 56a and (5-chloropyridin-2-yl)methanol in an analogous manner to 54c. White solid; mp 234–236 °C (EtOH–H₂O). ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.04–1.09 (4H, m), 2.26–2.32 (1H, m), 3.84 (3H, s), 5.23 (2H, s), 5.96 (1H, s), 6.12 (1H, dd, *J* = 7.7, 2.6 Hz), 7.04 (1H, m), 7.50–7.52 (2H, m), 7.59–7.61 (2H, m), 8.02–8.04 (1H, m), 8.67 (1H, s). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 7.1, 8.4, 29.6, 69.8, 98.0, 99.7, 108.5, 117.8, 120.4, 123.5, 130.5, 130.5, 134.4, 135.8, 136.9, 139.9, 141.4, 147.8, 154.1, 158.3, 162.7, 166.5. MS (ESI/APCI) *m*/*z* = 407.4 [M + H]⁺. Anal. Calcd for C₂₂H₁₉ClN₄O₂: C, 64.94; H, 4.71; N, 13.77. Found: C, 64.77; H, 4.83; N, 13.50.

4-[(5-Chloropyrimidin-2-yl)methoxy]-1-(2-cyclopropyl-1-methyl-1H-benzimidazol-6-yl)pyridi n-2(1H)-one mixture of 54aa (100)0.27 (54p). А mg, mmol), 2-chloro-1,3-bis(dimentylamino)trimethinium hexafluorophosphate (98 mg, 0.32 mmol), sodium methoxide (43.4 mg, 0.80 mmol), and MeOH (3 mL) was stirred at rt for 1 h. The mixture was concentrated and the residue was diluted with water. The aqueous phase was extracted with EtOAc. The combined organic layers were washed with water and brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography (NH silica gel, hexane/EtOAc = 90/10 to 0/100) to give the title compound (56.0 mg, 51%) as a white solid; mp 217–219 °C. ¹H NMR (400 MHz, DMSO-d₆) δ 0.94–1.17 (4H, m), 2.26 (1H, br s), 3.85 (3H, s), 5.36 (2H, s), 5.87 (1H, br s), 6.13 (1H, d, J = 9.0 Hz), 7.04 (1H, d, J = 9.0 Hz), 7.51 (2H, br s), 7.59 (1H, d, J = 6.9 Hz), 9.02 (2H, s). ¹³C NMR (101 MHz, DMSO- d_6) δ 7.0, 8.3, 29.5, 69.5, 97.9, 99.6, 108.5, 117.7, 120.3, 129.8, 134.4, 135.8, 139.8, 141.4, 156.1, 158.3, 162.5, 162.6, 166.6. MS (ESI/APCI) $m/z = 408.3 [M + H]^+$.

1-(2-Cyclopropyl-1-methyl-1*H*-benzimidazol-6-yl)-4-(thiophen-2-ylmethoxy)pyridin-2(1*H*)-on e (54q). The title compound was prepared in 30% yield using 56a and thiophen-2-ylmethanol in an analogous manner to 54n. White solid; mp 222–223 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 1.04–1.11 (4H, m), 2.24–2.28 (1H, m), 3.85 (3H, s), 5.34 (2H, s), 6.05–6.07 (2H, m), 7.03–7.08 (2H, m), 7.27 (1H, d, *J* = 2.8 Hz), 7.50–7.52 (2H, m), 7.57 (1H, d, *J* = 7.2 Hz), 7.61 (1H, d, *J* = 4.9 Hz). ¹³C NMR (101 MHz, DMSO- d_6) δ 7.1, 8.3, 29.5, 64.4, 97.8, 99.7, 108.5, 117.8, 120.4, 126.9, 127.3, 128.3, 134.4, 135.8, 137.8, 139.7, 141.4, 158.3, 162.7, 166.3. MS (ESI/APCI) *m*/*z* = 377.8 [M + H]⁺. Purity 99.4% (HPLC).

1-(2-Cyclopropyl-1-methyl-1*H*-benzimidazol-6-yl)-4-(thiophen-3-ylmethoxy)pyridin-2(1*H*)-on e (54r). The title compound was prepared in 37% yield using 9a and thiophen-3-ylmethanol in an analogous manner to 54n. Off-white solid; mp 223–225 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 1.02–1.09 (4H, m), 2.24–2.28 (1H, m), 3.85 (3H, s), 5.13 (2H, s), 5.99 (1H, d, *J* = 2.6 Hz), 6.06 (1H, dd, *J* = 7.5, 2.6 Hz), 7.04 (1H, dd, *J* = 8.4, 1.7 Hz), 7.19 (1H, d, *J* = 4.2 Hz), 7.50–7.52 (2H, m), 7.56–7.60 (2H, m), 7.64 (1H, m). ¹³C NMR (101 MHz, DMSO- d_6) δ 7.1, 8.3, 29.5, 65.1, 97.6, 99.8, 108.5, 117.8, 120.4, 124.7, 126.8, 127.6, 134.5, 135.8, 136.7, 139.6, 141.4, 158.3, 162.8. MS (ESI/APCI) *m*/*z* = 378.2 [M + H]⁺. Anal. Calcd for C₂₁H₁₉N₃O₂S·0.12H₂O: C, 66.44; H, 5.11; N, 11.07. Found: C, 66.49; H, 5.09; N, 11.08.

4-[(5-Chlorothiophen-2-yl)methoxy]-1-(2-cyclopropyl-1-methyl-1*H***-benzimidazol-6-yl)pyridi n-2(1***H***)-one (54s).** The title compound was prepared in 33% yield using **56a** and (5-chlorothiophen-2-yl)methanol in an analogous manner to **54n**. White solid; mp 218–220 °C (EtOH–H₂O). ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.02–1.11 (4H, m), 2.23–2.28 (1H, m), 3.85 (3H, s), 5.29 (2H, s), 6.03–6.07 (2H, m), 7.02 (1H, dd, *J* = 8.5, 1.8 Hz), 7.08 (1H, d, *J* = 3.7 Hz), 7.16 (1H, d, *J* = 3.8 Hz), 7.51 (2H, dd, *J* = 5.4, 3.5 Hz), 7.57 (1H, d, *J* = 7.4 Hz). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 7.1, 8.4, 29.6, 64.4, 97.9, 99.6, 108.5, 117.8, 120.4, 126.6, 128.3, 129.1, 134.4, 135.8, 137.3, 139.8, 141.4, 158.3, 162.7, 166.1. MS (ESI/APCI) *m*/*z* = 412.3 [M + H]⁺. Anal. Calcd for C₂₁H₁₈ClN₃O₂S: C, 61.23; H, 4.40; N, 10.20. Found: C, 61.34; H, 4.43; N, 10.21.

4-[(4-Chlorothiophen-2-yl)methoxy]-1-(2-cyclopropyl-1-methyl-1*H***-benzimidazol-6-yl)pyridi n-2(1***H***)-one (54t).** The title compound was prepared in 24% yield using **56a** and (4-chlorothiophen-2-yl)methanol in an analogous manner to **54n**. Off-white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.04–1.09 (4H, m), 2.26 (1H, m), 3.85 (3H, s), 5.32 (2H, s), 6.03–6.08 (2H, m), 7.04 (1H, dd, *J* = 8.5, 1.8 Hz), 7.28 (1H, s), 7.50–7.52 (2H, m), 7.58 (1H, d, *J* = 7.5 Hz), 7.64 (1H, s). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 7.1, 8.3, 29.5, 64.0, 97.9, 99.6, 108.5, 117.8, 120.3, 122.1, 123.0, 127.8, 134.4, 135.8, 139.4, 139.8, 141.4, 158.3, 162.7, 166.1. MS (ESI/APCI) *m/z* = 412.2 [M + H]⁺. Purity >99.9% (HPLC). **4-[(5-Chlorothiophen-3-yl)methoxy]-1-(2-cyclopropyl-1-methyl-1***H***-benzimidazol-6-yl)pyridi n-2(1***H***)-one (54u).** The title compound was prepared in 9% yield using **56a** and (5-chlorothiophen-3-yl)methanol in an analogous manner to **54n**. White solid; mp 236–237 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.02–1.11 (4H, m), 2.24–2.32 (1H, m), 3.85 (3H, s), 5.05 (2H, s), 5.98 (1H, d, *J* = 2.6 Hz), 6.06 (1H, dd, *J* = 7.6, 2.7 Hz), 7.03 (1H, dd, *J* = 8.4, 1.8 Hz), 7.20 (1H, d, *J* = 1.4 Hz), 7.51 (2H, dd, *J* = 5.4, 3.5 Hz), 7.56–7.58 (2H, m). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 7.1, 8.3, 29.5, 65.0, 97.7, 99.7, 108.5, 117.7, 120.3, 124.2, 127.0, 128.8, 134.4, 135.8, 136.5, 139.7, 141.4, 158.3, 162.7, 166.5. MS (ESI/APCI) *m*/*z* = 412.0 [M + H]⁺. Anal. Calcd for C₂₁H₁₈ClN₃O₂S: C, 61.23; H, 4.40; N, 10.20. Found: C, 61.19; H, 4.39; N, 10.17.

1-(2-Cyclopropyl-1-methyl-1*H*-benzimidazol-6-yl)-4-{[5-(trifluoromethyl)thiophen-2-yl]meth oxy}pyridin-2(1*H*)-one (54v). The title compound was prepared in 35% yield using 56a and [5-(trifluoromethyl)thiophen-2-yl]methanol in an analogous manner to 54n. White solid; mp 256– 257 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.99–1.14 (4H, m), 2.22–2.31 (1H, m), 3.85 (3H, s), 5.45 (2H, s), 6.06 (1H, d, *J* = 2.5 Hz), 6.10 (1H, dd, *J* = 7.5, 2.7 Hz), 7.05 (1H, dd, *J* = 8.5, 1.8 Hz), 7.38 (1H, d, *J* = 2.8 Hz), 7.49–7.54 (2H, m), 7.60 (1H, d, *J* = 7.5 Hz), 7.69 (1H, d, *J* = 2.8 Hz). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 7.0, 8.3, 29.5, 64.0, 98.0, 99.5, 108.5, 117.8, 120.3, 125.0 (q, *J* = 269.7 Hz), 128.1, 129.4 (q, *J* = 37.4 Hz), 130.0 (q, *J* = 4.0 Hz), 134.4, 135.8, 139.9, 141.4, 143.4 (d, *J* = 2.0 Hz), 158.3, 162.6, 166.0. MS (ESI/APCI) *m*/*z* = 446.1 [M + H]⁺. Anal. Calcd for C₂₂H₁₈F₃N₃O₂S: C, 59.32; H, 4.07; N, 9.43. Found: C, 59.43; H, 4.10; N, 9.42.

1-(2-Cyclopropyl-1-methyl-1H-benzimidazol-6-yl)-4-{[4-(trifluoromethyl)thiophen-2-yl]meth oxy}pyridin-2(1H)-one (54w). NaH (60% oil dispersion, 87 mg, 2.18 mmol) was added to a solution of [4-(trifluoromethyl)thiophen-2-yl]methanol (90, 397 mg, 2.18 mmol) in DMA at 0 °C. After being stirred at the same temperature for 30 min, 57 (500 mg, 1.45 mmol) was added to the reaction mixture. The mixture was stirred at 120 °C for 10 min. The mixture was quenched with water at 0 °C and extracted with EtOAc. The organic layer was separated, washed with water and brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography (NH silica gel, hexane/EtOAc = 100/0 to 0/100), followed by preparative HPLC (L-Column 2 ODS, eluted with H_2O in acetonitrile containing 0.1% TFA). The desired fraction was neutralized with sat. NaHCO3 solution and extracted with EtOAc. The organic layer was separated, dried over $MgSO_4$, and concentrated in vacuo to give the title compound (330 mg, 51%) as a pale yellow solid; mp 218–219 °C (IPA–IPE). ¹H NMR (400 MHz, DMSO-d₆) δ 0.95–1.14 (4H, m), 2.21–2.33 (1H, m), 3.85 (3H, s), 5.39 (2H, s), 6.05–6.10 (2H, m), 7.05 (1H, dd, J = 8.5, 1.2 Hz), 7.52 (2H, dd, J = 5.0, 3.2 Hz), 7.56–7.67 (2H, m), 8.33 (1H, s). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 7.0, 8.3, 29.5, 63.9, 97.9, 99.6, 108.5, 117.8, 120.3, 122.0 (q, *J* = 270.7 Hz), 124.57, 124.59, 129.3 (q, J = 35.4 Hz), 129.6 (q, J = 4.0 Hz), 134.4, 135.8, 139.8, 141.4, 158.3, 162.7, 166.1. MS (ESI/APCI) $m/z = 446.1 [M + H]^+$. Anal. Calcd for $C_{22}H_{18}F_3N_3O_2S \cdot 0.25H_2O$: C, 58.72;

H, 4.14; N, 9.34. Found: C, 58.89; H, 4.21; N, 9.29.

1-(2-Cyclopropyl-1-methyl-1*H***-benzimidazol-6-yl)-4-{[5-(trifluoromethyl)thiophen-3-yl]meth oxy}pyridin-2(1***H***)-one (54x). The title compound was prepared in 26% yield using 57 and [5-(trifluoromethyl)thiophen-3-yl]methanol (94) in an analogous manner to 54x. White solid; mp 236–237 °C (EtOH–H₂O). ¹H NMR (400 MHz, DMSO-d_6) \delta 1.02–1.12 (4H, m), 2.22–2.31 (1H, m), 3.85 (3H, s), 5.16 (2H, s), 6.01 (1H, d,** *J* **= 2.5 Hz), 6.09 (1H, dd,** *J* **= 7.6, 2.4 Hz), 7.04 (1H, dd,** *J* **= 8.5, 1.3 Hz), 7.48–7.55 (2H, m), 7.59 (1H, d,** *J* **= 7.5 Hz), 7.81 (1H, s), 8.06 (1H, s). ¹³C NMR (101 MHz, DMSO-d_6) \delta 7.0, 8.3, 29.5, 64.5, 97.7, 99.7, 108.5, 117.8, 120.3, 122.4 (q,** *J* **= 270.0 Hz), 129.6, 129.8 (q,** *J* **= 37.4 Hz), 130.2 (q,** *J* **= 3.0 Hz), 134.4, 135.8, 137.2, 139.7, 141.4, 158.3, 162.7, 166.4. MS (ESI/APCI)** *m***/***z* **= 446.3 [M + H]⁺. Anal. Calcd for C₂₂H₁₈F₃N₃O₂S: C, 59.32; H, 4.07; N, 9.43. Found: C, 59.36; H, 4.25; N, 9.34.**

4-(Benzyloxy)-1-(2-ethyl-1-methyl-1*H***-benzimidazol-6-yl)pyridin-2(1***H***)-one (54y). The title compound was prepared in 47% yield using 44eand 55h in an analogous manner to 54e. White solid; mp 214–216 °C (MeOH–H₂O). ¹H NMR (300 MHz, CDCl₃) \delta 1.46 (3H, t,** *J* **= 7.5 Hz), 2.93 (2H, q,** *J* **= 7.6 Hz), 3.73 (3H, s), 5.06 (2H, s), 6.03–6.13 (2H, m), 7.13 (1H, dd,** *J* **= 8.4, 1.9 Hz), 7.28–7.48 (7H, m), 7.77 (1H, d,** *J* **= 8.4 Hz). ¹³C NMR (75 MHz, DMSO-***d***₆) \delta 11.3, 20.1, 29.5, 69.6, 97.8, 99.9, 108.8, 118.1, 120.3, 127.9, 128.2, 128.5, 134.7, 135.7, 135.9, 139.7, 141.5, 157.8, 162.8, 166.8. MS (ESI/APCI)** *m***/***z* **= 360.3 [M + H]⁺. Anal. Calcd for C₂₂H₂₁N₃O₂·0.92H₂O: C, 70.28; H, 6.12; N, 11.18. Found: C, 70.18; H, 5.72; N, 11.13.**

[I-(2-Cyclopropyl-1-methyl-1*H***-benzimidazol-6-yl)-2-oxo-1,2-dihydropyridin-4-yl]oxy}aceto nitrile (54z).** A mixture of **56a** (1.00 g, 3.55 mmol), bromoacetonitrile (0.27 mL, 3.91 mmol), K₂CO₃ (1.47 g, 10.7 mmol), and DMF (10 mL) was stirred at 80 °C for 2 h. The mixture was poured into water and extracted with EtOAc. The extract was washed with brine, dried over MgSO₄, and concentrated. The residue was purified by column chromatography (NH silica gel, hexane/EtOAc = 97/3 to 0/100) to give the title compound (0.87 g, 76%) as a white solid; mp 184–186 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.97–1.20 (4H, m), 2.27 (1H, br s), 3.85 (3H, s), 5.25 (2H, s), 6.08 (1H, br s), 6.14 (1H, d, *J* = 7.65 Hz), 7.07 (1H, d, *J* = 8.5 Hz), 7.49–7.59 (2H, m), 7.67 (1H, d, *J* = 7.4 Hz). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 7.1, 8.4, 29.5, 53.3, 98.2, 98.9, 108.6, 115.7, 117.8, 120.3, 134.2, 135.8, 140.4, 141.5, 158.4, 162.4, 164.9. MS (ESI/APCI) *m/z* = 321.3 [M + H]⁺.

2-{[1-(2-Cyclopropyl-1-methyl-1*H*-benzimidazol-6-yl)-2-oxo-1,2-dihydropyridin-4-yl]oxy}eth animidamide hydrochloride (54aa). Sodium methoxide (2.53 mg, 0.050 mmol) was added to a solution of 54z (300 mg, 0.94 mmol) in MeOH (4 mL) and the mixture was stirred at rt for 4 h. To the solution was added ammonium chloride (52.6 mg, 0.98 mmol) and the mixture was stirred at rt overnight. The solvent was evaporated to give the title compound (368 mg, quant.) as a light brown solid. ¹H NMR (400 MHz, DMSO- d_6) δ 1.19 (4H, m), 2.27 (1H, br s), 3.86 (3H, s), 4.99 (2H, s),
5.87 (1H, s), 6.16 (1H, d, J = 5.3 Hz), 7.04 (1H, d, J = 7.8 Hz), 7.48–7.57 (2H, m), 7.68 (1H, d, J = 7.5 Hz), 9.04 (3H, br s). MS (ESI/APCI) m/z = 321.3 [M + H]⁺.

6-Bromo-2-cyclopropyl-1-methyl-1H-benzimidazole (55a). A mixture of 59a (4.20 g, 18.2 mmol), zinc (5.94 g, 90.9 mmol), NH₄Cl (9.7 g, 182 mmol), MeOH (50 mL), and water (25 mL) was stirred at rt for 3 h. After MeOH was removed by evaporation, the mixture was neutralized with sat. NaHCO₃ solution and extracted with EtOAc. The organic layer was separated, washed with water and brine, dried over MgSO4, and concentrated in vacuo. Then the residue was dissolved in POCl₃ (1.68 mL, 18.0 mmol) and cyclopropanecarboxylic acid (2.86 mL, 36.0 mmol) was added to the mixture at rt. The mixture was stirred at 120 °C for 3 h. After cooling to 0 °C, ice water and sat. NaHCO₃ solution were carefully added, and the mixture was extracted with EtOAc. The extract was washed with brine, dried over MgSO₄, concentrated to give a brown solid. This solid was dissolved in 1 N HCl solution and washed with EtOAc. The aqueous layer was basified with 4 N NaOH solution and extracted with EtOAc. The organic layer was washed with brine, dried over MgSO₄, and concentrated to give the title compound (3.3 g, 72%) as a brown solid. ¹H NMR (300 MHz, DMSO- d_6) δ 0.95–1.14 (4H, m), 2.23 (1H, tt, J = 7.9, 5.1 Hz), 3.83 (3H, s), 7.24 (1H, dd, J = 8.5, 2.1 Hz), 7.41 (1H, d, J = 8.7 Hz), 7.75 (1H, d, J = 1.9 Hz). ¹³C NMR (101 MHz, DMSO-d₆) δ 7.0, 8.4, 29.5, 112.4, 113.4, 119.6, 123.9, 137.2, 141.1, 157.9. Anal. Calcd for C₁₁H₁₁BrN₂: C, 52.61; H, 4.42; N, 11.16. Found: C, 52.37; H, 4.31; N, 11.14.

6-Bromo-2-cyclopropyl-1-ethyl-1*H***-benzimidazole (55b).** Zinc (8.0 g, 122 mmol) was added to a solution of **59b** (3.0 g, 12.2 mmol) in AcOH (60 mL) at rt. The mixture was stirred at ambient temperature for 30 min. The insoluble material was removed by filtration and the filtrate was concentrated in vacuo. The mixture was neutralized with sat. NaHCO₃ solution and extracted with EtOAc. The organic layer was separated, washed with water and brine, dried over MgSO₄, and concentrated in vacuo to give an intermediate 4-bromo- N^2 -ethylbenzene-1,2-diamine.

HATU (4.89 12.9 g, mmol) was added to a solution of the intermediate 4-bromo- N^2 -ethylbenzene-1,2-diamine, DIPEA (6.40)mL, 36.7 mmol), and cyclopropanecarboxylic acid (0.98 mL, 12.2 mmol) in DMF (40 mL), and the mixture was stirred at rt for 1 h. The mixture was quenched with water and extracted with EtOAc. The organic layer was separated, washed with water and brine, dried over MgSO4, and concentrated in vacuo. The residue was dissolved in AcOH (40 mL) and the mixture was stirred at 80 °C for 1 h. After concentration of the mixture, the residue was neutralized with sat. NaHCO3 solution and extracted with EtOAc. The organic layer was separated, washed with water and brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 100/0 to 0/100) to give the title compound (1.2 g, 37%) as a pale yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 1.03–1.18 (2H, m), 1.19–1.30 (2H, m), 1.46 (3H, t, J = 7.2 Hz), 1.96 (1H, tt, J = 8.2, 4.9 Hz), 4.25 (2H, q, J = 7.3 Hz), 7.29 (1H, dd, J = 8.3, 1.9 Hz), 7.43 (1H, d, J = 1.5 Hz), 7.50 (1H, d, J = 8.3 Hz). ¹³C NMR (101 MHz, DMSO- d_6) δ 7.0, 8.4, 14.9, 37.6, 112.3, 113.5, 119.7, 123.9, 136.1, 141.2, 157.3. MS (ESI/APCI) $m/z = 265.1 [M + H]^+$. Anal. Calcd for C₁₂H₁₃BrN₂: C, 54.36; H, 4.94; N, 10.57. Found: C, 54.29; H, 4.87; N, 10.58.

6-Bromo-2-cyclopropyl-1-propyl-1*H***-benzimidazole (55c).** The title compound was prepared in 56% yield using **59c** in an analogous manner to **55a**. Pink solid. ¹H NMR (300 MHz, CDCl₃) δ 1.00 (4H, t, *J* = 7.4 Hz), 1.07–1.16 (2H, m), 1.21–1.30 (2H, m), 1.80–2.01 (3H, m), 4.13–4.21 (2H, m), 7.26–7.32 (1H, m), 7.42 (1H, d, *J* = 1.9 Hz), 7.50 (1H, d, *J* = 8.7 Hz). MS (ESI/APCI) *m*/*z* = 279.1 [M + H]⁺.

6-Bromo-1,2-dimethyl-1H-benzimidazole (55d). To a solution of **63a** (30.0 g, 109 mmol) in AcOH (300 mL) was added zinc powder (35.9 g, 549 mmol) at rt. After being stirred over 90 °C for 4 h, the reaction mixture was allowed to cool to rt, and the zinc dust was removed by filtration with Celite pad and washed with EtOAc. The filtrate was concentrated and partitioned between EtOAc and sat. NaHCO₃ solution. The resulting precipitate was removed by filtration with Celite pad, and the filtrate was extracted with EtOAc. The organic layer was separated, washed with water and brine, dried over MgSO₄, and concentrated. The residue was purified by chromatography (NH silica gel, hexane/EtOAc = 100/0 to 0/100) to give the title compound (16.0 g, 65%) as a purple solid. ¹H NMR (400 MHz, CDCl₃) δ 2.56–2.61 (3H, m), 3.69 (3H, s), 7.32 (1H, dd, *J* = 8.5, 1.3 Hz), 7.43 (1H, s), 7.53 (1H, d, *J* = 8.4 Hz). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 13.4, 29.8, 112.6, 113.6, 119.6, 123.8, 137.1, 141.3, 153.3. MS (ESI/APCI) *m*/*z* = 225.1 [M + H]⁺. Anal. Calcd for C₉H₉BrN₂: C, 48.02; H, 4.03; N, 12.45. Found: C, 48.12; H, 3.99; N, 12.52.

6-Bromo-2-(cyclopropylmethyl)-1-methyl-1*H***-benzimidazole** (**55e**)**.** The title compound was prepared in 96% yield using **59a** and cyclopropylacetic acid in an analogous manner to **55b**. ¹H NMR (300 MHz, CDCl₃) δ 0.31 (2H, d, *J* = 6.0 Hz), 0.63 (2H, dd, *J* = 7.9, 1.1 Hz), 1.08–1.27 (1H, m), 2.83 (2H, d, *J* = 6.4 Hz), 3.72 (3H, s), 7.34 (1H, d, *J* = 1.9 Hz), 7.45 (1H, d, *J* = 1.9 Hz), 7.58 (1H, d, *J* = 8.7 Hz). MS (ESI/APCI) *m*/*z* = 265.1 [M + H]⁺.

6-Bromo-2-(2,2-dimethylpropyl)-1-methyl-1*H***-benzimidazole (55f).** The title compound was prepared in 78% yield using 63b in an analogous manner to **55d**. White solid. ¹H NMR (300 MHz, CDCl₃) δ 1.02 (9H, s), 2.77 (2H, s), 3.75 (3H, s), 7.28 (1H, dd, *J* = 8.7, 1.9 Hz), 7.51 (1H, d, *J* = 8.3 Hz), 7.76 (1H, d, *J* = 1.9 Hz). MS (ESI/APCI) *m*/*z* = 281.0 [M + H]⁺.

6-Bromo-2-cyclobutyl-1-methyl-1*H***-benzimidazole** (55g). To a mixture of cyclobutanecarboxylic acid (352 μ L, 3.73 mmol) and **62** (500 mg, 2.48 mmol) was added POCl₃ (10 mL) and the mixture was heated under reflux for 4 h. The mixture was cooled to rt and poured into ice-cold sat. NaHCO₃ solution (100 mL). The mixture was extracted with EtOAc, and the organic layer was washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The reside was purified by column chromatography (silica gel, hexane/EtOAc = 70/30) to afford the title compound (300 mg, 45%) as an off-white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.89–

1.95 (1H, m), 2.01–2.12 (1H, m), 2.37–2.46 (4H, m), 3.64 (3H, s), 3.80–3.88 (1H, m), 7.27 (1H, dd, J = 8.4, 1.6 Hz), 7.51 (1H, d, J = 8.4 Hz), 7.75 (1H, d, J = 1.6 Hz). MS (ESI/APCI) m/z = 266.8 [M + H]⁺.

6-Bromo-2-ethyl-1-methyl-1*H***-benzimidazole** (**55h**). The title compound was prepared in 57% yield using **59a** and propanoic acid in an analogous manner to **55e**. ¹H NMR (400 MHz, CDCl₃) δ 1.45 (3H, t, *J* = 7.5 Hz), 2.89 (2H, q, *J* = 7.5 Hz), 3.69 (3H, s), 7.32 (1H, dd, *J* = 8.5, 1.8 Hz), 7.44 (1H, d, *J* = 1.5 Hz), 7.57 (1H, d, *J* = 8.5 Hz). MS (ESI/APCI) *m*/*z* = 239.0 [M + H]⁺.

1-(2-Cyclopropyl-1-methyl-1*H***-benzimidazol-6-yl)-4-hydroxypyridin-2(1***H***)-one (56a). A mixture of 54l** (2.4 g, 6.46 mmol), 10% Pd-C (1.2 g), and MeOH (60 mL) was hydrogenated under H₂ atmosphere (1 atm) at rt for 3 h. The inorganic material was removed by filtration and the filtrate was concentrated in vacuo to give the title compound (1.57 g, 86%) as an off-white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.99–1.13 (4H, m), 2.21–2.30 (1H, m), 3.85 (3H, s), 5.65 (1H, br s), 5.95 (1H, d, *J* = 7.4 Hz), 7.02 (1H, dd, *J* = 8.4, 2.0 Hz), 7.40–7.58 (3H, m), 10.78 (1H, br s). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 7.1, 8.4, 29.6, 108.4, 109.0, 117.9, 120.0, 121.9, 133.8, 135.3, 135.8, 140.2, 141.7, 158.6, 160.4. MS (ESI/APCI) *m*/*z* = 282.1 [M + H]⁺. Anal. Calcd for C₁₆H₁₅N₃O₂·0.11H₂O: C, 67.84; H, 5.42; N, 14.83. Found: C, 67.80; H, 5.42; N, 14.81.

1-(2-Ethyl-1-methyl-1*H***-benzimidazol-6-yl)-4-hydroxypyridin-2(1***H***)-one (56b).** The title compound was prepared in 99% yield using **54y** in an analogous manner to **56a**. Pale yellow solid. ¹H NMR (300 MHz, DMSO-*d*₆) δ 1.33 (3H, t, *J* = 7.5 Hz), 2.90 (2H, q, *J* = 7.5 Hz), 3.74 (3H, s), 5.65 (1H, d, *J* = 2.5 Hz), 5.96 (1H, dd, *J* = 7.5, 2.5 Hz), 7.04 (1H, dd, *J* = 8.4, 2.0 Hz), 7.49–7.62 (3H, m), 10.88 (1H, br s). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 11.3, 20.0, 29.5, 98.4, 100.2, 108.7, 117.9, 120.3, 135.0, 135.7, 139.9, 141.4, 157.7, 163.0, 167.2. MS (ESI/APCI) *m*/*z* = 470.2 [M + H]⁺. Anal. Calcd for C₁₅H₁₅N₃O₂·1.35H₂O: C, 61.36; H, 6.08; N, 14.31. Found: C, 61.49; H, 5.73; N, 14.39.

5-Bromo-N-methyl-2-nitroaniline (58a). To a solution of **57** (25.0 g, 114 mmol) in EtOH (100 mL) was added methylamine (40% in MeOH, 34.8 mL, 341 mmol) at rt. The mixture was stirred at rt for 1 h and then cooled to 0 °C. The precipitate was collected by filtration, and washed with EtOH and IPE successively to give the title compound (24.8 g, 94%) as a yellow solid. ¹H NMR (300 MHz, DMSO-*d*₆) δ 2.95 (3 H, d, *J* = 4.9 Hz), 6.83 (1 H, dd, *J* = 9.1, 1.9 Hz), 7.17 (1 H, d, *J* = 1.9 Hz), 7.98 (1 H, d, *J* = 9.1 Hz), 8.23 (1H, br s).

5-Bromo-*N***-ethyl-2-nitroaniline (58b).** The title compound was prepared in 80% yield using ethylamine in an analogous manner to **58a**. Pale yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 1.38 (3H, t, *J* = 7.2 Hz), 3.33 (2H, qd, *J* = 7.2, 5.1 Hz), 6.75 (1H, dd, *J* = 9.1, 1.9 Hz), 7.01 (1H, d, *J* = 1.9 Hz), 7.98 (1H, br s), 8.03 (1H, d, *J* = 9.1 Hz).

5-Bromo-2-nitro-*N***-propylaniline (58c).** The title compound was prepared in 76% yield using *n*-propylamine in an analogous manner to **58a**. Orange solid. ¹H NMR (300 MHz, CDCl₃) δ 1.06

(3H, t, *J* = 7.5 Hz), 1.77 (2H, m), 3.25 (2H, td, *J* = 7.1, 5.1 Hz), 6.74 (1H, dd, *J* = 9.0, 1.9 Hz), 7.01 (1H, d, *J* = 1.9 Hz), 7.92–8.11 (2H, m).

4-[(4-Fluorobenzyl)oxy]-1-[3-(methylamino)-4-nitrophenyl]pyridin-2(1*H***)-one (59**). The title compound was prepared in 44% yield using **44a** and **58a** in an analogous manner to **54a**. Yellow solid. ¹H NMR (300 MHz, DMSO-*d*₆) δ 2.96 (3H, d, *J* = 4.9 Hz), 5.13 (2H, s), 6.00 (1H, d, *J* = 2.3 Hz), 6.14 (1H, dd, *J* = 7.7, 2.8 Hz), 6.69 (1H, dd, *J* = 9.0, 1.9 Hz), 6.96 (1H, d, *J* = 1.9 Hz), 7.25 (2H, t, *J* = 8.9 Hz), 7.52 (2H, dd, *J* = 8.3, 5.7 Hz), 7.64 (1H, d, *J* = 7.5 Hz), 8.13 (1H, d, *J* = 9.0 Hz), 8.27 (1H, d, *J* = 4.9 Hz). MS (ESI/APCI) *m*/*z* = 370.1 [M + H]⁺.

1-[4-Amino-3-(methylamino)phenyl]-4-[(4-fluorobenzyl)oxy]pyridin-2(1*H***)-one (60). A mixture of 59** (90 mg, 0.24 mmol), iron (54.4 mg, 0.97 mmol), calcium chloride (54.1 mg, 0.49 mmol), EtOH (1.5 mL), and water (1.5 mL) was heated at 70 °C for 3 h. The inorganic material was removed by filtration, and the filtrate was concentrated. The residue was neutralized with sat. NaHCO₃ solution and extracted with EtOAc. The extract was washed with brine, dried over MgSO₄, and concentrated to give the title compound (78 mg, 94%) as an brown solid. ¹H NMR (300 MHz, CDCl₃) δ 2.85 (3 H, s), 3.29–3.41 (2 H, m), 4.99 (2 H, s), 5.90–6.08 (2 H, m), 6.52–6.65 (2 H, m), 6.74 (1 H, d, *J* = 7.9 Hz), 7.09 (2 H, t, *J* = 8.7 Hz), 7.23 (1 H, s), 7.39 (2 H, dd, *J* = 8.7, 5.3 Hz). MS (ESI/APCI) *m/z* = 340.1 [M + H]⁺.

4-Bromo-*N*²**-methylbenzene-1,2-diamine (61).** A solution of **58a** (350 mg, 1.51 mmol), zinc (495 mg, 7.57 mmol), and NH₄Cl (810 mg, 15.15 mmol) in MeOH (4 mL)/water (2 mL) was stirred at rt for 1 h. The insoluble material was removed by filtration and neutralized sat. NaHCO₃ solution. The mixture was concentrated and extracted with EtOAc. The organic layer was separated, washed with water and brine, dried over MgSO₄, and concentrated in vacuo to give the title compound as a brown solid (282 mg, 93%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.68 (3H, d, *J* = 4.9 Hz), 4.60 (2H, s), 4.87 (1H, d, *J* = 4.9 Hz), 6.32–6.58 (3H, m). MS (ESI/APCI) *m/z* = 202.09 [M + H]⁺.

N-(**5-Bromo-2-nitrophenyl**)-*N*-methylacetamide (62a). To a solution of **58a** (50.0 g, 216 mmol) in toluene (500 mL) was added acetyl chloride (30.8 mL, 432 mmol) at rt. After being stirred at 90 °C for 15 h, acetyl chloride (7.69 mL, 108 mmol) was added and the mixture was stirred at 90 °C for further 5 h. The reaction mixture was cooled to rt, poured into EtOAc, washed with sat. NaHCO₃ solution and brine, dried over Na₂SO₄, and concentrated. The residual solid was recrystallized from EtOAc–hexane to give the title compound (57 g, 97%) as a yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.65–2.26 (3H, m), 3.00–3.52 (3H, m), 7.67–8.20 (3H, m). MS (ESI/APCI) *m*/*z* = 272.9 [M + H]⁺.

N-(5-Bromo-2-nitrophenyl)-*N*,3,3-trimethylbutanamide (62b). To a mixture of 58a (300 mg, 1.30 mmol), 3,3-dimethylbutanoyl chloride (0.45 mL, 3.25 mmol), and DMF (5 mL) was added NaH (60% oil dispersion, 57.1 mg, 1.43 mmol), and the mixture was heated at 70 °C overnight. The mixture was poured into water and extracted with EtOAc. The extract was washed with brine,

dried over MgSO₄, concentrated, and purified by column chromatography (silica gel, hexane/EtOAc = 100/0 to 75/25) to give the title compound (214 mg, 51%) as a solid. ¹H NMR (400 MHz, DMSO- d_6) δ 0.86–1.06 (9H, m), 1.67–2.39 (2H, m), 3.02–3.45 (3H, m), 7.68–8.13 (3H, m). MS (ESI/APCI) m/z = 329.0 [M + H]⁺.

4-Bromo-1-(2-cyclopropyl-1-methyl-1*H***-benzimidazol-6-yl)pyridin-2(1***H***)-one (63). To a solution of 56a** (1.0 g, 3.55 mmol) in DMF (15 mL) was added phosphoryl tribromide (1.22 g, 4.27 mmol) at ambient temperature. The mixture was stirred at 50 °C for 9 h. The mixture was poured into sat. NaHCO₃ solution and extracted with EtOAc. The organic layer was separated, washed with water and brine, dried over MgSO₄, and concentrated in vacuo. The residual solid was recrystallized from EtOH–hexane to give the title compound (600 mg, 49%) as a brown solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.99–1.16 (4H, m), 2.22–2.32 (1H, m), 3.85 (3H, s), 6.54 (1H, dd, *J* = 7.3, 2.0 Hz), 6.84 (1H, d, *J* = 2.0 Hz), 7.09 (1H, dd, *J* = 8.4, 1.9 Hz), 7.50–7.61 (2H, m), 7.67 (1H, d, *J* = 7.3 Hz). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 7.1, 8.3, 29.5, 98.5, 99.9, 108.5, 117.7, 120.4, 134.7, 135.8, 140.0, 141.3, 158.2, 162.9, 166.8. MS (ESI/APCI) *m/z* = 345.0 [M + H]⁺. Anal. Calcd for C₁₆H₁₄BrN₃O: C, 53.78; H, 4.36; N, 11.76. Found: C, 53.85; H, 4.10; N, 11.94.

Experiments concerning Chapter 4

4-[(4-Chlorobenzyl)oxy]-1-(2-cyclopropyl-1-methyl-1*H***-indol-6-yl)pyridin-2(1***H***)-one (64). A mixture of 44b** (75 mg, 0.32 mmol), **68** (80 mg, 0.32 mmol), DMEDA (0.034 mL, 0.32 mmol), CuI (60.9 mg, 0.32 mmol), K₂CO₃ (133 mg, 0.96 mmol), and DMSO (2 mL) was heated at 150 °C for 1 h under microwave irradiation. The mixture was poured into water and extracted with EtOAc. The organic layer was separated, washed with water and brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 100/0 to 0/100) to give the title compound (28.0 mg, 22%) as off-white crystals; mp 210–211 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.70 (2H, d, *J* = 3.6 Hz), 1.00 (2H, d, *J* = 7.4 Hz), 2.03 (1H, br s), 3.74–3.80 (3H, m), 5.15 (2H, s), 5.96 (1H, br s), 6.08 (1H, d, *J* = 6.8 Hz), 6.14 (1H, s), 6.87 (1H, d, *J* = 8.2 Hz), 7.37 (1H, s), 7.41–7.53 (5H, m), 7.57 (1H, d, *J* = 7.7 Hz). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 6.6, 7.2, 29.6, 68.7, 96.5, 97.9, 99.5, 107.9, 118.0, 119.2, 126.6, 128.5, 129.7, 132.7, 133.9, 135.0, 136.7, 139.9, 145.0, 162.8, 166.5. MS (ESI/APCI) *m*/*z* = 405.3 [M + H]⁺. Anal. Calcd for C₂₄H₂₁ClN₂O₂: C, 71.19; H, 5.23; N, 6.92. Found: C, 71.32; H, 5.19; N, 6.93.

4-[(4-Chlorobenzyl)oxy]-1-(2-cyclopropyl-3-methylpyrazolo[1,5-*a***]pyridin-5-yl)pyridin-2(1***H***) -one (65).** The title compound was prepared in 55% yield using **44b** and **69** in an analogous manner to **64**. White crystals; mp 229–231 °C (EtOAc). ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.81– 1.03 (4H, m), 1.95–2.11 (1H, m), 2.27 (3H, s), 5.16 (2H, s), 5.99 (1H, d, *J* = 2.3 Hz), 6.14 (1H, dd, *J* = 7.6, 2.4 Hz), 6.65–6.74 (1H, m), 7.50 (4H, s), 7.56 (1H, s), 7.66 (1H, d, *J* = 7.5 Hz), 8.48 (1H, d, *J* = 7.3 Hz). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 6.9, 7.2, 8.1, 68.8, 97.8, 100.4, 104.5, 110.4, 113.2, 128.1, 128.5, 129.7, 132.8, 134.8, 135.2, 138.2, 138.9, 155.2, 162.3, 166.9. MS (ESI/APCI) *m/z* = 406.3 [M + H]⁺. Anal. Calcd for C₂₃H₂₀ClN₃O₂: C, 68.06; H, 4.97; N, 10.35. Found: C, 67.78; H, 5.08; N, 10.24.

4-[(4-Chlorobenzyl)oxy]-1-(2,3-dimethyl-2H-indazol-5-yl)pyridin-2(1H)-one (66a). A mixture of **44b** (300 mg, 1.27 mmol), **71a** (287 mg, 1.27 mmol), DMEDA (0.137 mL, 1.27 mmol), K₂CO₃ (528 mg, 3.82 mmol), CuI (242 mg, 1.27 mmol), and DMSO (10 mL) was heated at 150 °C for 3 h. The mixture was poured into 28% NH₃ solution and extracted with EtOAc–THF. The extract was washed with brine, dried over MgSO₄, concentrated, and purified by column chromatography (silica gel, EtOAc/MeOH = 100/0 to 85/15) followed by recrystallization from EtOH to give the title compound (150 mg, 31%) as a white solid; mp 242–244 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.61 (3H, s), 4.07 (3H, s), 5.15 (2H, s), 5.97 (1H, d, *J* = 2.3 Hz), 6.09 (1H, dd, *J* = 7.6, 2.3 Hz), 7.10 (1H, d, *J* = 9.2 Hz), 7.47–7.55 (5H, m), 7.60 (1H, d, *J* = 7.5 Hz), 7.65 (1H, s). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 9.4, 37.4, 68.7, 97.9, 99.8, 116.6, 117.8, 120.1, 125.3, 128.5, 129.7, 132.7, 133.3, 134.9, 139.7, 145.6, 162.8, 166.6. MS (ESI/APCI) *m/z* = 406.3 [M + H]⁺. Anal. Calcd for

C₂₁H₁₈ClN₃O₂·0.27H₂O: C, 65.56; H, 4.86; N, 10.92. Found: C, 65.90; H, 4.75; N, 10.97.

1-(2,3-Dimethyl-2H-indazol-5-yl)-4-{[5-(trifluoromethyl)thiophen-2-yl]methoxy}pyridin-2(1H)**-one (66b).** To a suspension of **82a** (100 mg, 0.39 mmol), triphenylphosphine (308 mg, 1.18 mmol), and [5-(trifluoromethyl)thiophen-2-yl]methanol (143 mg, 0.78 mmol) in THF (5 mL) at 60 °C was added DMEAD (275 mg, 1.18 mmol). After stirring 3 h, the mixture was diluted with EtOAc, washed with water and brine, dried over MgSO₄, and concentrated. The residue was purified by column chromatography (silica gel, EtOAc/MeOH = 100/0 to 90/10) to give the title compound (71.2 mg, 43%) as a white solid; mp 191–193 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.61 (3H, s), 4.07 (3H, s), 5.44 (2H, s), 6.03–6.14 (2H, m), 7.11 (1H, dd, *J* = 9.0, 2.0 Hz), 7.36–7.41 (1H, m), 7.54 (1H, d, *J* = 8.9 Hz), 7.59–7.71 (3H, m). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 9.4, 37.4, 64.0, 98.0, 99.6, 116.7, 117.9, 120.1, 122.3 (q, *J* = 269.7 Hz), 125.3, 128.1, 129.5 (q, *J* = 37.4 Hz), 130.0 (q, *J* = 4.0 Hz), 132.7, 133.2, 139.9, 143.4 (d, *J* = 1.5 Hz), 145.6, 162.7, 166.1. MS (ESI/APCI) *m*/*z* = 420.3 [M + H]⁺. Anal. Calcd for C₂₀H₁₆F₃N₃O₂S: C, 57.27; H, 3.85; N, 10.02. Found: C, 57.09; H, 3.84; N, 10.00.

1-(2,3-Dimethyl-2*H***-indazol-5-yl)-4-{[4-(trifluoromethyl)thiophen-2-yl]methoxy}pyridin-2(1***H***)-one (66c). The title compound was prepared in 13% yield using 82a and 90 in an analogous manner to 66b. White crystals; mp 199–200 °C. ¹H NMR (300 MHz, DMSO-***d***₆) \delta 2.61 (3H, s), 4.07 (3H, s), 5.38 (2H, s), 6.04–6.11 (2H, m), 7.11 (1H, dd,** *J* **= 9.1, 2.0 Hz), 7.50–7.63 (3H, m), 7.63–7.68 (1H, m), 8.29–8.37 (1H, m). ¹³C NMR (101 MHz, DMSO-***d***₆) \delta 9.4, 37.4, 63.9, 97.9, 99.6, 116.7, 117.9, 120.1, 122.0 (q,** *J* **= 270.7 Hz), 124.6 (d,** *J* **= 2.0 Hz), 125.3, 129.3 (q,** *J* **= 35.4 Hz), 129.6 (q,** *J* **= 5.1 Hz), 132.7, 133.2, 139.8, 141.4, 145.6, 162.7, 166.2. MS (ESI/APCI)** *m***/***z* **= 420.3 [M + H]⁺. Anal. Calcd for C₂₀H₁₆F₃N₃O₂S·0.15H₂O: C, 56.91; H, 3.89; N, 9.95. Found: C, 56.86; H, 3.87; N, 9.90.**

1-(2,3-Dimethyl-2*H***-indazol-5-yl)-4-{[5-(trifluoromethyl)thiophen-3-yl]methoxy}pyridin-2(1***H***)-one (66d). The title compound was prepared in 43% yield using 82a and 94 in an analogous manner to 66b. White solid; mp 217–218 °C (EtOH–hexane). ¹H NMR (400 MHz, DMSO-d_6) \delta 2.61 (3H, s), 4.07 (3H, s), 5.16 (2H, s), 6.01 (1H, s), 6.09 (1H, d,** *J* **= 7.7 Hz) 7.11 (1H, d,** *J* **= 9.3 Hz), 7.54 (1H, d,** *J* **= 8.9 Hz), 7.60 (1H, d,** *J* **= 7.5 Hz), 7.65 (1H, s), 7.81 (1H, s), 8.06 (1H, s). ¹³C NMR (101 MHz, DMSO-d_6) \delta 9.4, 37.4, 64.5, 97.7, 99.7, 116.6, 117.9, 120.1, 122.4 (q,** *J* **= 269.7 Hz),125.3, 129.6, 129.8 (q,** *J* **= 36.4 Hz), 130.3 (q,** *J* **= 4.0 Hz), 132.7, 133.3, 137.2, 139.7, 145.6, 162.8, 166.5. MS (ESI/APCI)** *m***/***z* **= 420.3 [M + H]⁺. Anal. Calcd for C₂₀H₁₆F₃N₃O₂S: C, 57.27; H, 3.85; N, 10.02. Found: C, 57.34; H, 3.89; N, 10.09.**

1-(2,3-Dimethyl-2*H*-indazol-5-yl)-4-{[4-(trifluoromethyl)-1,3-thiazol-2-yl]methoxy}pyridin-2(1*H*)-one (66e). The title compound was prepared in 50% yield using 82a and [4-(trifluoromethyl)-1,3-thiazol-2-yl]methanol in an analogous manner to 66b. White solid; mp 213–215 °C (IPA–IPE). ¹H NMR (400 MHz, DMSO- d_6) δ 2.61 (3H, s), 4.07 (3H, s), 5.56 (2H, s), 6.08 (1H, s), 6.16 (1H, d, J = 9.8 Hz), 7.11 (1H, d, J = 8.9 Hz), 7.54 (1H, d, J = 8.9 Hz), 7.66 (2H, d, J = 11.7 Hz), 8.61 (1H, s). ¹³C NMR (101 MHz, DMSO- d_6) δ 9.4, 37.4, 66.3, 98.3, 99.4, 116.7, 117.9, 120.1, 120.4 (q, J = 270.7 Hz), 125.0 (q, J = 2.0 Hz), 125.2, 132.8, 133.2, 140.0, 142.4 (q, J = 36.4 Hz), 145.7, 162.6, 165.9, 168.2. MS (ESI/APCI) m/z = 421.3 [M + H]⁺. Anal. Calcd for C₁₉H₁₅F₃N₄O₂S: C, 54.28; H, 3.60; N, 13.33. Found: C, 54.20; H, 3.59; N, 13.27.

1-(2,3-Dimethyl-2*H*-indazol-5-yl)-4-{[2-(trifluoromethyl)-1,3-thiazol-4-yl]methoxy}pyridin-2(1*H*)-one (66f). The title compound was prepared in 24% yield using 82a and [2-(trifluoromethyl)-1,3-thiazol-4-yl]methanol in an analogous manner to 66b. White solid; mp 185–188 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 2.61 (3H, s), 4.07 (3H, s), 5.32 (2H, s), 6.05–6.14 (2H, m), 7.11 (1H, d, *J* = 8.9 Hz), 7.54 (1H, d, *J* = 9.2 Hz), 7.61 (1H, d, *J* = 7.4 Hz), 7.66 (1H, s), 8.33 (1H, s). ¹³C NMR (101 MHz, DMSO- d_6) δ 9.4, 37.4, 64.7, 97.8, 99.6, 116.6, 117.9, 119.7 (q, *J* = 273.7 Hz), 120.1, 124.6, 125.3, 132.7, 133.3, 139.8, 145.6, 152.3, 154.5 (q, *J* = 40.4 Hz), 162.8, 166.4. MS (ESI/APCI) *m*/*z* = 421.3 [M + H]⁺. Anal. Calcd for C₁₉H₁₅F₃N₄O₂S·1.78H₂O: C, 50.43; H, 4.13; N, 12.38. Found: C, 50.46; H, 4.03; N, 12.38.

1-(2,3-Dimethyl-2*H***-indazol-5-yl)-4-[(4-fluorobenzyl)oxy]pyridin-2(1***H***)-one (66g). The title compound was prepared in 37% yield using 82a** and (4-fluorophenyl)methanol in an analogous manner to **66b**. White solid; mp 247–248 °C (EtOH–H₂O). ¹H NMR (400 MHz, CDCl₃) δ 2.62 (3H, s), 4.14 (3H, s), 5.03 (2H, s), 6.06 (1H, dd, *J* = 7.5, 2.6 Hz), 6.09 (1H, d, *J* = 2.5 Hz), 7.12 (2H, t, *J* = 8.6 Hz), 7.21(1H, dd, *J* = 9.1, 1.7 Hz), 7.32 (1H, d, *J* = 7.5 Hz), 7.43 (2H, dd, *J* = 8.2, 5.5 Hz), 7.54 (1H, d, *J* = 1.0 Hz), 7.70 (1H, d, *J* = 9.0 Hz). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 9.4, 37.4, 68.9, 97.8, 99.8, 115.3 (d, *J* = 21.2 Hz), 116.6, 117.8, 120.1, 125.3, 130.2 (d, *J* = 9.1 Hz), 132.1 (d, *J* = 4.0 Hz), 132.7, 133.3, 139.6, 145.6, 161.9 (d, *J* = 245.4 Hz), 162.8, 166.7. MS (ESI/APCI) *m*/*z* = 364.1 [M + H]⁺.

4-[(4-Chlorobenzyl)oxy]-1-(2-ethyl-3-methyl-2*H***-indazol-5-yl)pyridin-2(1***H***)-one (66h). The title compound was prepared in 13% yield using 44b** and **71b** in an analogous manner to **67**. Off-white solid. ¹H NMR (400 MHz, DMSO- d_6) δ 0.83–0.87 (3H, m), 1.84–1.91 (2H, m), 2.59 (3H, s), 4.29 (2H, t, *J* = 7.0 Hz), 7.25 (1H, dd, *J* = 9.0, 1.8 Hz), 7.48 (1H, d, *J* = 9.0 Hz), 7.94 (1H, d, *J* = 1.6 Hz). MS (ESI/APCI) *m*/*z* = 394.2 [M + H]⁺. Purity 99.4% (HPLC).

4-[(4-Chlorobenzyl)oxy]-1-(3-methyl-2-propyl-2*H***-indazol-5-yl)pyridin-2(1***H***)-one (66i). The title compound was prepared in 43% yield using 44b** and **71c** in an analogous manner to **67**. Off-white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.86 (3H, t, *J* = 7.4 Hz), 1.86–1.92 (2H, m), 2.62 (3H, s), 4.32 (2H, t, *J* = 6.9 Hz), 5.15 (2H, s), 5.96 (1H, d, *J* = 2.6 Hz), 6.08 (1H, dd, *J* = 7.6, 2.7 Hz), 7.09 (1H, dd, *J* = 9.0, 1.8 Hz), 7.50 (4H, s), 7.55 (1H, d, *J* = 9.1 Hz), 7.60 (1H, d, *J* = 7.6 Hz), 7.65 (1H, d, *J* = 1.4 Hz). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 9.3, 10.9, 23.0, 51.1, 68.7, 97.8, 99.8, 116.8, 118.0, 120.0, 125.4, 128.5, 129.7, 132.3, 132.7, 133.3, 135.0, 139.7, 145.8, 162.8, 166.6. MS (ESI/APCI) *m/z* = 408.0 [M + H]⁺. Purity 99.8% (HPLC).

4-[(4-Chlorobenzyl)oxy]-1-(2-cyclopropyl-3-methyl-2*H***-indazol-5-yl)pyridin-2(1***H***)-one (66j). The title compound was prepared in 39% yield using 44b** and **71d** in an analogous manner to **64**. White crystals; mp 222–224 °C (EtOAc). ¹H NMR (300 MHz, DMSO-*d*₆) δ 1.09–1.18 (2H, m), 1.22–1.30 (2H, m), 2.70 (3H, s), 3.96 (1H, dt, *J* = 7.4, 3.6 Hz), 5.15 (2H, s), 5.97 (1H, d, *J* = 2.6 Hz), 6.09 (1H, dd, *J* = 7.6, 2.7 Hz), 7.09 (1H, dd, *J* = 9.1, 2.0 Hz), 7.49–7.55 (5H, m), 7.58 (1H, d, *J* = 7.6 Hz), 7.65 (1H, dd, *J* = 2.0, 0.7 Hz). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 6.9, 9.5, 31.4, 68.7, 97.8, 99.8, 116.9, 117.7, 120.3, 125.5, 128.5, 129.7, 132.7, 133.4, 134.1, 134.9, 139.6, 145.1, 162.7, 166.6. MS (ESI/APCI) *m*/*z* = 406.3 [M + H]⁺. Anal. Calcd for C₂₃H₂₀ClN₃O₂·0.1H₂O: C, 67.76; H, 4.99; N, 10.31. Found: C, 67.76; H, 4.99; N, 10.31.

1-(2-Cyclopropyl-3-methyl-2*H*-indazol-5-yl)-4-[(4-fluorobenzyl)oxy]pyridin-2(1*H*)-one (66k). The title compound was prepared in 70% yield using 44a and 71d in an analogous manner to 66a. White crystals; mp 195–196 °C (EtOAc). ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.14 (2H, d, *J* = 5.3 Hz), 1.27 (2H, br s), 2.70 (3H, s), 3.95 (1H, d, *J* = 3.5 Hz), 5.13 (2H, s), 5.98 (1H, br s), 6.08 (1H, d, *J* = 7.2 Hz), 7.09 (1H, d, *J* = 8.9 Hz), 7.26 (2H, t, *J* = 8.6 Hz), 7.49–7.61 (4H, m), 7.65 (1H, s). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 6.9, 9.5, 31.4, 68.9, 97.8, 99.8, 115.3 (d, *J* = 21.2 Hz), 116.9, 117.7, 120.3, 125.5, 130.2 (d, *J* = 9.1 Hz), 132.1 (d, *J* = 3.0 Hz), 133.5, 134.1, 139.6, 145.1, 161.9 (d, *J* = 244.4 Hz), 162.8, 166.7. MS (ESI/APCI) *m*/*z* = 390.3 [M + H]⁺. Anal. Calcd for C₂₃H₂₀FN₃O₂: C, 70.94; H, 5.18; N, 10.79. Found: C, 70.92; H, 5.18; N, 10.78.

1-(2-Cyclopropyl-3-methyl-2*H***-indazol-5-yl)-4-{[5-(trifluoromethyl)thiophen-3-yl]methoxy}p yridin-2(1***H***)-one (66l). To a solution of 94 (1.82 g, 10.0mmol) in DMA (25 mL) was added potassium** *tert***-butoxide (1.12 g, 10.0 mmol) at 0 °C and the suspension was stirred at same temperature for 15 min. To the mixture was added 83 (2.5 g, 8.34 mmol) and the mixture was heated at 80 °C for 1.5 h. The mixture was cooled to rt and water was added. After being stirred at rt overnight, the precipitate was collected by filtration and washed with water, EtOH, and IPE to give a solid. The resulting solid was recrystallized from DMSO–EtOH–water to give the title compound (2.5 g, 67%) as a solid; mp 215–216 °C. ¹H NMR (300 MHz, DMSO-***d***₆) \delta 1.09–1.19 (2H, m), 1.21–1.31 (2H, m), 2.70 (3H, s), 3.92–4.01 (1H, m), 5.16 (2H, s), 6.01 (1H, d,** *J* **= 2.6 Hz), 6.09 (1H, dd,** *J* **= 7.6, 2.7 Hz), 7.10 (1H, dd,** *J* **= 9.2, 2.0 Hz), 7.53 (1H, d,** *J* **= 9.2 Hz), 7.59 (1H, d,** *J* **= 7.6 Hz), 7.65 (1H, d,** *J* **= 1.3 Hz), 7.81 (1H, s), 8.06 (1H, d,** *J* **= 1.4 Hz). ¹³C NMR (101 MHz, DMSO-***d***₆) \delta 6.9, 9.5, 31.4, 64.5, 97.7, 99.7, 116.9, 117.7, 120.3, 122.4 (q,** *J* **= 269.7 Hz), 125.5, 129.6, 129.8 (q,** *J* **= 36.4 Hz), 130.3 (q,** *J* **= 4.0 Hz), 133.4, 134.1, 137.2, 139.6, 145.2, 162.8, 166.5. MS (ESI/APCI)** *m***/***z* **= 446.2 [M + H]⁺. Anal. Calcd for C₂₂H₁₈N₃O₂SF₃: C, 59.32; H, 4.07; N, 9.43. Found: C, 59.30; H, 4.17; N, 9.37.**

4-(Benzyloxy)-1-(2,3-dimethyl-2*H***-indazol-5-yl)pyridin-2(1***H***)-one (66m). The title compound was prepared in 65% yield using 44e** and **71b** in an analogous manner to **66a**. Pale yellow solid; mp 215–217 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 2.61 (3H, s), 4.07 (3H, s), 5.15 (2H, s), 5.98

(1H, d, J = 2.3 Hz), 6.09 (1H, dd, J = 7.5, 2.2 Hz), 7.11 (1H, d, J = 9.0 Hz), 7.32–7.50 (5H, m), 7.53 (1H, d, J = 9.2 Hz), 7.59 (1H, d, J = 7.5 Hz), 7.65 (1H, s). ¹³C NMR (101 MHz, DMSO- d_6) δ 9.4, 37.4, 69.6, 97.8, 99.8, 116.6, 117.8, 120.1, 125.3, 127.8, 128.1, 128.5, 132.7, 133.3, 135.9, 139.6, 145.6, 162.8, 166.8. MS (ESI/APCI) m/z = 346.3 [M + H]⁺. Purity 99.9% (HPLC).

4-(Benzyloxy)-1-(2-cyclopropyl-3-methyl-2*H***-indazol-5-yl)pyridin-2(1***H***)-one (66n). The title compound was prepared in 67% yield using 44e** and **71d** in an analogous manner to **64**. White crystals; mp 194–195 °C (EtOAc). ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.11–1.19 (2H, m), 1.26 (2H, d, *J* = 3.0 Hz), 2.70 (3H, s), 3.96 (1H, dt, *J* = 7.3, 3.6 Hz), 5.15 (2H, s), 5.97 (1H, d, *J* = 2.5 Hz), 6.09 (1H, dd, *J* = 7.5, 2.5 Hz), 7.10 (1H, dd, *J* = 9.1, 1.8 Hz), 7.34–7.50 (5H, m), 7.52 (1H, d, *J* = 9.2 Hz), 7.58 (1H, d, *J* = 7.5 Hz), 7.65 (1H, s). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 6.9, 9.5, 31.4, 69.6, 97.8, 99.8, 116.9, 117.7, 120.3, 125.5, 127.8, 128.1, 128.5, 133.5, 134.1, 135.9, 139.6, 145.1, 162.8, 166.8. MS (ESI/APCI) *m*/*z* = 372.3 [M + H]⁺. Purity >99.9% (HPLC).

4-[(4-Chlorobenzyl)oxy]-1-(1,3-dimethyl-1H-indazol-5-yl)pyridin-2(1H)-one (67). To a mixture of 70 (200 mg, 0.88 mmol), 44b (168 mg, 0.77 mmol), and K₂CO₃ (368 mg, 2.66 mmol) in (10 mL) (51 dioxane added CuI 0.36 were mg, mmol) and trans-N,N'-dimethyl-cyclohexane-1,2-diamine (68 mg, 0.36 mmol). The mixture was heated at 110 °C for 16 h. The mixture was cooled to rt and concentrated. The residue was diluted with DCM, washed with brine, dried over Na_2SO_4 , and concentrated. The residue was purified by column chromatography (silica gel, DCM/MeOH = 97/3) to give the title compound (100 mg, 34%) as a off-white solid; mp 172–173 °C. ¹H NMR (400 MHz, DMSO-d₆) δ 2.47 (3H, s), 3.99 (3H, s), 5.16 (2H, s), 5.97 (1H, d, J = 2.6 Hz), 6.10 (1H, dd, J = 7.6, 2.6 Hz), 7.30 (1H, dd, J = 8.8, 1.7 Hz), 7.49 (4H, s), 7.60 (1H, d, J = 2.1 Hz), 7.62 (1H, d, J = 3.5 Hz), 7.68 (1H, d, J = 1.4 Hz). ¹³C NMR (101 MHz, DMSO-d₆) δ 11.4, 35.1, 68.7, 97.8, 99.9, 109.6, 118.2, 122.4, 125.5, 128.5, 129.7, 132.7, 133.0, 134.9, 139.4, 139.7, 140.6, 162.8, 166.7. MS (ESI/APCI) $m/z = 380.0 [M + H]^+$. Anal. Calcd for C₂₁H₁₈ClN₃O₂: C, 66.40; H, 4.78; N, 11.06. Found: C, 66.35; H, 4.84; N, 11.09.

6-Bromo-2-cyclopropyl-1-methyl-1*H***-indole (68).** To a solution of **76** (1.0 g, 4.24 mmol) in DMF (5 mL) was added methyl iodide (0.79 mL, 12.7 mmol) and NaH (40% oil dispersion, 0.17 g, 4.24 mmol) at 0 °C. After 3 h, the mixture was poured into sat. NH₄Cl solution and extracted with EtOAc. The organic layer was separated, washed with water and brine, dried over MgSO₄, and concentrated. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 100/0 to 90/10) to give the title compound (0.48 g, 46%) as pale yellow crystals. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.68 (2H, d, *J* = 3.8 Hz), 0.98 (2H, d, *J* = 6.5 Hz), 1.99 (1H, br s), 3.30 (1H, s), 3.72–3.79 (3H, m), 6.09 (1H, s), 7.07 (1H, d, *J* = 8.0 Hz), 7.35 (1H, d, *J* = 8.3 Hz), 7.62 (1H, s).

5-Bromo-2-cyclopropyl-3-methylpyrazolo[1,5-*a*]**pyridine** (69). To a solution of 81 (50 mg, 0.19 mmol) in TFA (3 mL) was added triethylsilane (0.60 mL, 3.77 mmol) at rt and the mixture was stirred vigorously for 16 h. The mixture was poured into 1 N NaOH solution and extracted with

EtOAc. The organic layer was separated, washed with sat. NaHCO₃ solution and brine, dried over MgSO₄, and concentrated. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 100/0 to 85/15) to give the title compound (45.2 mg, 95%) as white crystals. ¹H NMR (400 MHz, CDCl₃) δ 0.92–1.06 (4H, m), 1.91–2.01 (1H, m), 2.25 (3H, s), 6.63 (1H, dd, *J* = 7.3, 1.9 Hz), 7.46 (1H, d, *J* = 1.6 Hz), 8.09 (1H, d, *J* = 7.4 Hz). MS (ESI/APCI) *m*/*z* = 252.8 [M + H]⁺.

5-Bromo-1,3-dimethyl-1*H***-indazole (70).** To a stirred suspension of NaH (60% oil dispersion, 136 mg, 2.83 mmol) in DMF (10 mL) was added a solution of **84** (400 mg, 1.89 mmol) in DMF (2 mL) at 0 °C, and the mixture was stirred at the same temperature for 30 min. MeI (400 μ L, 2.83 mmol) was added and the resulting mixture was stirred at 0 °C for 4 h. The reaction mixture was quenched with water and extracted with EtOAc. The combined EtOAc layers were washed with brine, dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 80/20) to give the title compound (200 mg, 39%) as a yellow oil. ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.45 (3H, s), 3.95 (3H, s), 7.46 (1H, dd, *J* = 8.9, 1.8 Hz), 7.54 (1H, d, *J* = 8.9 Hz), 7.94 (1H, d, *J* = 1.5 Hz). MS (ESI/APCI) *m/z* = 225.0 [M + H]⁺.

5-Bromo-2,3-dimethyl-2*H***-indazole (71a).** To a solution of **84** (4.25 g, 20.1 mmol) in EtOAc (100 mL) was added trimethyloxonium tetrafluoroborate (4.47 g, 30.2 mmol) and the mixture was stirred at rt for 5h. The mixture was poured into 1 N NaOH solution and extracted with EtOAc. The extract was washed with brine, dried over MgSO₄, and concentrated to give the title compound (3.65 g, 81%) as a solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.58 (3H, s), 4.04 (3H, s), 7.25 (1H, d, *J* = 9.0 Hz), 7.47 (1H, d, *J* = 9.0 Hz), 7.94 (1H, s).

5-Bromo-2-ethyl-3-methyl-2*H***-indazole (71b).** The title compound was prepared in 47% yield using triethyloxonium tetrafluoroborate in an analogous manner to **71a**. Off-white solid. ¹H NMR (400 MHz, DMSO- d_6) δ 1.43 (3H, t, *J* = 7.2 Hz), 2.62 (3H, s), 4.39 (2H, q, *J* = 7.2 Hz), 5.15 (2H, s), 5.96 (1H, d, *J* = 2.6 Hz), 6.08 (1H, dd, *J* = 7.6, 2.7 Hz), 7.09 (1H, dd, *J* = 9.1, 1.9 Hz), 7.50 (4H, s), 7.55 (1H, d, *J* = 9.1 Hz), 7.55 (1H, d, *J* = 7.6 Hz), 7.65 (1H, d, *J* = 1.6 Hz). MS (ESI/APCI) *m*/*z* = 240.0 [M + H]⁺.

5-Bromo-3-methyl-2-propyl-2*H***-indazole (71c).** The title compound was prepared in 17% yield using iodopropane in an analogous manner to **70**. Yellow oil. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.83–0.87 (3H, m), 1.84–1.91 (2H, m), 2.59 (3H, s), 4.29 (2H, t, *J* = 7.0 Hz), 7.25 (1H, dd, *J* = 9.0, 1.8 Hz), 7.48 (1H, d, *J* = 9.0 Hz), 7.94 (1H, d, *J* = 1.6 Hz). MS (ESI/APCI) *m*/*z* = 253.0 [M + H]⁺.

5-Bromo-2-cyclopropyl-3-methyl-2*H***-indazole (71d).** To a solution of **86** (43.0 g, 176 mmol) in toluene (250 mL) were added cyclopropylamine (24.4 mL, 352 mmol) and titanium isopropoxide (105 mL, 352 mmol) at rt, and the mixture was stirred at 60 °C for 16 h. After removal of solvent, the residue was dissolved in triethyl phosphite (91 mL, 529 mmol), and the mixture was heated to 150 °C for 2 h. The mixture was treated with NH silica gel (500 g) in EtOAc (500 mL) with stirring

overnight. The silica gel was removed by filtration, washed with EtOAc, concentrated, and filtered through a silica gel (500 g, hexane/EtOAc = 85/15). The filtrate was evaporated and the residue was recrystallized from EtOAc–hexane to give the title compound (19.8 g, 45%) as an off-white solid. ¹H NMR (400 MHz, DMSO- d_6) δ 1.13 (2H, d, J = 5.3 Hz), 1.25 (2H, br s), 2.67 (3H, s), 3.87–3.97 (1H, m), 7.25 (1H, d, J = 9.0 Hz), 7.46 (1H, d, J = 9.0 Hz), 7.94 (1H, s). MS (ESI/APCI) m/z = 251.2 [M + H]⁺.

4-Bromo-2-nitrophenyl trifluoromethanesulfonate (73). To a solution of **72** (9.43 g, 43.3 mmol) in pyridine (200 mL) was added Tf₂O (8.0 mL, 47.6 mmol) at 0 °C and the mixture was stirred for 1 h. The mixture was quenched with sat. NaHCO₃ solution and extracted with EtOAc. The organic layer was separated, washed with sat. NaHCO₃ solution and brine, dried over MgSO₄, and concentrated. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 100/0 to 80/20) to give the title compound (14.0 g, 92%) as a colorless oil. ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.78 (1H, d, *J* = 8.9 Hz), 8.20 (1H, dd, *J* = 8.8, 2.5 Hz), 8.56 (1H, d, *J* = 2.5 Hz).

4-Bromo-1-(cyclopropylethynyl)-2-nitrobenzene (74). To a solution of **73** (2.0 g, 5.71 mmol) in THF (20 mL) were added ethynylcyclopropane (0.58 mL, 6.86 mmol), CuI (0.054 g, 0.29 mmol), PdCl₂(PPh₃)₂ (0.20 g, 0.29 mmol), and TEA (2.4 mL, 17.1 mmol) at rt under N₂ atmosphere, and the mixture was stirred at rt for 3 h. The mixture was concentrated and purified by column chromatography (silica gel, hexane/EtOAc = 100/0 to 80/20) to give the title compound (1.42 g, 93%) as a yellow oil. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.79 (2H, br s), 0.90–1.00 (2H, m), 1.61 (1H, d, *J* = 4.0 Hz), 7.58 (1H, d, *J* = 8.3 Hz), 7.89 (1H, d, *J* = 8.3 Hz), 8.22–8.30 (1H, m).

5-Bromo-2-(cyclopropylethynyl)aniline (75). To a solution of **74** (1.42 g, 5.34 mmol) in EtOAc (20 mL) was added SnCl₂ (1.3 mL, 26.7 mmol) and water (0.96 mL, 53.4 mmol) at rt, and the mixture was heated at reflux for 4 h. The mixture was quenched with sat. NaHCO₃ solution. The insoluble material was removed by filtration and the filtrate was diluted with EtOAc. The organic layer was separated, washed with sat. NaHCO₃ solution and brine, dried over MgSO₄, and concentrated in vacuo. The residue was used for next reaction without further purification. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.77 (2H, br s), 0.81–0.90 (2H, m), 1.50–1.60 (1H, m), 5.47 (2H, br s), 6.59 (1H, d, *J* = 8.2 Hz), 6.85 (1H, s), 6.98 (1H, d, *J* = 8.3 Hz).

6-Bromo-2-cyclopropyl-1*H***-indole (76).** To a solution of **75** (1.09 g, 4.62 mmol) in EtOH (20 mL) was added PdCl₃ (41 mg, 0.23 mmol) and FeCl₂ (37 mg, 0.23 mmol) at rt, and the mixture was heated at 80 °C for 2 h. The solvent was evaporated, and the residue was purified by column chromatography (NH silica gel, hexane/EtOAc = 100/0 to 70/30) to give the title compound (1.02 g, 94 %) as yellow crystals. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.77 (2H, d, *J* = 4.8 Hz), 0.97 (2H, d, *J* = 8.0 Hz), 1.17 (1H, t, *J* = 7.1 Hz), 1.95–2.05 (1H, m), 6.09 (1H, s), 7.02 (1H, d, *J* = 8.3 Hz), 7.31 (1H, d, *J* = 8.3 Hz), 7.38 (1H, s), 11.02 (1H, br s). MS (ESI/APCI) *m/z* = 236.0 [M + H]⁺.

THF (40 mL) was added NaHMDS (1.9 M THF solution, 20.2 mL, 38.4 mmol) at -78 °C, and the mixture was stirred at rt for 1 h. Methyl cyclopropanecarboxylate (3.27 mL, 32.0 mmol) was added at -78 °C, and the mixture was allowed to warm to rt for 16 h. The mixture was quenched with sat. NaHCO₃ solution and extracted with EtOAc. The organic layer was separated, washed with sat. NaHCO₃ solution and brine, dried over MgSO₄, and concentrated. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 90/10 to 50/50) to give the title compound (4.3 g, 56%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 0.92 (2H, dd, *J* = 7.5, 3.3 Hz), 1.04–1.14 (2H, m), 2.00–2.10 (1H, m), 4.03 (2H, s), 7.37 (1H, d, *J* = 5.1 Hz), 7.44 (1H, s), 8.38 (1H, d, *J* = 5.3 Hz).

2-(4-Bromopyridin-2-yl)-1-cyclopropyl-*N***-hydroxyethanimine (79).** To a solution of **78** (5.86 g, 24.4 mmol) in MeOH (50 mL) was added hydroxylamine hydrochloride (8.48 g, 122 mmol) and NaOH (4.88 g, 122 mmol) at rt, and the mixture was heated at 60 °C for 14 h. The mixture was poured into sat. NaHCO₃ solution and extracted with EtOAc. The organic layer was separated, washed with 1 N NaOH solution and brine, dried over MgSO₄, and concentrated. The resulting solid was recrystallized from EtOAc–hexane to give the title compound (3.3 g, 53%) as white crystals. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.55–0.67 (4H, m), 1.46–1.56 (1H, m), 3.66 (2H, s), 7.47–7.55 (2H, m), 8.36 (1H, d, *J* = 5.9 Hz), 10.55 (1H, s).

5-Bromo-2-cyclopropylpyrazolo[1,5-*a*]**pyridine** (80). To a suspension of **79** (395 mg, 1.55 mmol) in DME (4 mL) was added triethylamine (1.08 mL, 7.74 mmol) at 0 °C. TFAA (0.26 mL, 1.86 mmol) was added to the mixture portionwise at the same temperature. After 30 min, the mixture was turned to clear yellow solution. The mixture was quenched with sat. NaHCO₃ solution and extracted with EtOAc. The organic layer was separated, washed with sat. NaHCO₃ solution and brine, dried over MgSO₄, and concentrated. The residue was diluted with DME (4 mL) and FeCl₂ (19.6 mg, 0.15 mmol) was added to the mixture. The mixture was heated to 80 °C for 2 h. Then the mixture was poured into 1 N NaOH solution and extracted with EtOAc. The organic layer was separated, washed with 1 N NaOH solution and brine, dried over MgSO₄, and concentrated. The residue over MgSO₄, and concentrated. The residue was heated to 80 °C for 2 h. Then the mixture was poured into 1 N NaOH solution and extracted with EtOAc. The organic layer was separated, washed with 1 N NaOH solution and brine, dried over MgSO₄, and concentrated. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 100/0 to 85/15) to give the title compound (173 mg, 47%) as pale yellow crystals. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.73–0.85 (2H, m), 0.91–1.05 (2H, m), 1.97–2.13 (1H, m), 6.30 (1H, s), 6.87 (1H, dd, *J* = 7.3, 1.9 Hz), 7.83 (1H, d, *J* = 1.8 Hz), 8.48 (1H, d, *J* = 7.4 Hz). MS (ESI/APCI) *m/z* = 238.8 [M + H]⁺.

5-Bromo-2-cyclopropylpyrazolo[1,5-*a*]**pyridine-3-carbaldehyde** (81). To a solution of 80 (500 mg, 2.11 mmol) in CH₃CN (5 mL) was added *N*-(chloromethylene)-*N*-methylmethanaminium chloride (324 mg, 2.53 mmol) at 0 °C, and the mixture was stirred at rt for 1 h. The mixture was quenched with sat. NH₄Cl solution and the suspension was stirred at rt for 30 min. The mixture was poured into sat. NH₄Cl solution and extracted with EtOAc. The organic layer was separated, washed with sat. NaHCO₃ solution and brine, dried over MgSO₄, and concentrated. The residue

was purified by column chromatography (silica gel, hexane/EtOAc = 100/0 to 75/25) to give the title compound (245 mg, 44%) as white crystals. ¹H NMR (400 MHz, DMSO- d_6) δ 0.99–1.16 (4H, m), 2.58–2.70 (1H, m), 7.32 (1H, dd, J = 7.1, 1.7 Hz), 8.36 (1H, s), 8.73 (1H, d, J = 7.3 Hz), 10.17 (1H, s).

1-(2,3-Dimethyl-2*H*-indazol-5-yl)-4-hydroxypyridin-2(1*H*)-one (82a). A mixture of 66m (1.8 g, 5.21 mmol), palladium on carbon (0.56 g, 5.21 mmol), and EtOH (40 mL) was vigorously stirred under H₂ atmosphere at rt for 3 h. The inorganic material was removed by filtration and the filtrate was concentrated to give the title compound (1.04 g, 78%) as a solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.60 (3H, s), 4.07 (3H, s), 5.64 (1H, d, *J* = 1.9 Hz), 5.94 (1H, dd, *J* = 7.5, 2.1 Hz), 7.09 (1H, dd, *J* = 9.0, 1.5 Hz), 7.52 (2H, d, *J* = 8.3 Hz), 7.62 (1H, s), 10.8 (1H, br s).

1-(2-Cyclopropyl-3-methyl-2*H*-indazol-5-yl)-4-hydroxypyridin-2(1*H*)-one (82b). The title compound was prepared in 94% yield using 66n in an analogous manner to 82a. Yellow solid. ¹H NMR (400 MHz, DMSO- d_6) δ 1.06–1.19 (2H, m), 1.26 (2H, d, *J* = 3.3 Hz), 2.69 (3H, s), 3.95 (1H, dt, *J* = 7.2, 3.5 Hz), 5.60 (1H, d, *J* = 2.1 Hz), 5.92 (1H, dd, *J* = 7.5, 2.3 Hz), 7.08 (1H, dd, *J* = 9.0, 1.8 Hz), 7.49 (2H, t, *J* = 7.9 Hz), 7.61 (1H, s), 11.05 (1H, br s). MS (ESI/APCI) *m*/*z* = 282.3 [M + H]⁺.

4-Chloro-1-(2-cyclopropyl-3-methyl-2*H***-indazol-5-yl)pyridin-2(1***H***)-one (83**) To a suspension of **82b** (8.0 g, 28.4 mmol) in DMF (140 mL) was added phosphorus oxychloride (3.18 mL, 34.1 mmol) at rt and the mixture was stirred at 50 °C for 21 h. The mixture was poured into EtOAc and washed with sat. NaHCO₃ solution. The aqueous layer was extracted with EtOAc, and the extracts were washed with water and brine, dried over Na₂SO₄, and concentrated. The resulting residue was dissolved in EtOAc–THF at 50 °C and NH-silica gel was added to the mixture. After 1 h, a mixture was purified by column chromatography (NH silica gel, EtOAc only) to give the crude product. The crude solid was triturated with IPE and collected by filtration to give the title compound (4.59 g, 54%) as an off-white solid. ¹H NMR (300 MHz, DMSO-*d*₆) δ 1.11–1.20 (2H, m), 1.22–1.31 (2H, m), 2.70 (3H, s), 3.97 (1H, tt, *J* = 7.4, 3.7 Hz), 6.44 (1H, dd, *J* = 7.4, 2.5 Hz), 6.65 (1H, d, *J* = 1.9 Hz), 7.13 (1H, dd, *J* = 9.3, 2.1 Hz), 7.56 (1H, d, *J* = 9.1 Hz), 7.71–7.75 (1H, m), 7.77 (1H, d, *J* = 7.2 Hz). MS (ESI/APCI) *m*/*z* = 300.2 [M + H]⁺.

1-(5-Bromo-2-nitrophenyl)ethanone (86). To nitric acid (fuming, 2 mL, 25.1 mmol) was slowly added sulfuric acid (2.5 mL, 25.1 mmol) at 0 °C and the mixture was stirred at same temperature for 15 min. To the solution was slowly added **85** (3.34 mL, 25.1 mmol) at 0 °C with vigorous stirring and the mixture was stirred at same temperature for 1 h. The mixture was poured into ice–water and extracted with EtOAc. The organic layer was washed with sat. NaHCO₃ solution and brine, dried over MgSO₄, concentrated, and purified by column chromatography (silica gel, hexane/EtOAc = 100/0 to 90/10) to give the title compound (2.04 g, 33%) as pale yellow crystals. ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.58 (3H, s), 7.92–8.00 (1H, m), 8.02–8.08 (2H, m).

4-(Trifluoromethyl)thiophene-2-carbaldehyde (88). To a solution of norpempidine (9.3 mL, 55.1 mmol) in THF (150 mL) was added n-BuLi (34.5 mL, 55.1 mmol) at -78 °C and the mixture was stirred at 0 °C for 10 min. Then the mixture was cooled to -78 °C and a solution of 3-(trifluoromethyl)thiophene (6.99 g, 46.0 mmol) in THF (5 mL) was added dropwise over 30 min. Then the mixture was stirred for 1 h at the same temperature. DMF (10.7 mL, 138 mmol) was added, and stirred at rt overnight. The mixture was quenched with 1 N HCl solution and extracted with EtOAc. The organic layer was separated, washed with 1 N HCl solution and brine, dried over MgSO₄, and concentrated. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 100/0 to 85/15) to give the title compound (4.1 g, 50%) as a light brown oil. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.63 (1H, d, *J* = 5.1 Hz), 8.31 (1H, d, *J* = 5.1 Hz), 8.37 (1H, s), 8.80 (1H, s), 9.97 (1H, s), 10.09 (1H, s).

[4-(Trifluoromethyl)thiophen-2-yl]methanol (90). To a solution of 88 (7.06 g, 39.2 mmol) in MeOH (50 mL) was added NaBH₄ (1.48 g, 39.2 mmol) at 0 °C and the mixture was stirred for 10 min. The mixture was quenched with sat. NH₄Cl solution and extracted with EtOAc. The organic layer was separated, washed with sat. NH₄Cl solution and brine, dried over MgSO₄, and concentrated. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 100/0 to 85/15) to give the title compound (2.63 g, 37%) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 1.84–1.93 (1H, m), 4.81–4.87 (2H, m), 7.14 (1H, s), 7.66 (1H, s).

Methyl 5-iodothiophene-3-carboxylate (92). A mixture of **91** (3.48 g, 13.7 mmol), methyl iodide (1.29 mL, 20.6 mmol), K_2CO_3 (2.84 g, 20.6 mmol), and DMF (35 mL) was stirred at rt for 1 day. The mixture was poured into water and extracted with EtOAc. The extract was washed with brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 98/2 to 85/15) to give the title compound (3.62 g, 99%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 3.86 (3H, s) 7.66 (1H, s) 8.08 (1H, s).

Methyl 5-(trifluoromethyl)thiophene-3-carboxylate (93). To a solution of 92 (896 mg, 3.34 mmol), CuI (1.91 g, 10.0 mmol), and hexamethylphosphoramide (3.49 mL, 20.1 mmol) in DMF (15 mL) was added methyl 2,2-difluoro-2-(fluorosulfonyl)acetate (2.53 mL, 20.1 mmol) at rt. The mixture was stirred at 80 °C under N₂ atmosphere for 5 h. The mixture was neutralized with sat. NaHCO₃ solution and extracted with EtOAc. The organic layer was separated, washed with brine, dried over MgSO₄, and concentrated. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 99/1 to 85/15) to give the title compound (526 mg, 75%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 3.89 (3H, s) 7.86 (1H, s) 8.23 (1H, d, *J* = 1.0 Hz).

[5-(Trifluoromethyl)thiophen-3-yl]methanol (94). To a solution of 93 (523 mg, 2.49 mmol) in THF (10 mL) and MeOH (1 mL) was added NaBH₄ (2.20 g, 58.0 mmol) at rt. The mixture was stirred at 60 °C for 3 h. The mixture was quenched with water and extracted with EtOAc. The extract was washed with brine, dried over MgSO₄, and concentrated. The residue was purified by

column chromatography (silica gel, hexane/EtOAc = 90/10 to 50/50) to give the title compound (449 mg, 99%) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 1.71 (1H, t, *J* = 5.7 Hz), 4.70 (2H, d, *J* = 5.6 Hz), 7.39 (1H, s), 7.43 (1H, s).

Experiments concerning biological activities

Determination of hMCHR1 competitive inhibitory activity of test compound using binding assay. *1. Preparation of membrane fraction.* Using hMCHR1-expressing CHO cell clone 57,⁵⁷ MCHR1-expressing CHO cellular membrane fractions were prepared by the following method. In phosphate buffered saline (pH 7.4) supplemented with 5 mM EDTA (ethylenediaminetetraacetic acid) were respectively suspended human MCHR1-expressing CHO cells (1×10^8 cells) and centrifuged. Homogenate buffer [10 mL, 10 mM NaHCO₃, 5 mM EDTA, pH 7.5, 0.5 mM PMSF (phenylmethylsulfonyl fluoride), 20 mg/L leupeptin, 4 mg/L E-64, 1 mg/L pepstatin A] was added to the pellets of the cells and, using Polytron Homogenizer, the mixture was homogenated. The supernatant obtained after centrifugation at 400 × g for 10 min was further centrifuged at 100,000 × g for 1 h to give precipitate of the membrane fraction. The precipitate were suspended in 2 mL of assay buffer [20 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.5 mM PMSF, 20 mg/L leupeptin, 4 mg/L E-64, 1 mg/L pepstatin A]. The membrane fractions were suspended in assay buffer to a protein concentration of 2 mg/mL, and after dispensing, preserved at -80 °C and used upon thawing each time when in use.

2. Binding assay. An MCHR1-expressing CHO cellular membrane fraction (173 μ L) diluted with an assay buffer was dispensed to a 96 well polypropylene plate (3363, Corning). DMSO solution (2 μ L), 33 μ M cold MCH (1–19) diluted with DMSO solution (2 μ L), or a test compound solution diluted with DMSO solution to various concentrations (2 μ L) was added, and lastly, [¹²⁵I]-MCH(4– 19) diluted with assay buffer (hereinafter, sometimes to be referred to as "hot MCH", 25 μ L) was added to each well. The mixture was reacted with stirring at rt for 1 h, and the plate was set on FilterMate Harvester (PerkinElmer). Using a polyethyleneimine-treated glass filter plate (GF/C, PerkinElmer), which had been previously set, the plate was suction-filtered and washed three times with washing buffer (50 mM Tris-HCl buffer pH 7.5). The glass filter plate was dried, MicroScint 0 (PerkinElmer) was added at 25 μ L/well, and the resulting radioactivity was measured by TopCount liquid scintillation counter (PerkinElmer). The binding inhibition rate of the test compound was calculated by the following formula.

Binding inhibition (%) = 100 - (radioactivity upon addition of test compound and hot MCH – radioactivity upon addition of cold MCH and hot MCH solution)/(radioactivity upon addition of DMSO solution and hot MCH – radioactivity upon addition of cold MCH and hot MCH solution) × 100

Measurement of MCH receptor 1 antagonistic activity of test compound using Ca²⁺ mobilization assay. Using an expression vector plasmid introduced with human MCHR1 gene for expression in animal cells, human MCHR1 gene was introduced into CHO cells (CHO dhfr⁻) by

Lipofectamine LTX (Invitrogen). The cells were cultured in selection MEMa medium [445 mL of MEMa medium without nucleic acid and added with 5 mL of Penicillin-Streptomycin (Invitrogen) and 50 mL of dialyzed fetal bovine serum]. Colony 24 clones grown in the selection medium, which were human MCHR1 gene-expressing CHO cell candidates, were selected. From these clones, clone #4 which showed the highest response to the change of Ca²⁺ concentration on stimulation by the addition of 25 nM ligand MCH (4–19) was selected by Ca^{2+} mobilization assay. In the following test, this human MCHR1-expressing CHO cell (clone #4) was used. An integrated dispensing function fluorometer (CellLux, PerkinElmer) was used for Ca²⁺ mobilization assay. The CHO cells were sown in a 96 well plate (type 3904, Corning) with a black wall and clear well bottom at a density of 20000 cells/well, and cultured in an incubator for about 24 h at 5% CO₂, 37 °C. The medium was removed, and the cells were washed with phosphate buffered saline (PBS). A Ca2+ indicator dye reagent (DOJINDO LABORATORIES, Ca screening no-wash kit Fluo4) was added at 100 µL/well, and the dye was allowed to penetrate into the cell for 30 min in an incubator at 5% CO₂, 37 °C. The plate was set on a plate reader. First, a test compound solution diluted with an assay buffer [10 mM HEPES (pH 7.4): 1 × Assay Buffer (DOJINDO LABORATORIES, attached to Ca screening no-wash kit Fluo4) containing 0.1% BSA] or DMSO solution was added at 50 µL/well, and then ligand MCH (4–19) peptide (final concentration 2 nM) diluted with assay buffer or DMSO was added at 50 µL/well, during which changes in intracellular fluorescence were measured at 2 seconds intervals. The antagonistic activity of the test compound was calculated by the following formula and shown as an inhibition rate (%) wherein the intracellular fluorescence activity resulting from the stimulation by the addition of ligand MCH (4-19) peptide was 100% and that of the well added with DMSO solution alone was 0%.

Inhibitory rate (%) = 100 - [fluorescence activity upon addition of test compound and MCH(4–19) peptide solution – fluorescence activity upon addition of DMSO solution only]/[fluorescence activity upon addition of DMSO solution and MCH(4–19) peptide solution – fluorescence activity upon addition of DMSO solution only] × 100

Evaluation of PLsis inducing potential.58 DMEM medium, L-glutamine, penicillin-streptomycin,pyruvicacid,andN-(7-nitrobenz-2-oxa-l,3-diazol-4-yl)-l,2-hexadecanoyl-sn-glycero-3-phosphoethanolaminetriethylammoniumsalt(NBD-PE)purchased from Invitrogen Corporation. As bovine serum albumin (BSA), a product of ThermoTrace Ltd. (Melbourne, Australia) was used, and as Amiodarone, a product of ICN (Costa Mesa,CA) was used. A test compound was used in the form of a 10 mM DMSO solution.

FBS was added at a final concentration of 5 vol% to DMEM medium supplemented with L-glutamine, pyruvic acid and penicillin-streptomycin and subjected to the experiment. Culture was performed using 5% carbon dioxide gas–95% air as a gas phase in a CO₂ incubator at 37 °C.

HepG2 cells were suspended in a culture medium at 50×10^4 cells/mL, plated in a 96 well plate at 50 µL/well and precultured for 24 hr. After preculture, the culture medium was removed, a culture medium containing 60 µM NBD-PE was added at 50 µL/well, and a culture medium containing 0.6 µM or 20 µM test compounds were each added at 50 µL/well to HepG2 cells, and the cells were cultured for 24 hr. As a positive control, Amiodarone was used at a final concentration of 10 µM.

After exposure to the test compound for 24 hr, the fluorescence intensity (Ex. 485 nm, Em. 538 nm) of NBD-PE uptaken by the cells was measured by a fluorometer. The measurement value with addition of $0 \,\mu\text{M}$ test compound solution was subtracted as a blank, a relative value to the measurement value with addition of $10 \,\mu\text{M}$ Amiodarone was calculated, and the maximum value per unit concentration of the test compound was obtained as a phospholipidosis inducing potential.

Evaluation of time-dependent inhibition (TDI) of CYP3A4 (single-point assay). Human liver microsomes were purchased from Xenotech, LLC (Lenexa, KS). A mixture of a test compound (30 μ M) and microsomes in phosphate buffer (pH 7.4) was preincubated at 37 °C in the presence of an NADPH-generating system containing MgCl₂, glucose-6-phosphate, β -NADP⁺, and glucose-6-phosphate dehydrogenase. After preincubation, enzymatic activity of CYP3A4 in the incubation mixture was determined by measuring 6 β -hydroxytestosterone in the reaction with testosterone by UPLC. The activity (% of control) for each preincubation time was calculated to the following: {(activity with test compound)/(activity with DMSO)} × 100. The remaining activity (% of control)}/{activity without preincubation (% of control)} × 100.

GSH trapping experiment. *1. Instrument.* LC/MS system consisted of UPLC system (Waters, Milford, MA) and SYNAPT Q-TOF mass spectrometer (Waters) equipped with an electrospray ionization source.

2. *Microsomal incubation with GSH.* For the GSH trapping experiments each test compound (30 μ M) was incubated with human liver microsomes (final protein concentration 1.0 mg/mL; XenoTech, LLC. Lenexa, KS) in the presence of an NADPH-regenerating system and GSH (1 mM) in phosphate buffer (pH 7.4) at 37 °C. The reaction was terminated after 60 min by the addition of an equal volume of acetonitrile. After centrifugation at 15000 rpm for 10 min, 5 μ L of supernatant was injected into LC/MS system.

3. LC/MS/MS analysis. Microsomal incubation mixtures were separated on a BEH C_{18} column (1.7 μ m, 2.1 \times 100 mm; Waters) using solvent A (5% acetonitrile in 5 mM aqueous ammonium acetate) and solvent B (90% acetonitrile in 50 mM aqueous ammonium acetate). At a flow rate of 0.5 mL/min, the initial elution gradient was 98% solvent A and 2% solvent B with a linear gradient to

70% solvent B over 10 min and returned to initial condition. The column was allowed to equilibrate at 2% solvent B for 5 min before the next injection. The column temperature was 40 °C and the eluents were monitored with a PDA detector. The mass spectrometry was run in positive ion mode. The source settings were 1.20 kV capillary voltage, 35 V sampling corn voltage, 120 °C source temperature, 350 °C desolvation temperature. GSH adducts were analyzed based on their product ion spectra of the protonated molecules upon CID ramped from 15 V to 40 V.

Pharmacokinetic analysis in rat cassette dosing. Test compounds were administered intravenously (0.1 mg/kg) or orally (1 mg/kg, suspended in 0.5% methylcellulose aqueous solution) by cassette dosing to nonfasted rats. After administration, blood samples were collected and centrifuged to obtain the plasma fraction. The plasma samples were deproteinized by mixing with acetonitrile followed by centrifugation. The compound concentrations in the supernatant were measured by LC/MS/MS.

Evaluation of anorectic effect using male DIO F344/Jcl rats. Male DIO F344/Jcl rats (50 weeks old) fed with a high-fat diet (D12451: Research Diets) from 5 weeks old were used. From before the start of experiment, the rats were singly housed, given a powder high-fat diet (D12451M: Research Diets), and habituated to oral administration with tap water. The rats were grouped based on both the food intake and the body weight of day–1. The rats were orally administered vehicle (0.5% methylcellulose solution) or compounds suspended in vehicle at 2 mL/kg 1h before the onset of dark period for 2 days (6 rats per group). The food intake for 2 days from the initial administration was measured. The food intake inhibition rate of each compound administration group to the vehicle group was calculated.

Evaluation of anti-obesity effect using male DIO F344/Jcl rats. DIO F344 rats (45 weeks old) were habituated and grouped prior to treatment as described above. The rats were orally administered vehicle (0.5% methylcellulose solution) or compounds suspended in vehicle at 2 mL/kg for 2 weeks (6 rats per group). Sibutramine was used as a positive control in this study. The compounds were administered after measurement of body weight at 1–3 h before the onset of dark period and food intake was measured every 2 or 3 days. The change in body weight was presented as percentage from initial body weight.

In vivo selectivity of anorectic effect by using MCHR1-deficient mice. Male MCHR1-deficient mice and wild-type litter mate mice (45 weeks old) loaded with a high-fat diet (D12451) from 5 weeks of age were used. Before the start of the experiment, the mice were independently raised, a high-fat diet (D12451) was given, and tap water (0.5 mL) was administered for acclimation. The

mice were grouped on the basis of food intake from day–3 to day–1 and body weight of day–1 as indices. Each group was orally administered vehicle (0.5% methylcellulose solution) or compounds suspended in vehicle at 10 mL/kg for 3 days (6 mice per group). Food intake for 3 days was measured.

References and notes

- 1. World Health Organization (WHO) Home Page. http://www.who.int/topics/obesity/en/
- (a) Aguilar-Valles, A.; Inoue, W.; Rummel, C.; Luheshi, G. N. *Neuropharmacology* 2015, *96*, 124–134.
 (b) Kakkar, A. K.; Dahiya, N. *Eur. J. Intern. Med.* 2015, *26*, 89–94.
- (a) Hrt, R. T.; Edakkanambeth Varayil, J.; Ebbert, J. O. *Curr. Gastroenterol. Rep.* 2014, *16*, 394.
 (b) Boulghassoul-Pietrzykowska, N.; Franceschelli, J.; Still, C. *Curr. Opin. Endocrinol. Diabetes Obes.* 2013, *20*, 407–411.
- 4. Dietrich, M. O.; Horvath, T. L. Nat. Rev. Drug Discov. 2012, 11, 675–691.
- Heal, D. J.; Aspley, S; Prow, M. R.; Jackson, H. C.; Martin, K. F.; Cheetham, S. C. Int. J. Obes. 1998, 22, S18–S28.
- James, W. P.; Caterson, I. D.; Coutinho, W.; Finer, N.; Van Gaal, L. F.; Maggioni, A. P.; Torp-Pedersen, C.; Sharma, A. M.; Shepherd, G. M.; Rode, R. A.; Renz, C. L. N. *Engl. J. Med.* 2010, *363*, 905–917.
- Pi-Sunyer, F. S.; Aronne, L. J.; Heshmai, H. M. Devin, J.; Rosenstock, J. J. Am. Med. Assoc. 2006, 295, 761–775.
- 8. Yanovski, S. Z.; Yanovski, J. A. J. Am. Med. Assoc. 2014, 311, 74-86.
- (a) Bittencourt, J. C. *Gen. Comp. Endocrinol.* 2011, *172*, 185–197. (b) Bittencourt, J. C.; Presse, F.; Arias, C.; Peto, C.; Vaughan, J.; Nahon, J. L.; Vale, W.; Sawchenko, P. E. *J. Comp. Neurol.* 1992, *319*, 218–245.
- (a) Bächner, D.; Kreienkamp, H.; Weise, C.; Buck, F.; Richter, D. *FEBS Lett.* 1999, 457, 522–524.
 (b) Chambers, J.; Ames, R. S.; Bergsma, D.; Muir, A.; Fitzgerald, L. R.; Hervieu, G.; Dytko, G. M.; Foley, J. J.; Martin, J.; Liu, W. S.; Park, J.; Ellis, C.; Ganguly, S.; Konchar, S.; Cluderay, J.; Leslie, R.; Wilson, S.; Sarau, H. M. *Nature* 1999, 400, 261–265. (c) Lembo, P. M.; Grazzini, E.; Cao, J.; Hubatsch, D. A.; Pelletier, M.; Hoffert, C.; St-Onge, S.; Pou, C.; Labrecque, J.; Groblewski, T.; O'Donnell, D.; Payza, K.; Ahmad, S.; Walker, P. *Nat. Cell. Biol.* 1999, *1*, 267–271. (d) Saito, Y.; Nothacker, H. P.; Wang, Z.; Lin, S. H.; Leslie, F.; Civelli, O. *Nature* 1999, 400, 265–269. (e) Shimomura, Y.; Mori, M.; Sugo, T.; Ishibashi, Y.; Abe, M.; Kurokawa, T.; Onda, H.; Nishimura, O.; Sumino, Y.; Fujino, M. *Biochem. Biophys. Res. Commun.* 1999, 261, 622–626
- 11. (a) Hervieu, G. J.; Cluderay, J. E.; Harrison, D.; Meakin, J.; Maycox, P.; Nasir, S.; Leslie, R. A. *Eur. J. Neurosci.* 2000, *12*, 1194–1216. (b) Schlumberger, S. E.; Talke-Messerer, C.; Zumsteg, U.; Eberle, A. N. *J. Recept. Sig. Transd.* 2002, *22*, 509–531.
- (a) An, S.; Cutler, G.; Zhao, J. J.; Huang, S. G.; Tian, H.; Li, W.; Liang, L.; Rich, M.; Bakleh,
 A.; Du, J.; Chen, J. L.; Dai, K. *Proc. Natl. Acad. Sci. U. S. A.* **2001**, *98*, 7576–7581. (b) Hill, J.;
 Duckworth, M.; Murdock, P.; Rennie, G.; Sabido-David, C.; Ames, R. S.; Szekeres, P.; Wilson,

S.; Bergsma, D. J.; Gloger, I. S.; Levy, D. S.; Chambers, J. K.; Muir, A. I. *J. Biol. Chem.* 2001, 276, 20125–20129. (c) Mori, M.; Harada, M.; Terao, Y.; Sugo, T.; Watanabe, T.; Shimomura, Y.; Abe, M.; Shintani, Y.; Onda, H.; Nishimura, O.; Fujino, M. *Biochem. Biophys. Res. Commun.* 2001, 283, 1013–1018. (d) Rodriguez, M.; Beauverger, P.; Naime, I.; Rique, H.; Ouvry, C.; Souchaud, S.; Dromaint, S.; Nagel, N.; Suply, T.; Audinot, V.; Boutin, J. A.; Galizzi, J. P. *Mol. Pharmacol.* 2001, 60, 632–639. (e) Sailer, A. W.; Sano, H.; Zeng, Z.; McDonald, T. P.; Pan, J.; Pong, S. S.; Feighner, S. D.; Tan, C. P.; Fukami, T.; Iwaasa, H.; Hreniuk, D. L.; Morin, N. R.; Sadowski, S. J.; Ito, M.; Ito, M.; Bansal, A.; Ky, B.; Figueroa, D. J.; Jiang, Q.; Austin, C. P.; MacNeil, D. J.; Ishihara, A.; Ihara, M.; Kanatani, A.; Van der Ploeg, L. H.; Howard, A. D.; Liu, Q. *Proc. Natl. Acad. Sci. U. S. A.* 2001, 98, 7564–7569. (f) Wang, S.; Behan, J.; O'Neill, K.; Weig, B.; Fried, S.; Laz, T.; Bayne, M.; Gustafson, E.; Hawes, B. E. *J. Biol. Chem.* 2001, 276, 34664–34670. (g) Chee, M. J.; Pissios, P.; Prasad, D.; Maratos-Flier, E. *Endocrinology*, 2014, *155*, 81–88. (h) Chen, X.; Mihalic, J.; Fan, P.; Liang, L.; Lindstrom, M.; Wong, S.; Ye, Q.; Fu, Y.; Jaen, J.; Chen, J. L.; Dai, K.; Li, L. *Bioorg. Med. Chem. Lett.* 2012, 22, 363–366.

- Elliott, J. C.; Harrold, J. A.; Brodin, P.; Enquist, K.; Bäckman, A.; Byström, M.; Lindgren, K.; King, P.; Williams, G. *Mol. Brain Res.* 2004, *128*, 150–159.
- Qu, D.; Ludwig, D. S.; Gammeltoft, S.; Piper, M.; Pelleymounter, M. A.; Cullen, M. J.; Mathes, W. F.; Przypek, R.; Kanarek, R.; Maratos-Flier, E. *Nature* 1996, *380*, 243–247.
- 15. Huang, Q.; Viale, A.; Picard, F.; Nahon, J.; Richard, D. *Neuroendocrinology* **1999**, *69*, 145–153.
- Hanada, R.; Nakazato, M.; Matsukura, S.; Murakami, N.; Yoshimatsu, H.; Sakata, T. Biochem. Biophys. Res. Commun. 2000, 268, 88–91.
- 17. Stricker-Krongrad, A.; Dimitrov, T.; Beck, B. Mol. Brain Res. 2001, 92, 43-48.
- (a) Della-Zuana, O.; Presse, F.; Ortola, C.; Duhault, J.; Nahon, J. L.; Levens, N. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 1289–1295. (b) Gomori, A.; Ishihara, A.; Ito, M.; Mashiko, S.; Matsushita, H.; Yumoto, M.; Ito, M.; Tanaka, T.; Tokita, S.; Moriya, M.; Iwaasa, H.; Kanatani, A. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E583–588. (c) Ito, M.; Gomori, A.; Ishihara, A.; Oda, Z.; Mashiko, S.; Matsushita, H.; Yumoto, M.; Ito, M.; Sano, H.; Tokita, S.; Moriya, M.; Iwaasa, H.; Kanatani, A. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E940-945.
- Ludwig, D. S.; Tritos, N. A.; Mastaitis, J. W.; Kulkarni, R.; Kokkotou, E.; Elmquist, J.; Lowell, B.; Flier, J. S.; Maratos-Flier, E. J. Clin. Invest. 2001, 107, 379–386.
- 20. (a) Shimada, M.; Tritos, N. A.; Lowell, B. B.; Flier, J. S.; Maratos-Flier, E. *Nature* 1998, *396*, 670–674. (b) Kokkotou, E.; Jeon, J. Y.; Wang, X.; Marino, F. E.; Carlson, M.; Trombly, D. J.; Maratos-Flier, E. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 2005, *289*, R117–124. (c) Chen, Y.; Hu, C.; Hsu, C. K.; Zhang, Q.; Bi, C.; Asnicar, M.; Hsiung, H. M.; Fox, N.; Slieker, L. J.;

Yang, D. D.; Heiman, M. L.; Shi, Y. *Endocrinology* 2002, *143*, 2469–2477. (d) Marsh, D. J.;
Weingarth, D. T.; Novi, D. E.; Chen, H. Y.; Trumbauer, M. E.; Chen, A. S.; Guan, X. M.; Jiang,
M. M.; Feng, Y.; Camacho, R. E.; Shen, Z.; Frazier, E. G.; Yu, H.; Metzger, J. M.; Kuca, S. J.;
Shearman, L. P.; Gopal-Truter, S.; MacNeil, D. J.; Strack, A. M.; MacIntyre, D. E.; Van der
Ploeg, L. H.; Qian, S. *Proc. Natl. Acad. Sci. U. S. A.* 2002, *99*, 3240–3245.

- 21. Cheon, H. G. Handb. Exp. Pharmacol. 2012, 383-403.
- Goldstein, C.; Schroeder, J. C.; Fortin, J. P.; Goss, J. M.; Schaus, S. E.; Beinborn, M.; Kopin, A. S. J. Pharmacol. Exp. Ther. 2010, 335, 799–806.
- (a) Shimomura, Y.; Mori, M.; Sugo, T.; Ishibashi, Y.; Abe, M.; Kurokawa, T.; Onda, H.; Nishimura, O.; Sumino, Y.; Fujino, M. *Biochem. Biophys. Res. Commun.* **1999**, *261*, 622–626.
 (b) Chambers, J.; Ames, R. S.; Bergsma, D.; Muir, A.; Fitzgerald, L. R.; Hervieu, G.; Dytko, G. M.; Foley, J. J.; Martin, J.; Liu, W. -S.; Park, J.; Ellis, C.; Ganguly, S.; Konchar, S.; Cluderay, J.; Leslie, R.; Wilson, S.; Sarau, H. M. *Nature* **1999**, *400*, 261–265. (c) Saito, Y.; Nothacker, H. P.; Wang, Z.; Lin, S. H. S.; Leslie, F.; Civelli, O. *Nature* **1999**, *400*, 265–269. (d) Lembo, P. M. C.; Grazzini, E.; Cao, J.; Hubatsch, D. A.; Pelletier, M.; Hoffert, C.; St-Onge, S.; Pou, C.; Labrecque, J.; Groblewski, T.; O'Donnell, D.; Payza, K.; Ahmad, S.; Walker, P. *Nat. Cell Biol.* **1999**, *1*, 267–271. (e) Bächner, D.; Kreienkamp, H.; Weise, C.; Buck, F.; Richter, D. *FEBS Lett.* **1999**, *457*, 522–524.
- Takekawa, S.; Asami, A.; Ishihara, Y.; Terauchi, J.; Kato, K.; Shimomura, Y.; Mori, M.; Murakosyi, H.; Kato, K.; Suzuki, N.; Nishimura, O.; Fujino, M. *Eur. J. Pharmacol.* 2002, 438, 129–135.
- (a) Kamata, M.; Yamashita, T.; Imaeda, T.; Tanaka, T.; Terauchi, J.; Miyamoto, M.; Ora, T.; Tawada, M.; Endo, S.; Takekawa, S.; Asami, A.; Suzuki, N.; Nagisa, Y.; Nakano, Y.; Watanabe, K.; Ogino, H.; Kato, K.; Kato, K.; Ishihara, Y. *Bioorg. Med. Chem.* 2011, *19*, 5539–5552. (b) Kasai, S.; Kamaura, M.; Kamata, M.; Aso, K.; Ogino, H.; Nakano, Y.; Watanabe, K.; Kaisho, T.; Tawada, M.; Nagisa, Y.; Takekawa, S.; Kato, K.; Suzuki, N.; Ishihara, Y. *Bioorg. Med. Chem.* 2011, *19*, 6261–6273. (c) Kamata, M.; Yamashita, T.; Imaeda, T.; Masada, S.; Kamaura, M.; Kasai, S.; Hara, R.; Sasaki, S.; Takekawa, S.; Asami, A.; Kaisho, T.; Suzuki, N.; Ashina, S.; Ogino, H.; Nakano, Y.; Nagisa, Y.; Kato, K.; Kato, K.; Ishihara, Y. *J. Med. Chem.* 2012, *55*, 2353–2366.
- 26. (a) Méndez-andino, J. L.; Wos, J. A. *Drug Discovery Today* 2007, *12*, 972–979. (b) Högberg, T.; Frimurer, T. M.; Sasmal, P. K. *Bioorg. Med. Chem.* 2012, *22*, 6039–6047.
- (a) Sasmal, S.; Balaji, G.; Kanna Reddy, H. R.; Balasubrahmanyam, D.; Srinivas, G.; Kyasa, S.; Sasmal, P. K.; Khanna, I.; Talwar, R.; Sresh, J.; Jadhav, V. P.; Muzeeb, S.; Syashikumar, D.; Harinder Reddy, K.; Sebastian, V. J.; Frimurer, T. M.; Rist, Ø.; Elster, L.; Högberg, T. *Bioorg. Med. Chem. Lett.* 2012, *22*, 3157–3162. (b) Sasmal, S.; Balasubrahmanyam, D.; Kanna Reddy,

H. R.; Balaji, G.; Srinivas, G.; Cheera, S.; Abbineni, C.; Sasmal, P. K.; Khanna, I.; Sevastian, V. J.; Jadhav, V. P.; Singh, M. P.; Talwar, R.; Suresh, J.; Shashikumar, D.; Harinder Reddy, K.; Sihorkar, V.; Frimurer, T. M.; Rist, Ø.; Elster, L.; Högberg, T. T. *Bioorg. Med. Chem. Lett.* **2012**, *22*, 3163–3162.

- 28. Ploemen, J. P.; Kelder, J.; Hafmans, T.; van de Sant, H.; van Burgsteden, J. A.; Saleminki, P. J.; van Esch, E. *Exp. Toxicol. Pathol.* **2004**, *55*, 347–355.
- 29. Rankovic, Z. J. Med. Chem. 2015, 58, 2584-2608.
- 30. Hitchcock, S. A.; Pennington, L. D. J. Med. Chem. 2006, 49, 7559-7583.
- 31. *Molecular Operating Environment (MOE)*, 2012.10; Chemical Computing Group Inc.; Montreal, Canada, 2012.
- 32. Staben, S.; Feng, J.; Loke, P. L.; Montalbetti, C. A. US2012/0214762 A1, 2012.
- 33. Ley, S. V.; Thomas, A. W. Angew. Chem. Int. Ed. 2003, 42, 5400-5449.
- 34. (a) Chan, D. M. T.; Monaco, K. L.; Wang, R. P.; Winters, M. P. *Tetrahedron Lett.* 1998, *39*, 2933–2936. (b) Evans, D. A.; Katz, J. L.; West, T. R. *Tetrahedron Lett.* 1998, *39*, 2937–2940. (c) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Winters, M. P.; Chan, D. M. T.; Combs, A. *Tetrahedron Lett.* 1998, *39*, 2941–2944.
- Filipski, K. J.; Guzman-Perez, A.; Bian, J.; Perreault, C.; Aspnes, G. E.; Didiuk, M. T.; Dow, R. L.; Hank, R. F.; Jones, C. S.; Maguire, R. J.; Tu, M.; Zeng, D.; Liu, S.; Knafels, J. D.; Litchfield, J.; Atkinson, K.; Derksen, D. R.; Bourbonais, F.; Gajiwala, K. S.; Hickey, M.; Johnson, T. O.; Humphries, P. S.; Pfefferkorn, J. A. *Bioorg. Med. Chem. Lett.* 2013, 23, 4571–4578.
- 36. Leeson, P. D.; Springthorpe, B. Nat. Rev. Drug Discov. 2007, 6, 881-890.
- 37. Nakashima, S.; Yamamoto, K.; Arai, Y.; Ikeda, Y. Chem. Pharm. Bull. 2013, 61, 1228–1238.
- Diemer, V.; Chaumeil, H.; Defoin, A.; Fort, A.; Boeglin, A.; Carré, C. *Eur. J. Org. Chem.* 2008, 1767–1776.
- 39. Swinnen, D.; Morandi, F. PCT Int. Appl. WO03/092979 A1, 2003.
- van Veldhoven, J. P.; Blad, C. C.; Artsen, C. M.; Klopman, C.; Wolfram, D. R.; Abdelkadir, M. J.; Lane, J. R.; Brussee, J.; Ijzerman, A. P. *Bioorg. Med. Chem. Lett.* **2011**, *21*, 2736–2739.
- Kishino, H.; Moriya, M.; Sakamoto, T.; Takahashi, H.; Sakuraba, S.; Suzuki, T.; Kanatani, A. *PCT Int. Appl.* WO2005016928, 2005.
- 42. Stewart, J. J. J. Mol. Model. 2004, 10, 155-164.
- 43. ACD Labs ver. 12.0, Advanced Chemistry Development, Inc., Toronto, Ontario, Canada, http://www.acdlabs.com.
- 44. Topological PSA (TPSA) was reported to be identical with PSA, while the computation speed is 2–3 orders of magnitude faster. See: Ertl, P.; Rohde, B.; Selzer, P. *J. Med. Chem.* **2000**, *43*, 3714–3717.

- 45. (a) Kohara, Y.; Kubo, K.; Imamiya, E.; Wada, T.; Inada, Y.; Naka, T. *J. Med. Chem.* 1996, *39*, 5228–5235. (b) Ojima, M.; Igata, H.; Tanaka, M.; Sakamoto, H.; Kuroita, T.; Kohara, Y.; Kubo, K.; Fuse, H.; Imura, Y.; Kusumoto, K.; Nagaya, H. *J. Pharmacol. Exp. Ther.* 2011, *336*, 801–808.
- Chandrappa, S.; Vinaya, K.; Ramakrishnappa, T.; Rangappa, K. S. Synlett, 2010, 20, 3019– 3022.
- 47. (a) Chen, W.; Caceres-Cortes, J.; Zhang, H.; Zhang, D.; Humphreys, W. G.; Gan, J. *Chem. Res. Toxicol.* 2011, *24*, 663–669. (b) Dalvie, D. K.; Kalgutkar, A. S.; Khojasteh-Bakht, S. C.; Obach, R. S.; O'Donnell, J. P. *Chem Res Toxicol.* 2002, *153*, 269–299.
- 48. Valadon, P.; Dansette, P. M.; Girault, J. P.; Amar, C.; Mansuy, D. *Chem. Res. Toxicol.* **1996**, *9*, 1403–1413.
- (a) Washburn, W. N.; Manfredi, M.; Devasthale, P.; Zhao, G.; Ahmad, S.; Hernandez, A.; Robl, J. A.; Wang, W.; Mignone, J.; Wang, Z.; Ngu, K.; Pelleymounter, M. A.; Longhi, D.; Zhao, R.; Wang, B.; Huang, N.; Flynn, N.; Azzara, A. V.; Barrish, J. C.; Rohrbach, K.; Devenny, J. J.; Rooney, S.; Thomas, M.; Glick, S.; Godonis, H. E.; Harvey, S. J.; Cullen, M. J.; Zhang, H.; Caporuscio, C.; Stetsko, P.; Grubb, M.; Maxwell, B. D.; Yang, H.; Apedo, A.; Gemzik, B.; Janovitz, E. B.; Huang, C.; Zhang, L.; Freeden, C.; Murphy, B. J. *J. Med. Chem.* 2014, *57*, 7509–7522. (b) Devasthale, P.; Wang, W.; Mignone, J.; Renduchintala, K.; Radhakrishnan, S.; Dhanapal, J.; Selvaraj, J.; Kuppusamy, R.; Pelleymounter, M. A.; Longhi, D.; Huang, N.; Flynn, N.; Azzara, A. V.; Rohrbach, K.; Devenny, J.; Rooney, S.; Thomas, M.; Glick, S.; Godonis, H.; Harvey, S.; Cullen, M. J.; Zhang, H.; Caporuscio, C.; Stetsko, P.; Grubb, M.; Huang, C.; Zhang, L.; Freeden, C.; Murphy, B. J. Rooney, S.; Thomas, M.; Glick, S.; Godonis, H.; Harvey, S.; Cullen, M. J.; Zhang, H.; Caporuscio, C.; Stetsko, P.; Grubb, M.; Huang, C.; Zhang, L.; Freeden, C.; Murphy, B. J.; Robny, S.; Thomas, M.; Glick, S.; Godonis, H.; Harvey, S.; Cullen, M. J.; Zhang, H.; Caporuscio, C.; Stetsko, P.; Grubb, M.; Huang, C.; Zhang, L.; Freeden, C.; Murphy, B. J.; Robl, J. A.; Washburn, W. N. *Bioorg. Med. Chem. Lett.* 2015, *25*, 4412–4418.
- Terrasson, V.; Michaux, J.; Gaucher, A.; Wehbe, J.; Marque, S.; Prim, D.; Campagne, J. M. *Eur. J. Org. Chem.* 2007, 5332–5335.
- 51. Stevens, K. L.; Jung, D. K.; Alberti, M. J.; Badiang, J. G.; Peckham, G. E.; Veal, J. M.; Cheung, M.; Harris, P. A.; Chamberlain, S. D.; Peel, M. R. *Org. Lett.* **2005**, *7*, 4753–4756.
- (a) Tomosaka, H.; Omata, S.; Hasegawa, E.; Anzai, K. *Biosci. Biotech. Biochem.* 1997, 61, 1121–1125.
 (b) Albertini, S.; Bös, M.; Gocke, E.; Kirchner, S.; Muster, W.; Wichmann, J. *Mutagenesis* 1998, 13, 397–403.
- 53. Creencia, E. C.; Kosaka, M.; Muramatsu, T.; Kobayashi, M.; Iizuka, T.; Horaguchi, T. J. *Heterocyclic Chem.* **2009**, *46*, 1309–1317.
- 54. Duan, J. X.; Chen, Q. Y. J. Chem. Soc., Perkin Trans. 1. 1994, 46, 725-730.
- (a) Maron, D. M.; Ames, B. N. *Mutat. Res.* **1983**, *113*, 173–215. (b) Gatehouse, D.; Haworth,
 S.; Cebula, T.; Gocke, E.; Kier, L.; Matsushima, T.; Melcion, C.; Nohmi, T.; Venitt, S.; Zeiger,
 E. *Mutat. Res.* **1994**, *312*, 217–233.

- Ellis, J. M.; Altman, M. D.; Bass, A.; Butcher, J. W.; Byford, A. J.; Donofrio, A.; Galloway, S.; Haidle, A. M.; Jewell. J.; Kelly. N.; Leccese, E. K.; Lee, S.; Maddess, M.; Miller, J. R.; Moy, L. Y.; Osimboni, E.; Otte, R. D.; Reddy, M. V.; Spencer, K.; Sun, B.; Vincent, S. H.; Ward, G. J.; Woo, G. H.; Yang, C.; Houshyar, H.; Northrup, A. B. J. Med. Chem. 2015, 58, 1929–1939.
- 57. Ishihara, Y.; Suzuki, N.; Takekawa, S. PCT Int. Appl. WO01/82925 A1, 2001.
- Kasai, S.; Igawa, H.; Takahashi, M.; Maekawa, T.; Kakegawa, K.; Yasuma, T.; Kina, A.; Aida, J.; Khamrai, U.; Kundu, M. *PCT Int. Appl.* WO13/105676 A1, **2013**.