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Abstract

Indonesia is one of megadiverse countries that hold a huge number of world’s
biodiversity. Indonesia is a home for more than 1200 species of freshwater fish. Owing to
human activities, this biodiversity is under serious threats. Due to their inability to disperse
through non-freshwater environments, freshwater fish are highly vulnerable to pollution and
environmental changes. Basic scientific information on, e.g., taxonomy, phylogeny, ecology,
and genetic diversity should be urgently collected before they disappear.

Small freshwater fishes in genus Rasbora (87 valid species) are distributed in a large
geographical area, ranging from western India to Lesser Sunda Islands of Indonesia, as far as
Lombok and Sumbawa Islands. Among them, 66 species occur in Indonesia. Rasbora
lateristriata was described from Java Island but its taxonomy, phylogeny, and distributional
boundary have not been fully studied. This species occur in both western (Java and Bali
Islands) and eastern (Lombok and Sumbawa Islands) sides of Wallace’s Line, a geographical
barrier between Indomalaya Ecozone in the west with fauna of the Asian origin and
Australasia Ecozone in the east with those of the Australian origin. When and how this
species crossed Wallace’s Line is one of the biggest enigmas in the historical biogeography of
this region. Rasbora baliensis was described as a species endemic to Balinese lakes but its
taxonomic status has been controversial in relation to R. lateristriata.

I collected rasbora samples from 47 freshwater localities of Java and five neighboring
Islands, which included 236 individuals assignable to R. lateristriata or R. baliensis. |
extracted DNA from several individuals representing each locality, amplified a part of 4 genes
(mitochondrial COI and Cytb genes and nuclear RAG1 and opsin genes), and sequenced
them. These genes were also sequenced for a representative individual of other Rasbora
species that I collected. Molecular phylogenetic analyses were conducted with these DNA

sequences and those obtained from public databases for additional species. I also conducted



morphological analyses with many meristic and morphometric characters, including ones that
were used to describe R. baliensis by Brittan (1954).

Molecular analyses using four genes, as well as morphological analyses featuring the
body color pattern consistently supported that the currently recognized R. lateristriata forms a
species complex including at least four major lineages that possibly represent different
species. In one of the major lineages, Balinese individuals clustered tightly with those from
East Javanese, Lombok and Sumbawa localities, calling for taxonomic revision on R.
baliensis. The other three major lineages occur in distinct regions of central, west-central, and
western Java and they can be clearly discriminated by the combination of melanophore
pigment patterns in the basicaudal blotch and the supra anal pigment.

Molecular phylogeny of this study suggested west-to-east divergences of the R.
lateristriata species complex. R. lateristriata likely had an origin in Sumatra or western parts
of Java and then migrated to the east before it crossed Wallace’s Line, colonizing Lombok
and Sumbawa Islands. Based on the relaxed-clock Bayesian estimation of divergence times
using the nuclear gene sequences, the divergences of this species complex in Java Island
probably occurred from the late Miocene to Plio-Pleistocene. The dispersal over Wallace’s
Line occurred very recently (less than five hundred thousand years ago) either naturally or by
human introduction.

In conclusion, the present study revealed some hidden biodiversity on Rasbora fish in
Java, provided new molecular and morphological evidence to revise the taxonomy of R.
lateristriata and R. baliensis, and proposed a new hypothesis on the origin and migrational
pathway of the R. lateristriata species complex. As their natural habitats are rapidly
deteriorated by human activities, many freshwater fish species other than the rasboras await
molecular and morphological investigations. As demonstrated in this study, multidisciplinary
approaches by field sampling, morphological investigations, molecular experiments, and
computational analyses will be effective to tackle complex evolutionary issues and provide

basic scientific knowledge necessary to design conservation plans on Indonesian fauna.



Glossary of specialized terms

Bayesian method: a method using Bayesian principle for estimating posterior probabilities of
phylogenetic trees based on observed molecular data under a particular model of
sequence change and its optimized parameters. Markov chain Monte Carlo (MCMC)
process is usually employed to heuristically search for better trees in multi-dimensional
space of trees and parameters. MrBayes is a program for phylogenetic inference which
performs the Bayesian analysis

Biodiversity (Biological diversity): variability among living organisms, including plants,
animals and microbes. The biodiversity includes species diversity, genetic diversity
within species, and ecosystem diversity

Bootstrap: a procedure to assess the precision in estimating the phylogenetic tree by
resampling a random subset of the original data matrix (DNA sequences)

Clade (monophyletic group): a group of organisms (taxa) that include a common ancestor and
all descendants of that ancestor

Conspecific: an organism belonging to the same species

Cryptic species: two or more species with very similar morphological appearance (and thus
classified into a single species conventionally) but are genetically distinct in the species
level

Haplotype (haploid genotype): a group of genes within a chromosome of an organism which
is inherited from a single parent. Mitochondrial DNA genotype is sometimes called a
haplotype because mtDNA inherits maternally only from a mother to her children

Historical biogeography: a study of species distributions in a geographical region through the
geological time, elucidated by the phylogenetic study and distribution information

Lineage sorting: the random process of fixation of gene lineages along a species lineage

Maximum likelihood: the maximum likelihood method in phylogenetic analyses infers the
maximum likelihood tree that has the highest probability of realizing observed
molecular data under a particular model of sequence change and its parameters. One of
the popular softwares to perform phylogenetic inference based on the maximum
likelihood criterion is GARLI (Genetic Algorithm for Rapid Likelihood Inference)

MEGA (Molecular Evolutionary Genetic Analysis): a software package for conducting
various tasks in molecular evolutionary studies, e.g., sequence alignment, inferring
phylogenetic trees, estimating rates of molecular evolution, calculating genetic distances
and testing evolutionary hypotheses

Meristic: countable traits that can be used for identifying or describing a species, e.g., number

of fins, number of scales or number of gills



Morphometric: measurable or quantitative traits, e.g., size, distance or proportion in
morphological characters

Node: a connecting point in the phylogenetic tree, which represents a common ancestor of
descendants

Outgroup: an outgroup in phylogenetic analyses is a group of taxa (genes or organisms) that
can be used as a reference to determine the root position of ingroup taxa and infer the
evolutionary direction of character changes (i.e., ancestral vs. derived characters)

Phylogeny (phylogenetic tree): is a diagrammatic hypothesis about the evolutionary
relationships of a group of organisms or genes

Phylogeography: a study concerned with the principles and processes governing the
geographic distributions of genealogical lineages, especially those within and among
closely related species

Polymerase Chain Reaction (PCR): a technique in molecular biology to amplify a segment of
DNA into multiple copies

Quaternary glaciation: a cooling event in Quaternary period when the earth experienced
extreme cooling and the ice sheet was expanded globally. The Quaternary glacial
maxima appeared periodically from 2.58 million years ago to 11,000 years ago

Species complex: a group of closely related species with very similar morphological
appearance, so that the species delimitation between them is obscure

Sympatric: a distributional state of multiple organisms occurring within a locality or an area

Taxon (taxa in plural): a taxonomic group or unit, a group of one or more populations of an
organism or organisms seen by taxonomists to form a unit

Topology: a branching pattern of a phylogenetic tree

Type locality: a location where the designated type specimen was originally collected

Type specimen: is particular organismal individuals to which the scientific name of a species
was permanently attached according to the description based on these specimens.
Holotype is a main specimen which is designated in the original description of a species
by the original author. Paratype refers to several additional specimens designated
together with the holotype. Usually, a taxonomist describes new species by observing
several specimens. One specimen is assigned to the holotype and the rest is designated
as the paratype

Wallace’s Line: is a hypothetical faunal boundary which separates Asian and Australasian
faunas with different origins. Wallace’s Line runs through the Lombok Strait between
Bali and Lombok Islands and through the Makassar Strait between Borneo and

Sulawesi Islands in Indonesia
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Chapter 1: Introduction

1.1 Indonesia: a megadiverse country

Biological diversity or “biodiversity” was defined by United Nations of Environment
Programme as the variability among living organisms from all sources including terrestrial,
marine and other aquatic ecosystems and the ecological complexes of which they are part,
which includes the species diversity, genetic diversity, and ecosystem diversity (UNEP,
1992). Understanding the biodiversity is certainly related to the need of knowing fundamental
issues, e.g., how many living organisms (species) currently inhabit our planet. There is no
certain number on how many species are on earth and the comprehensive view on the global
biodiversity is far from complete. Several researchers proposed an approximate number of
global biodiversity ranging from 3 to 100 million species (Hamilton et al., 2010; May, 2010).
More recently, Mora et al. (2011) suggested a more precise number (8.7 million eukaryotic
species) from which only 1.2 million have been successfully described as valid species. In

other words, >85% of the earth’s species are unknown.

I Megadiverse Countries

Fig. 1. Seventeen megadiverse countries based on the diversity and number of endemism of
higher plants and vertebrates as proposed by Mittermeier et al. (1997). Indonesia was placed
in the second position after Brazil (see Table 1). The image was obtained from Mittermeier et
al. (1997).



More than 70% of the above-mentioned earth’s biodiversity concentrate on 17 countries
known as “Megadiverse Countries” (Mittermeier, 1988) (Fig. 1). A megadiverse country can
therefore be regarded as a country that holds a large portion of earth’s species. To be
classified as a megadiverse country, a country must hold two important criteria. First, a
country must have more than 5000 plant species that are considered to be endemic. Second, a
country must have marine ecosystem within its border (Mittermeier et al., 1997). Indonesia
unquestionably is extremely rich in biodiversity. Indonesia is also known as an archipelagic
island country. This country is a home to ~ 37000 higher plant species (~18500 of them are
endemic species) and more than 7000 vertebrates species (~2100 species are endemic), thus
being as one of the megadiverse countries (Table 1).

The next question is, what makes Indonesia possess huge biodiversity? Indonesia is an
archipelagic country located in an intriguing geographical location. This country includes
multiple ecozones: Indomalaya Ecozone in the west with fauna of the Asian origin and
Australasia Ecozone in the east with those of the Australian origin (Wallace, 1860; Metcalfe
et al., 2001). Wallacea (Sulawesi, Lombok, Sumbawa, Flores and other islands) is situated in
the middle between Sundaland (the Malay Peninsula, Sumatra, Borneo, Java and Bali) and
Near Oceania including Australia and New Guinea (Monk et al., 1997; Hall, 2009; Hall et al.,
2011). Sundaland is characterized by shallow depth (less than 200 m) in most of the area with
Wallace’s Line as an eastern boundary (Woodruff, 2003; Hall and Morley, 2004; Hall, 2008).
These geographical regions have long been associated with complex geological,
biogeographical, climatic and environmental histories. The unique and complex features of
this geographic region contribute to the high species richness and endemism of its biota

(Woodruft, 2003, 2010; Lohman et al., 2011; de Bruyn et al., 2014).
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1.2 Threats to Indonesian biodiversity

Although Indonesia holds a significant proportion of world’s biodiversity, its
biodiversity is currently under serious threats owing to human activities and/or environmental
change in an unprecedented speed. High economic growth in Indonesia is often associated
with the high rate of biodiversity loss. Increasing numbers of human populations and their
economic activities lead to the loss of biodiversity in all the three categories of its definition
(species, gene and ecosystem) through, e.g., habitat degradation by exploitation, pollution and
climatic change, overfishing (overhunting), and introduction of alien and invasive species
(Groom, 2005). For example, a century ago 90% of Borneo Island was covered with tropical
rainforests (Fig. 2). Since 1997, one million ha of Indonesian rainforests have been destroyed

every year (World Bank, 2001).

Fig. 2. A map showing the speed of deforestation in Borneo Island. The image is available
under permission from GRID-Arendal (http://www.grida.no/graphicslib/detail/extent-of-
deforestation-in-borneo-1950-2005-and-projection-towards-2020 119c).
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Recent data by International Union for Conservation of Nature (Baillie et al., 2004)
showed high numbers of threatened species in Indonesia. In mammals, there are 146
threatened species and 88 species of them are endemic. In birds, among 119 threatened
species, 69 are endemic. In amphibians and turtles, the numbers of threatened species and
endemic threatened species are 33/23 and 24/4, respectively. In addition, Indonesian
government, through the Government Regulation of the Republic Indonesia No. 7/1999 (PP
No0.7/1999), identified 294 species that should be prioritized for conservation. Therefore, it is
not surprising that Indonesia is categorized as one of the biodiversity hotspots with high
abundance of endemic species and considerable loss of habitats (Myers et al., 2000). If there
are no effective conservation actions, the biodiversity crisis in this country will be
unrecoverable in future.

Among vertebrate groups (e.g., mammals, birds, amphibians, turtles and marine fishes),
freshwater fishes are considered to be the most endangered. Rates of biodiversity loss or
extinction in freshwater fish are greater than those in other animal groups and this makes
conservation actions in freshwater fish become a priority (Burkhead, 2012; Reid at al., 2013).
There are at least five major threats to global freshwater biodiversity: overexploitation, water
pollution, flow modification, degradation of habitat, and invasion of exotic species (Dudgeon
et al., 2006). What causes freshwater fish to have higher rates to extinction? Freshwater fish is
a water-dependent organism with the limitation of dispersal constrained only within and
among drainages. Habitat isolation and dispersal limitation for a long period may lead to a
speciation event. In one hand, this situation is responsible for the high biodiversity and
endemism of freshwater fish. On the other hand, freshwater fish become highly vulnerable to
pollution and environmental change (Cambray and Bianco, 1998; Olden at al., 2010). A
population of freshwater fish may be wiped-out when its environment is disrupted by

pollution because of the inability to disperse through non-freshwater environments.



Basic scientific information on, e.g., taxonomy, phylogeny, ecology, and genetic
diversity is important for designing conservation management for freshwater fish. In addition,
historical biogeography illustrates the evolutionary history of a species on how past
environmental and/or geological events influenced its contemporary distribution.
Understanding how a species evolved and survived in the past in response to environmental
changes is also informative to predict its future sustainability (Avise, 2000; Olden et al.,
2010). As another example, population genetic studies play an important role in developing
effective conservation plans. Populations with low genetic diversity will be under a high risk
of extinction (Frankham, 2003, 2005).

Unfortunately, very few above-mentioned studies have been conducted in Indonesia so
far. As Indonesian biodiversity is decreasing in an enormous speed, many species are waiting
for the basic scientific research and subsequent conservation actions to ensure their
sustainability. Otherwise, they may become extinct before we are aware of their existence.
Especially, basic scientific research on Indonesian freshwater fish must be conducted as soon

as possible.

1.3 Modern approaches for studying the biodiversity

The basic but very important aspect for describing the biodiversity is how to accurately
recognize taxonomic status of a species. Most of the taxonomic information have been
obtained based on morphological characters. In fishes, a species can be distinguished from its
congeners (closely related organisms within the same genus) using either measurable
(morphometric) or countable (meristic) characters or combination of them. However, in some
cases, morphology-based approaches fail to distinguish individuals that have very similar
morphological appearance but actually belong to separate species (cryptic species). For
example, a morphologically similar Cuban freshwater fish Caribbean gambusia (Gambusia

puncticulata) was actually composed of four different cryptic species as revealed by



molecular analysis (Lara et al., 2010). In addition, the morphology-based approaches are
time-consuming in general and may be susceptible to misleading conclusions due to
homoplasious or adaptive character changes in morphology. A recent trend is therefore to use
molecular approaches together with morphological ones in investigating taxonomic and/or
phylogenetic status of a species (Hebert et al., 2003; Hebert and Gregory, 2005; Ward et al.,
2005).

DNA is a heritable material and a blueprint for making all organisms. The DNA
sequence varies between individuals in a species, as well as between species. Based on an
assumption that the degree of difference in DNA sequence between taxa (molecular
divergence) reflects their relatedness, we can estimate how close their relationship is. If two
taxa have very similar DNA sequences, it implicates that they are closely related with each
other and their direct common ancestor diverged very recently. In contrast, more distantly
related organisms in phylogeny will show higher molecular divergences as a consequence of
more base substitutions on each lineage after speciation. Phylogenetic relationships among
species can be inferred through a phylogenetic analysis using molecules (DNA or protein)
and/or their morphological traits (Nei and Kumar, 2000; Avise, 2004). A result of the
phylogenetic analyses is a tree-like pattern called a phylogeny or a phylogenetic tree, i.e., a
diagrammatic hypothesis that depicts evolutionary relationships among organisms under
study.

Molecular phylogenetic trees can be constructed by several methods involving
computational analyses: e.g., neighbor joining method (Saitou and Nei, 1987), maximum
parsimony method (Edwards and Cavalli-Sforza, 1963), maximum likelihood method
(Felsenstein, 1981) and Bayesian method (Rannala and Yang, 1996). In recent years with
highly developed computing environments, maximum likelihood and Bayesian methods have
been preferred because their conclusions are based on explicit principles for choosing the best

tree under certain models and parameters (reviewed in Yang and Rannala, 2012). The



maximum likelihood method is a method for inferring a tree that maximizes the probability of
realizing the observed molecular data under a specific model of base substitution and its
optimized parameters while Bayesian method finds topological relationships with the highest
posterior probability based on the observed data, model and parameters (Felsenstein, 1981;
Rannala and Yang, 1996; Nei and Kumar, 2000; Yang and Rannala, 2012).

The DNA barcoding was proposed by Herbert et al. (2003) for species identification by
rapid, accurate and automated procedures using a short and standardized gene region as a
molecular tag. A mitochondrial DNA region encoding cytochrome c oxidase subunit I (COI,
~ 655 bp) was selected as the barcode tag for animals due to its relatively high evolutionary
rate and absence of insertion-deletion patterns. For delimiting a species, the “Barcode Gap”
was proposed based on an idea that intraspecific variations in the COI sequences should have
smaller molecular divergences than interspecific variations. A recent study showed that the
species delimitation in many animal groups can be done with a threshold of 2% molecular
divergence in the DNA barcoding region and that individual species thus recognized can be
given a unique barcode index number (BIN, Ratnasingham and Hebert, 2013). Although the
concept of the DNA barcoding raised some controversies in the scientific community (e.g.,
Ebach and Holdrege, 2005; Hickerson et al., 2006), this approach has demonstrated its
effectiveness in many animal and plant groups, especially in freshwater fishes (Hubert et al.,

2008; Lara et al., 2010; Collins et al., 2012: Rosso et al., 2012; Young et al., 2013).

1.4 Indonesian freshwater fishes: rasboras

How many freshwater fish species are distributed in Indonesia? A survey conducted by
Kottelat et al. (1993) in western parts of Indonesia and Sulawesi discovered 964 species.
Further survey conducted in 1996 reported 79 additional species (Kottelat and Whitten, 1996).
Mittermeier et al. (1997) mentioned 1400 freshwater fish species is distributed in Indonesia.

More recent data provided by FishBase (Froese and Pauly, 2015), which also cover eastern



regions of Indonesia including Papua, recorded 1228 freshwater fishes. Brazil (> 3000
species) and Colombia (> 1500 species) are the only countries that exhibit higher freshwater
fish diversity than Indonesia (Mittermeier et al., 1997). One of the most species-rich
freshwater fish groups in Indonesia is family Cyprinidae.

In Cyprinidae, genus Rasbora is one of the most species-rich genera, with 87 valid
species so far recognized (Eschmeyer, 2015). Rasbora is distributed in a large geographical
area, ranging from western India to Lesser Sunda Islands of Indonesia, as far as Lombok and
Sumbawa Islands (Brittan, 1954, 1972, 1998; Kottelat et al., 1993; Froese and Pauly, 2015).
Currently, sixty-six species of rasboras are naturally distributed in Indonesia and many of
them are endemic species (Froese and Pauly, 2015). Recent studies conducted by
Lumbantobing (2010, 2014) described eight new species from Sumatra Island. In addition,
several new species are now ready to be described and most of them are endemic species
(Lumbantobing, D.N., personal communication).

Rasbora is a schooling fish that swims together in the same direction for behavioral
reasons. This species occurs strictly in freshwater habitats (i.e., primary freshwater fish) and
can be easily found in large and small rivers, ponds, ditches, lakes, paddy field, and swamps.
It rarely occurs in low oxygen waters and mountainous rivers with a swift current (Brittan,
1954, 1972, 1998). They breed only by sexual reproduction in which females lay semi-
adhesive eggs on the underside of water plants and males quickly release the sperm for
fertilization (Brittan, 1998). Rasbora is characterized by small to medium sizes (5-20 cm in
the standard length) with a body elongated and compressed laterally, a symphyseal knob on
the tip of lower jaw without barbels, and a dark lateral stripe that extends from the opercle to
the caudal fin base.

One of broadly distributed species in the genus Rasbora is R. lateristriata. This species
is supposed to be distributed from Borneo, Sumatra, Java, Bali, across Wallace’s Line, to

Lombok and Sumbawa Islands of Indonesia based on some literatures (Kottelat et al., 1993;



Froese and Pauly, 2015) but its exact distributional range is unclear. R. lateristriata was first
described as Leuciscus lateristriatus by Bleeker (1854) using several specimens from Java
and Sumatra, including materials from Bogor, West Java, collected by Kuhl and van Hasselt
(van Hasselt, 1823). Bleeker (1860) revised L. lateristriatus to Rasbora lateristriata.
However, some researchers (e.g., Brittan, 1954 and Alfred, 1963) later suggested that the
Sumatran specimens do not match the original description of the species. They assigned only

specimens from Java to R. lateristriata.

Rasbora baliensis was described by Brittan (1954) from a small crater lake, Lake
Bratan in Bali Island as the closest relative of R. lateristriata. R. baliensis is supposedly a
species endemic to Bali (Brittan, 1954, 1972; Kottelat et al., 1993; Whitten et al., 1996).
However, R. baliensis was described based on small numbers of specimens and relatively
indistinct segregating characters (Brittan, 1954). Some researchers (Kottelat and Vidthayanon,
1993; Whitten et al., 1996) suspected that R. baliensis from Bali might be indistinguishable
from R. lateristriata from eastern parts of Java, pointing out that the taxonomic status of R.
baliensis needs to be re-evaluated. Although molecular phylogeny involving many Rasbora
species has been studied (Mayden et al., 2007; Riiber et al., 2007; Britz et al., 2009; Fang et
al., 2009; Tang et al., 2010), R. lateristriata and R. baliensis were not included in these

studies. Thus, taxonomic and phylogenetic status on these species is still uncertain.

The evolutionary relationships and contemporary distributions of Indonesian freshwater
fauna have been likely associated with the recurrent sea level changes in the Quaternary
glaciation that occurred 2.6 to 0.01 million years ago (Mya). By the recurrent sea level
changes in the Quaternary glaciation, the sea level repeatedly fell up to 120 m and rose up to
20 m from the present level. The Sunda shelf became dried and exposed throughout marine
regression, forming a land bridge connecting Sumatra, Borneo, Java and Bali Islands (and
some other intervening islands) with Indo-China and created a massive landmass called

Sundaland. On the contrary, during the period of marine transgression, these islands became
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disconnected and isolated (Rainboth, 1996; Voris, 2000; Woodruff, 2010) (Fig. 3). In the
period of lower sea levels, the freshwater fauna may have expanded their geographical
distribution by traversing the paleo-drainage systems. On the other hand, during periods of
higher sea levels, when the time is sufficient enough to prevent the genetic admixture, it may
have promoted intraspecific diversification and/or allopatric speciation (Yap, 2002; de Bruyn
and Mather, 2007; Lohman et al., 2011; de Bruyn et al., 2013).

Wallace’s Line runs through the Lombok Strait between Bali and Lombok Islands and
through the Makassar Strait between Borneo and Sulawesi Islands (Fig. 3). Lombok and
Makassar Straits are considered to be deep enough not to allow migration of terrestrial
animals across them even during the Quaternary glaciation (Moss and Wilson, 1998; Hall,
2009, 2013; de Bruyn et al., 2014). Thus, most freshwater fish fauna of the Asian origin are
not distributed in the east of Wallace’s Line, with some exceptions including the cyprinid
Rasbora and anabantid Anabas (Briggs, 1987; Berra, 2001). When and how these fishes

migrated across Wallace’s Line remain to be an enigma.
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Fig. 3. A map showing Indonesian islands and geographic position of Wallace’s Line. The
boundary of Sundaland was adopted from Bird et al. (2005).
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In this study, I conducted several approaches including molecular phylogenetic analyses
using mitochondrial and nuclear gene sequences, coupled with some morphological
investigations, to elucidate phylogenetic relationships of R. lateristriata and its allies
collected from various localities in Java and neighboring islands. I also used these data to
resolve taxonomic uncertainties of R. lateristriata and R. baliensis. Finally, I discuss the
historical biogeography, especially on when and how the rasboras diversified and finally

crossed the hypothetical barrier, Wallace’s Line.
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Chapter 2: Material and Methods

2.1 Specimen collection

I conducted field sampling to collect Rasbora individuals in many freshwater localities
from Sumatra, Borneo, Java, Bali, Lombok and Sumbawa Islands of Indonesia. Fish samples
were collected using various non-destructive fishing gears, i.e., fyke net, cast net, hand net
and backpack electrofishing (Fig. 4). Geographic coordinates of each sampling site were
recorded using a handheld GPS unit. Whenever possible, live specimens were photographed
from the left lateral side immediately after the kill (Fig. 5). The collected specimens were
tentatively identified based on morphological characters in the field before subsequently
reconfirmed in the laboratory. A small portion of the right pectoral fin was excised from fresh
individuals in the field and preserved in TNESUS buffer for molecular studies (Asahida et al.,
1996). Whole body specimens were later preserved in 99% ethanol and deposited to the
Specimen Depository, Faculty of Fisheries and Marine Science, University of Brawijaya with
voucher numbers listed in Table 2. I obtained research permission from Indonesian Institute
of Sciences (LIPI) to bring the fin clip samples and the whole body specimens to Japan.

The taxonomic history of R. lateristriata is somewhat convoluted. In Buitenzorg
(currently known as Bogor) of West Java in 1820-1823, two Netherland scientists Heinrich
Kuhl and Johan Coenraad van Hasselt collected several specimens of freshwater fish and
named one of them as Barbus leuciscus Cuv. lateristriatus (van Hasselt, 1823). However, due
to inadequate descriptions and lack of references, this name failed to become a formal
scientific name and was unavailable at that time (nomen nudum) (Roberts, 1993). Afterward,
Bleeker (1854) examined several materials from Java and Sumatra, including materials
collected by Kuhl and van Hasselt (van Hasselt, 1823), gave adequate descriptions, and

named these specimens Leuciscus lateristriatus. Later, Bleeker (1860) in his subsequent
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Fig. 4. Different types of fishing gears used in this study: (A) fyke net, (B) cast net, (C) hand
net, and (D) backpack electrofishing.

work revised the name of L. lateristriatus and replaced it by Rasbora lateristriata. Some
researchers (e.g., Brittan, 1954; Alfred, 1963) noticed that only specimens from Java can be
assigned to the pertinent species (R. lateristriata). Given that the holotype and paratype
specimens of R. lateristriata were unavailable for an unknown reason, Alfred (1963) assigned
specimens collected from Batavia (currently known as Jakarta), Ciampea, Bandung and Garut
of West Java as the lectotype. I therefore conducted field sampling in several sites of West
Java and finally collected this species in a small river in Sukabumi near Bogor, West Java.

For R. baliensis, the sampling was conducted in the type locality of this species, in Lake
Bratan, an enclosed-crater lake about 1231 m above sea level in the Buyan-Bratan caldera
complex, Bali Island (Brittan, 1954). I also conducted field sampling in three additional sites.
One of the sites, Lake Batur, was distantly located from other localities. In total, R.

lateristriata-like specimens were successfully collected from 17 localities from, Java, Bali,
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Fig. 5. Left lateral images of R. lateristriata-like specimens collected from eleven localities.
The museum voucher number for each specimen is (A) UB.1.143.1 (Sukabumi, 75.0 mm SL),
(B) UB.1.142.1 (Tegal, 57.1 mm SL), (C) UB.1.119.2 (Sleman, 61.3 mm SL), (D) UB.1.141.4
(Salatiga, 46.1 mm SL), (E) UB.1.127.9 (Jepara, 45.2 mm SL), (F) UB.1.117.8 (Pasuruan,
66.1 mm SL) (G) UB.1.125.3 (Lumajang, 57.5 mm SL), (H) UB.1.115.20 (Banyuwangi, 57.6
mm SL), (I) UB.1.111.13 (Bratan, 73.6 mm SL), (J) UB.1.118.7 (Lombok, 54.8 mm SL) and
(K) UB.1.139.4 (Serange, 59.9 mm SL).
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Lombok and Sumbawa Islands. R. aprotaenia was collected similarly and I tried to collect
this species in its type locality. Brittan (1954) described R. aprotaenia using seven individuals
collected from a type locality that was mentioned to be in ‘Tjilowaeng River’ or ‘Ciliwung
River’, West Java. I therefore conducted field sampling in this river and finally collected R.
aprotaenia in Katulampa Dam of Ciliwung River (Table 2).

I noticed from morphological appearance, R. lateristriata-like fish from Java and Bali
Islands were very similar to each other. Thus, I regarded them as the R. lateristriata species

complex as discussed later in more details.

2.2 DNA amplification and sequencing

Genomic DNA was extracted from the fin samples following a procedure described by
Asahida et al. (1996). For protein digestion, 20 pl of Protacinase K (20mg/ml) was added to a
1.5 ml tube containing the preserved tissue of right pectoral fin in TNESUS buffer. The
mixture was then incubated at 37°C for 15-20 hours (or at room temperature for several days).
After incubation, the mixture was extracted with an equal volume of phenol-chloroform (1:1).
After the extraction, cold ethanol was added in the mixture for DNA precipitation. Finally,
precipitated DNA was dissolved in TE-buffer. DNA samples were then stored in a freezer at -
30°C until use.

Two mitochondrial genes coding for cytochrome oxidase subunit I (COI, 655 bp) and
cytochrome b (Cyth, 1091 bp), as well as two nuclear genes coding for recombination
activating gene I (RAGI1, 1557 bp) and opsin (a protein part of thodopsin) (866 bp) in a total
4169 bp were amplified by polymerase chain reaction (PCR) using sets of primers listed in
Table 3. These four genes have been frequently used for elucidating both interspecific and
intraspecific phylogenetic analyses in fishes, especially by Tang et al. (2010) who conducted

phylogenetic analysis using many species from Rasbora.
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The PCR was performed in a 10 ul reaction mixture with a SpeedSTAR HS DNA
polymerase (Takara) according to the manufacture’s protocol. The PCR was done by 30
cycles of 98°C for 5 s, 55 C for 15 s and 72°C for 20 s. PCR products were treated with an
ExoSAP-IT (Affymetrix) and directly sequenced in both directions using a Big Dye
terminator v3.1 cycle sequence kit (Life Technologies) on the ABI 3500 DNA sequencer.
Obtained sequences for both directions were edited and assembled with Sequencher 4.8 (Gene
Codes). Because there were very few indels in the determined sequences, sequences were
manually aligned by eye using MacClade 4.08 (Sinauer Associates). Possible heterozygotic

sites in the RAG1 and opsin genes were treated following [UPAC ambiguity codes.

Table 3. Sets of primers for PCR amplification and/or sequencing

Region Name Sequence (5' to 3') Source

COlI FishF1 TCAACCAACCACAAAGACATTGGCAC Ward et al. (2005)
FishR1 TAGACTTCTGGGTGGCCAAAGAATCA Ward et al. (2005)

Cyth LA-cyp ATGGCAAGCCTACGAAAAAC Tang et al. (2010)
HA-cyp TCGGATTACAAGACCGATGCTT Tang et al. (2010)

RAGI RAGIF1 CTGAGCTGCAGTCAGTACCATAAGATGT Lopez et al. (2004)
RAGIRI CTGAGTCCTTGTGAGCTTCCATRAAYTT Lopez et al. (2004)
Ras RAGIF1 GCATCAGGCTCCACTTAC this study
Ras RAGIR1 ATAGCGCTCGAGATTTTCC this study

Opsin Rh 28F TACGTGCCTATGTCCAAYGC Chen et al. (2008)
Rh 1039R TGCTTGTTCATGCAGATGTAGA Chen et al. (2003)

In order to determine complete mitochondrial genome sequences, two individuals for R.
lateristriata (voucher number: UB.1.116.20) and R. aprotaenia (UB.1.120.3) were randomly
selected. Mitochondrial genome (mitogenome) sequences of both species were completely
sequenced using the long PCR amplification and subsequent amplification, sequencing and
assembly of shorter (650-950 bp) DNA regions, starting from the long PCR product as a

template (Miya and Nishida, 1999; Inoue et al., 2001). The PCR and sequencing were
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conducted as described above. Obtained sequences for both directions were edited and
assembled with Sequencher 4.8 (Gene Codes). Gene characterization and annotation in
determined mitogenome sequences were done using DOGMA (Wyman et al., 2004) followed

by manual inspection.

2.3 Phylogenetic analyses
2.3.1 Analysis of mitogenomic sequences

Mitogenomic sequences for species other than R. lateristriata and R. aprotaenia were
downloaded from DDBJ/EMBL/GenBank. Eight mitochondrial genome sequences from
genus Rasbora have been deposited including Rasbora borapetensis (accession number
AB924546), Rasbora cephalotaenia (AP011430), Rasbora daniconius (AP011285), Rasbora
steineri (JX843769), Rasbora trilineata (KM200714), Rasboroides vaterifloris (AP011432),
Trigonostigma heteromorpha (AP011421), Trigonostigma espei (AP011449). Danio rerio
(ACO024175) and Acheilognathus typus (AB239602) were selected as outgroup taxa.
Getmitogenome (Jonniaux, 2014) was used to retrieve the sequences from the database. This
software was also used to determine the boundaries between 37 genes (13 proteins, 22 tRNAs
and two rRNAs) by aligning gene sequences of the above-mentioned taxa with the currently
available alignment for other taxa (unpublished data). Maximum likelihood analysis was
conducted by using 3757 amino acid sites of 13 mitochondrial protein genes to determine the
phylogenetic position of R. lateristriata and R. aprotaenia among other Rasbora species.
Garli v2.0 (Zwickl, 2014) was used to conduct the analyses under the mtREV+IG4 model.

The nodal support was assessed by 500 non-parametric bootstrap resamplings.

2.3.2 Interspecies phylogenetic analyses
Phylogenetic analyses to determine the phylogenetic position of the R. lateristriata

species complex among other Rasbora species were conducted using one randomly selected
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individual representing each locality or each species. DNA sequences for many rasboras that
were not sampled during my fieldwork, including two outgroup taxa of Chromobotia
macracanthus and Catostomus commersonii were downloaded from DDBJ/EMBL/GenBank.
These sequences were mainly reported by Tang et al. (2010). The list of species and their
voucher numbers are shown in Table 4. DNA sequences from mitochondrial COI and Cytb, as
well as nuclear RAG1 and opsin or their combination, were used to construct phylogenetic
trees using Bayesian and maximum likelihood (ML) methods. The dataset to infer the
phylogenetic position of the R. lateristriata species complex using only one representative
individual per location is named dataset 1. I conducted phylogenetic analyses using five
different combinations of genes in dataset 1, i.e., concatenated four genes and individual
genes of COI, Cyth, RAGI and opsin. The best partition schemes and its evolutionary models
for first, second and third codon positions of genes in each dataset were estimated using
PartitionFinder (Lanfear et al., 2012).

I conducted Bayesian analyses using MrBayes v3.12 (Ronquist and Huelsenbeck,
2003). Due to the limitation of evolutionary models available in this software, I used the most
complex evolutionary model of GTR+I+G with 4 gamma categories for all partitions. Starting
from randomly generated trees, the Markov chain Monte Carlo (MCMC) process was initially
set at 2,000,000 generations and continued until the Average Standard Deviation of Split
Frequency became less than 0.01. Two independent runs with four simultaneous MCMC
chains at temperature 0.20 were conducted by default. The first 25% generations were
discarded as “burnin” after the likelihood score reached the stationarity. Trees were sampled
every 100 generations and a 50% majority consensus tree with Bayesian posterior (Bayes-P)
probabilities at nodes was constructed based on trees from the remaining generations. ML
analyses were conducted using GARLI v2.0 (Zwickl, 2014) using the estimated partition
schemes and models. Five independent runs were conducted using the default search setting
(5,000,000 generations) from a randomly generated initial tree. The statistical support at each

node was assessed by 1000 non-parametric bootstrap resamplings.
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2.3.3 Analyses within the R. lateristriata species complex

Phylogenetic reconstructions for elucidating relationships within the R. lateristriata
species complex were done using maximum likelihood and Bayesian methods. Methods for
conducting phylogenetic analyses were the same as explained in the section 2.3.2. I conducted
phylogenetic analyses using dataset 2 that included randomly selected 2 to 4 individuals per
locality (mostly 4 individuals). Three different combinations of genes were used in the
analyses: concatenation of four genes (COI+Cyth+RAG1+opsin), concatenated mitochondrial
genes (COI+Cytb) and concatenated nuclear genes (RAG1+opsin). Accession numbers of

gene sequences used in the dataset 2 are shown in Table 5.

2.4 Genetic divergence estimation

Using COI gene sequences of all available individuals of each locality (ranging from 2
to 13 individuals), molecular divergence was estimated. A standardized threshold of 2%
sequence divergence as suggested by Ward (2009) and Ratnasingham and Hebert (2013) was
used as a reference for the species delimitation. Kimura’s 2-parameter (K2P) model
implemented in MEGA v6.06 (Tamura et al., 2013) was used to calculate the pairwise

divergences.

2.5 Divergence time estimation

Divergence times among major lineages within the R. lateristriata species complex
were estimated using the relaxed-clock Bayesian method implemented in BEAST v1.8.2
(Drummond et al., 2012). The XML input file was generated using BEAUti v1.8.2
(Drummond et al., 2012). The dataset using RAGI1 and opsin gene sequences was created by
randomly selecting one haplotype representing each major lineage. I applied the Uncorrelated
Lognormal Clock model (Drummond et al., 2006) with no a priori correlation of evolutionary

rates between a lineage’s rate and that of its ancestor and the Yule tree prior assuming a
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constant speciation rate per lineage. jModelTest v2.1.5 (Darriba et al., 2012) was used to
select the best substitution model of each partition. SYM+I+G and GTR+I+G were selected
for RAG1 and opsin genes, respectively. A gamma-distributed substitution rate with 4
categories was selected with the base frequency estimated from the data. A user-specified
starting tree was set as the ML tree topology resulting from the four genes analysis. Two
independent MCMC processes for two hundred million generations were performed and trees
were sampled every 1000 generations. Tracer v1.6.0 (Rambaut et al., 2015) was used to
confirm more than 200 effective sample sizes for parameters and the convergence of two
independent runs after the first 10% samples were removed as ‘burnin’. LogCombiner v1.8.2
was used to combine sampled trees. A single ultrametric tree with a median posterior
divergence time estimate and 95% highest posterior density intervals (95% HPD) was created
using TreeAnnotator v1.8.2.

Seven calibration points were used as priors for the divergence time estimation. The
calibration points were based on Betancur-R et al. (2013) that used 18 genes (17 nuclear and 1
mitochondrial genes) to estimate divergence times between major lineages of bony fishes,
including cypriniform fishes. I referred to estimated divergence times from this work at 7
nodes which are within or close to Cyprinidae. Because time estimates by Betancur-R et al.
(2013) were point estimates without confidence intervals, I used these values as means of the
prior time distribution at the corresponding nodes and arbitrarily set 20% of the means as
standard deviations of the normal distributions. I also conducted the dating analyses using the
first and second codon positions of concatenated mitochondrial gene sequences (COI and
Cytb). Parameters for performing this analysis in BEAST were set to be the same as in

nuclear gene sequence analysis.
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2.6 Historical biogeography reconstruction and haplotype network analysis

Historical biogeography inference of the R. lateristriata species complex was done
using RASP v3.2 (Yu et al., 2015) under the Lagrange (Dispersal-Extinction-Cladogenesis,
DEC) model (Ree et al., 2005; Ree and Smith, 2008). A condensed time-calibrated
phylogenetic tree produced by BEAST v1.8.2 (Drummond et al., 2012) for divergence time
estimation was used after removing most outgroup taxa as an input tree to reconstruct
ancestral geographic distributions of the R. lateristriata species complex. To assign current
distributions of the R. lateristriata species complex in Java Island, I divided Java into three
regions: West, Central and East Java. The assignment of Java Island into three different
regions is in accordance with the paleogeographical history of this island from Late Miocene
to Early Pliocene (Hall, 2009, 2013).

To elucidate relationships among COI haplotype sequences of the R. lateristriata
species complex, an unrooted haplotype network was reconstructed using NETWORK
v5.0.0.0 (http://www.fluxusengineering.com). I applied a median-joining algorithm (Bandelt

et al., 1999) with the default settings.

2.7 Morphological analyses

Morphological analyses were conducted using all collected specimens of the R.
lateristriata species complex. I also examined museum specimens labeled as R. lateristriata
and deposited at the Museum Zoologicum Bogoriense (MZB), Cibinong, Indonesia. Methods
for measuring morphometric characters and counting meristic characters basically followed
those of Brittan (1954) and Lumbantobing (2014). Briefly, standard length (SL) was
measured from the anterior tip of the mouth to the end of the hypural plate. Dorsal-hypural
distance (DHD) was measured as a distance from the origin of the dorsal fin to the end of
hypural plate. Head length (HL) is a distance taken from the anterior tip of the mouth to the

posterior edge of the opercle. A lateral line scale is a series of pored scales along the lateral
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pre dorsal scale

Fig. 6. Morphological characters analyzed in this study. (A) A left lateral and (B) a dorsal
view of R. lateristriata from Sukabumi. Morphometric and meristic characters are derived
from Brittan (1954) and Lumbantobing (2014). The terminology of the body color pattern
follows Brittan (1954) with some additional features from Lumbantobing (2010, 2014). The
abbreviation of each character is: BCB = Basicaudal Blotch; BR = Basal Reticulation; DHD =
Dorsal Hypural Distance; ED = Eye Diameter; HD = Head Depth; HL = Head Length; IOW =
Inter-Orbital Width; MDP = Midhumeral Diffuse Patch; MLS = Midlateral Stripe; MOS =
Midopercular Stripe; POP = Postopercular Pigmentation; PR = Peripheral Reticulation; SAP
= Supra Anal Pigment; SL = Standard Length and TL: Total Length.

line starting just behind the upper end of the gill opening to the base of the caudal fin. Finally,
the pre-dorsal scale is a series of scales along the midline starting from the origin of the dorsal
fin forward to the skull.

I followed Brittan (1954) for the terminology of the body color pattern and
Lumbantobing (2010, 2014) for some additional pigmentation features, including peripheral
reticulation (PR), basal reticulation (BR), basicaudal blotch (BCB), midhumeral diffuse patch
(MDP), midopercular stripe (MOS) and postopercular pigmentation (POP). Supra anal

pigment (SAP) is defined as melanophore pigmentation located above the base of the anal fin.
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BCB is the melanophores spot observable at the base of the hypural plate. MDP is
characterized by melanophore pigmentation starting from the gill opening to the dorsal fin
origin in the midlateral region. In total, I observed 38 meristic or morphometric characters
featuring the body color pattern in this study. More details on the morphological examination

used in this study are shown in Fig. 6.
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Chapter 3: Results

3.1 Collection of specimens

I collected Rasbora samples from 47 freshwater localities (Fig. 7). Two hundred thirty
six individuals were identified as R. lateristriata or R. baliensis and the others were identified
as one of R. aprotaenia, R. argyrotaenia, R. aurotaenia, R. einthovenii, R. elegans, R. myersi,
R. tornieri, and T. gracile. Among the 236 R. lateristriata or R. baliensis individuals, 127, 72,
13 and 24 individuals were collected from Javanese, Balinese, Lombok and Sumbawa
localities, respectively (Table 2 and Fig. 8). Among them, 24 individuals (10%) were young
with SL less than 35 mm. R. lateristriata-like samples were not collected from Sumatran and
Bornean localities where I conducted field samplings (Fig. 7). The number of collected
individuals varied from locality to locality, ranging from 2 to 55 individuals (Table 2).

A single Rasbora species usually occurred at each locality, with several exceptions (Fig.
7). R. tornieri and R. myersi were co-distributed in Jambi while R. aurotaenia and R. myersi
occurred in Palembang of Sumatra. In Borneo, R. tornieri, R. myersi and R. argyrotaenia
sympatrically occurred in a location of Banjarmasin. In addition, R. elegans and R.
argyrotaenia co-existed in Samarinda and R. einthovenii and R. argyrotaenia occurred in
Kutai Kartanegara. All but one Javanese localities had a single Rasbora species. Only Tegal
of Central Java had both R. lateristriata and R. argyrotaenia together. Because rasboras were
scarce at Lake Buyan, Penet River, Bomo River, Lake Ranu Klakah, Rowoganjar River and

Bogares River, only less than 10 individuals were caught at these localities (Table 2).

3.2 Phylogenetic positions of R. lateristriata and R. aprotaenia revealed using
mitogenome sequences
The lengths of mitochondrial genomes for R. lateristriata and R. aprotaenia which I

sequenced were 16,539 bp (DDBJ/EMBL/GenBank accession No. LC021505) and 16,541 bp
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O R lateristriata species complex
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Fig. 7. Sampling localities for rasboras. All 47 sampling locations for Rasbora, ranging from
Sumatra, Borneo, Java, Bali, to Lombok and Sumbawa Islands in the eastern side of
Wallace’s Line are shown with one or more symbols that correspond to identified Rasbora
species. Species identification is based primarily on morphological features complemented by
molecular information. Locations with sympatric distribution of multiple Rasbora species are
highlighted with a red circle. The map is produced based on a satellite image from Google
Earth v7.1.5.1557.

Citarum Java Sea

River. Jepara

Cimanuk Tegal
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Serang

()
River P
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U
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Indian Ocean 1
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Fig. 8. Seventeen sampling localities for the R. lateristriata species complex. Locality of R.
aprotaenia for mitochondrial genome study is highlighted with a white circle, collected from
its type locality. Locality names and numbers correspond to those in Table 2. The map is
produced based on a satellite image from Google Earth v7.1.5.1557.
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Table 6. Features of the mitochondrial genome of R. lateristriata

Features Code Start Stop Size (bp)  Spacer (+) or Strand  Start Stop
Overlap (-) Codon Codon'

tRNA-Phe F 1 69 69 0 F

12S rRNA 70 1022 953 0 F

tRNA-Val \% 1023 1093 71 0 F

16S rRNA 1094 2774 1681 0 F

tRNA-Leu (UUR) L 2775 2848 74 0 F

ND1 2850 3824 975 1 F ATG TAA

tRNA-Ile I 3829 3900 72 4 F

tRNA-GIn Q 3899 3969 71 -2 R

tRNA-Met M 3971 4039 69 1 F

ND2 4040 5084 1045 0 F ATG T--

tRNA-Trp w 5085 5157 73 0 F

tRNA-Ala A 5161 5228 68 3 R

tRNA-Asn N 5231 5303 73 2 R

L-strand Origin 5304 5340 37 0

tRNA-Cys C 5338 5405 68 -3 R

tRNA-Tyr Y 5407 5476 70 1 R

CO1 5478 7028 1551 1 F GTG TAA

tRNA-Ser (UCN) S 7029 7099 71 0 R

tRNA-Asp D 7101 7170 70 1 F

CO2 7176 7866 691 5 F ATG T--

tRNA-Lys K 7867 7941 75 0 F

ATPase 8 7944 8108 165 2 F ATG TAA

ATPase 6 8102 8781 680 -7 F ATG TA -

CO3 8782 9566 785 0 F ATG TA -

tRNA-Gly G 9567 9637 71 0 F

ND3 9638 9986 349 0 F ATG T--

tRNA-Arg R 9987 10056 70 0 F

ND4L 10057 10353 297 0 F ATG TAA

ND4 10347 11728 1382 -7 F ATG TA -

tRNA-His H 11729 11797 69 0 F

tRNA-Ser (AGY) S 11805 11865 61 7 F

tRNA-Leu (CUN) L 11868 11940 73 2 F

NDS5 11941 13770 1830 0 F ATG TAA

ND6 13767 14288 522 -4 R ATG TAA

tRNA-Glu E 14289 14357 69 0 R

Cytb 14367 15507 1141 0 F ATG T--

tRNA-Thr T 15508 15578 71 0 F

tRNA-Pro P 15588 15657 70 9 R

Control region 15685 16539 855 0

CSB-2 16309 16325 17

CSB-3 16350 16368 19

'Hyphens indicate an incomplete stop and imply subsequent addition of A residues to the 3” end of the mRNA by polyadenilation

(LCO021504), respectively. Features of the mitochondrial genome of R. lateristriata and R.
aprotaenia are shown in Tables 6 and 7, respectively. Both mitogenomes encode 37 genes for
13 proteins, 22 tRNAs, and 2 rRNAs with a major noncoding region in the typical vertebrate
gene arrangement (Anderson et al. 1981). All protein genes start with an ATG initiation
codon, except for COI gene which uses GTG as a start codon. Seven protein genes have a

stop codon in the mitogenome sequences, whereas the remaining six protein genes appear to
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Table 7. Features of the mitochondrial genome of R. aprotaenia

Features Code Start Stop Size (bp)  Spacer (+) or Strand  Start Stop
Overlap (-) Codon Codon

tRNA-Phe F 1 69 69 0 F

12S rRNA 70 1021 952 0 F

tRNA-Val \% 1022 1092 71 0 F

16S rRNA 1093 2774 1682 0 F

tRNA-Leu (UUR) L 2775 2848 74 0 F

ND1 2850 3824 975 1 F ATG TAA

tRNA-Ile I 3829 3900 72 4 F

tRNA-GIn Q 3899 3969 71 -2 R

tRNA-Met M 3971 4039 69 1 F

ND2 4040 5084 1045 0 F ATG T--

tRNA-Trp W 5085 5157 73 0 F

tRNA-Ala A 5161 5228 68 3 R

tRNA-Asn N 5231 5303 73 2 R

L-strand Origin 5304 5340 37

tRNA-Cys C 5338 5405 68 -3 R

tRNA-Tyr Y 5406 5475 70 0 R

CO1 5477 7027 1551 1 F GTG TAA

tRNA-Ser (UCN) S 7028 7098 71 0 R

tRNA-Asp D 7100 7169 70 1 F

CcO2 7175 7865 691 5 F ATG T--

tRNA-Lys K 7866 7940 75 0 F

ATPase 8 7943 8107 165 2 F ATG TAA

ATPase 6 8101 8780 680 -7 F ATG TA -

CO3 8781 9565 785 0 F ATG TA -

tRNA-Gly G 9566 9636 71 0 F

ND3 9637 9985 349 0 F ATG T--

tRNA-Arg R 9986 10055 70 0 F

ND4L 10056 10352 297 0 F ATG TAA

ND4 10346 11727 1382 -7 F ATG TA -

tRNA-His H 11728 11796 69 0 F

tRNA-Ser (AGY) S 11804 11864 61 7 F

tRNA-Leu (CUN) L 11867 11940 74 2 F

NDS5 11941 13770 1830 0 F ATG TAA

ND6 13767 14288 522 -4 R ATG TAG

tRNA-Glu E 14289 14357 69 0 R

Cytb 14367 15507 1141 0 F ATG T--

tRNA-Thr T 15508 15578 71 0 F

tRNA-Pro P 15588 15657 70 9 R

Control region 15685 16541 857 0

CSB-2 16311 16327 17

CSB-3 16352 16370 19

'Hyphens indicate an incomplete stop and imply subsequent addition of A residues to the 3’ end of the mRNA by polyadenilation

have a mechanism in which their stop codons are posttranscriptionally created by
polyadenylation. All tRNA genes can be folded into the standard cloverleaf secondary
structures for mitochondrial tRNAs (Kumazawa and Nishida 1993). Phylogenetic analyses
(Fig. 9) showed, with a 100% bootstrap support, that R. lateristriata is more closely related to
R. aprotaenia than to any other Rasbora species examined, pointing to their phylogenetic

closeness. These species then clustered with R. steineri with a 100% bootstrap support.
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100 [ Rasbora aprotaenia

100 Rasbora lateristriata

0.03
57 Rasbora steineri
Rasbora borapetensis
Rasbora trilineata
Trigonostigma espei

100 L Tyigonostigma heteromorpha

100 —— Rasbora cephalotaenia

Rasbora daniconius

Rasboroides vaterifloris

Danio rerio

Acheilognathus typus

Fig. 9. Maximum likelihood tree constructed using 3757 amino acid sites of 13 mitochondrial
protein genes. R. lateristriata and R. aprotaenia are shown to be closely related to each other
pointing to their phylogenetic affinity. Bootstrap probabilities by 500 replications are shown
for each node when they are 50% or larger.

3.3 Phylogenetic position of the R. lateristriata species complex using multilocus gene
sequences

COlI, Cytb, RAGI and opsin gene sequences determined from a representative
individual of each locality for the R. lateristriata species complex and 8 other Rasbora
species were aligned with those downloaded from the database as the dataset 1 to conduct ML
and Bayesian analyses. The four gene sequences had different sizes, ranging from 655 bp
(COI) to 1557 bp (RAG1). As expected, mitochondrial genes had more variable and
informative sites per determined base than nuclear genes but the latter genes still provided a
number of variable and informative sites (Table 8).

Figure 10 shows an ML tree constructed using four concatenated gene sequences of the

dataset 1. Phylogenetic relationships between various Rasbora species were largely in
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Fig. 10. A maximum likelihood tree among Rasbora species constructed using COI, Cytb,
RAGT and opsin gene sequences. Values at nodes show bootstrap probabilities (>50 % only)
and an asterisk shows that the corresponding node received a Bayes-P probability of 1.00.
Refer to Table 4 for used taxa and individuals with accession numbers. Individuals of the R.
lateristriata species complex are shown with their locality name and the number of
individuals from that locality (e.g., Bratan _1). The Rasbora lateristriata species complex
boxed with dotted lines is defined in text. As explain in more details in section 4.1, I propose
to regard the R. lateristriata species complex+R. aprotaenia+R. elegans as the R.
lateristriata-group. In underlined taxa other than the R. lateristriata species complex, the
corresponding specimen was collected, identified and sequenced by me.

agreement with Tang et al. (2010) who used neither of R. lateristriata nor R. baliensis in the
molecular analyses. This ML tree indicates that individuals of the R. lateristriata species
complex together with those of R. aprotaenia and R. elegans make a monophyletic group with

relatively high support values (79% bootstrap and 1.00 Bayes-P probabilities). I will later
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Fig. 11. A maximum likelihood tree among Rasbora species constructed using COI gene
sequences. For other details, see the legend of Fig. 10.

name this clade the R. lateristriata-group (see Chapter 4). This clade has a sister-group
relationship with R. sumatrana with strong bootstrap (92%) and Bayes-P (1.00) probabilities.
In contrast, R. argyrotaenia, another commonly occurring species in Java Island, turned out to

be distantly related to the R. lateristriata species complex (Fig. 10).
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Fig. 12. A maximum likelihood tree among Rasbora species constructed using Cyth gene
sequences. For other details, see the legend of Fig. 10.

I also conducted ML and Bayesian analyses based on each of the COI, Cyth, RAGI and

opsin gene sequences (Figs. 11-14). The monophyly of the R. lateristriata species

complex+R. aprotaenia+R. elegans and its sister-group relationship to R. sumatrana were

commonly seen for two ML trees based on COI and Cytb genes (Figs. 11-12). Although ML

trees based on RAG1 and opsin genes did not necessarily support these conclusions, these

trees lacked high resolution in general without strong bootstrap and Bayes-P supports at nodes

(Figs. 13-14). Thus, I judged that no strongly competing phylogenetic information with

respect to interspecific relationships exists among the four genes.
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Fig. 13. A maximum likelihood tree among Rasbora species constructed using RAG1 gene
sequences. For other details, see the legend of Fig. 10.

3.4 Phylogenetic relationships within the R. lateristriata species complex

In order to elucidate phylogenetic relationships within the R. lateristriata species
complex, I conducted phylogenetic analyses using the dataset 2 including more (usually 4)
numbers of individuals from each locality but less numbers of outgroup taxa than in the
dataset 1. Figure 15 shows an ML tree constructed using four gene sequences. Four major
clades were identified all with strong bootstrap (99 or 100%) and Bayes-P (1.00)
probabilities.
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Fig. 14. A maximum likelihood tree among Rasbora species constructed using opsin gene
sequences. For other details, see the legend of Fig. 10.

The first clade (Clade 1) is composed of individuals from eastern parts of Java, Bali,
Lombok and Sumbawa. The second clade (Clade 2) consists of individuals from central parts
of Java (Pasuruan, Sleman, Salatiga and Jepara) while the third clade (Clade 3) consists of
individuals from a single Javanese locality (Tegal). Individuals from a West Javanese locality

(Sukabumi) form the fourth clade (Clade 4). Among these major clades, Clade 1 and Clade 2
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Fig. 15. A maximum likelihood tree of the R. lateristriata species complex with multiple
individuals from each locality. The tree was constructed with nucleotide sequences of 4 genes
(COI, Cyth, RAGI and opsin). Values at nodes show bootstrap probabilities (> 50% only) and
an asterisk shows that the corresponding node received a Bayes-P probability of 1.00. Refer to
Table 5 for used taxa and individuals with accession numbers. Individuals of the R.
lateristriata species complex are shown with their locality name and the number of
individuals from that locality (e.g., Bratan 1). Taxa from Balinese localities are highlighted
with an underline. Different colors match the locality information in Fig. 8.

are more closely related to each other than they are to Clade 3 or Clade 4. The clustering of
Clade 1 and Clade 2 accompanied strong support values (100% bootstrap and 1.00 Bayes-P
probabilities). On the other hand, relationships among Clade 1+2, Clade 3, Clade 4 and the R.
aprotaenia-R. elegans clade were supported with low or only moderately high bootstrap

values and thus may not be fully resolved in this study.
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Within Clade 1, four subclades were recognized (Fig. 15). Subclade 1A consists of
individuals from Bali, Lombok and Sumbawa Islands, and subclades 1B and 1C are
composed of individuals from Banyuwangi and Lumajang, respectively. Monophyly of these
subclades was supported with moderate to high bootstrap probabilities (82-93%). However,
three individuals from Lumajang (Lumajang_ A2, Lumajang A4 and Lumajang B2) did not
cluster with the other Lumajang individuals. They basally diverged from all other Clade 1
individuals and formed subclade 1D. Within Clade 2, four subclades were recognized.
Subclades 2A, 2B, 2C, and 2D are composed of individuals from Pasuruan, Sleman, Salatiga
and Jepara, respectively. One individual from Pasuruan (Pasuruan_7) appeared within
subclade 2B, rendering Pasuruan individuals to be non-monophyletic. Otherwise, all the
subclades 1B, 1C, 2A, 2C and 2D comprise individuals from a distinct small geographical
area. In other words, lineage sorting has likely operated to make haplotypes in these areas
distinct from each other. In contrast, individuals in subclade 1A are not clustered based on
their geographical origin, such as Bali, Lombok and Sumbawa Islands. Thus, the lineage
sorting has not operated enough to segregate haplotypes in these islands although Lombok
and Sumbawa Islands are located in the eastern side of Wallace’s Line.

With respect to phylogenetic relationships between the subclades, subclades 1A and 1B
are more closely related to each other than they are to subclade 1C (Fig. 15). However, this
relationship does not accompany high bootstrap and Bayes-P probabilities. Within Clade 2,
subclades 2C and 2D make a monophyletic group, to which subclade 2B clusters. The
monophyly of subclades 2B-2D in relation to subclade 2A is supported with high bootstrap
(94%) and Bayes-P (1.00) probabilities.

I also conducted phylogenetic analyses based on each of the four genes of the dataset 2
and concatenated mitochondrial and nuclear genes. Figures 16 and 17 show ML trees
constructed using mitochondrial (COI+Cytb) and nuclear genes (RAG1+opsin), respectively.

These two ML trees and the ML tree based on 4 genes (Fig. 15) commonly supported
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Fig. 16. A maximum likelihood tree of the Rasbora lateristriata species complex constructed
using concatenated COI and Cytb gene sequences. For other details, see the legend of Fig. 15.

100*

a sister-group relationship of the R. lateristriata species complex+R. aprotaenia+R. elegans
to R. sumatrana and the clustering of R. aprotaenia and R. elegans. The monophyly of
individuals in each of Sukabumi, Jepara and Sleman was also commonly seen. Whereas the
ML trees based on the four genes and two mitochondrial genes were similar to each other in
many topological relationships (e.g., recognition of Clades 1-4 and basal divergence of Clade
4 followed by the divergence of the R. aprotaenia+R. elegans clade and Clade 3), the ML tree
based on two nuclear genes largely lacked the resolution on these relationships, as seen by
generally low bootstrap and Bayes-P probabilities especially in relationships within Clades 1

and 2 (Fig. 17). However, there was one noticeable difference in the placement
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Fig. 17. A maximum likelihood tree of the Rasbora lateristriata species complex constructed
using concatenated RAG1 and opsin gene sequences. For other details, see the legend of Fig.
15.

of Sleman individuals. In the 4-gene and mitochondrial ML trees, they are closely related to
individuals from other Central Javanese localities (i.e., Pasuruan, Salatiga and Jepara) in
Clade 2. On the other hand, they cluster with Sukabumi individuals outside Clade 2 in the
nuclear ML tree. However, this new relationship is not supported with strong bootstrap and
Bayes-P probabilities and I judged that there is no strongly competing phylogenetic

information between mitochondrial and nuclear genes.
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3.5 Molecular divergences between clades

I then estimated molecular divergences between Clades 1-4 using the COI barcoding
region sequences. For this purpose, the COI gene was sequenced from all available
individuals from each locality. I first confirmed that 4 major clades recognized in Fig. 15 also
appeared in an ML tree based on all the available COI gene sequences (Fig. 18). The average
pairwise K2P distances were then calculated between these clades to show that all of them
exceed 2% (an empirical distance at the boundary of closely related species) (Ward, 2009;
Ratnasingham and Hebert, 2013), supporting that Clades 1-4 represent different species
(Table 9). On the other hand, the average pairwise K2P distances between subclades of Clade
1 and Clade 2 were much less than 2%, suggesting that these subclades represent intraspecific
lineages (data not shown). Voucher numbers for all individuals and accession numbers of

determined sequences are shown in Table 10.

3.6 Estimation of divergence times

To the best of my knowledge, prior to this study, only a few attempts have been made
for divergence time estimation of lineages within the genus Rasbora. Studies conducted by
Riiber et al. (2007) and Britz et al. (2009) estimated divergence times within Cyprinidae and
used several species of rasboras in their analysis. However, both studies only used a single

calibration point with the oldest known fossil of the Cyprinidae. More recently, Betancur-R et

Table 9. Pairwise divergences between major clades of the R. lateristriata
species complex

N Clade 1 Clade 2 Clade 3 Clade 4
Clade 1 82 0.007 0.007 0.007
Clade 2 41 0.035 0.007 0.008
Clade 3 2 0.031 0.038 0.006
Clade 4 9 0.035 0.050 0.026

Distances were calculated using Kimura's 2-parameter distances for COI gene
sequences (655 bp). Values above diagonal indicate standard deviation.
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Table 10. Individuals in the R. lateristriata species complex used for estimating molecular divergences

Clade  Locality No. of specimens Voucher number Accesi(gloljumber
Clade 1 Lumajang A 4 UB.1.125.1-4 LC130694-697
Lumajang B 8 UB.1.116.1,2,9,11,19,20,24,25 LC130698-705
Banyuwangi A 4 UB.1.115.9,14,18,20 LC130706-709
Banyuwangi B 7 UB.1.126.25-27,29,30,32,34 LC130710-716
Bratan 10 UB.1.111.1,2,5-7,10,13,27-29 LC130717-726
Buyan 2 UB.1.112.2,3 LC130727-728
Penet 3 UB.1.113.1-3 LC130729-731
Batur 11 UB.1.114.1-3,6,8-11,18,25,27 LC130732-742
Lombok 11 UB.1.118.1-11 LC130743-753
Serange 11 UB.1.139.1-11 LC130754-764
Sekokat 11 UB.1.140.1-11 LC130765-775
Clade 2 Sleman 12 UB.1.119.1-12 LC130653-664
Salatiga 8 UB.1.141.1-4,6,7,10,12 LC130665-672
Jepara 8 UB.1.127.2-8,10 LC130673-680
Pasuruan 13 UB.1.117.1,2,7,9,11,14,18,20,24,26,28-30  LC130681-693
Clade 3 Tegal 2 UB.1.142.1-2 LC130651-652
Clade 4 Sukabumi 9 UB.1.143.1-7,9,10 LC130642-650

al. (2013) and Broughton et al. (2013) conducted the molecular dating for lineages within
Cyprinidae. However, none of these studies used rasboras in their analyses. I thus decided to
use seven calibration points reported by Betancur-R et al. (2013), which seemed to provide
reliable prior dates in nodes close to Rasbora.

Figure 19 shows divergences times estimated between clades and subclades in the R.
lateristriata species complex using RAGI and opsin gene sequences. The divergence of the
R. lateristriata species complex+R. aprotaenia+R. elegans from R. sumatrana was estimated
to be at 8.6 Mya in median (5.8-11.9 Mya in 95% HPD). This timing in mean corresponds to
the late Miocene. The basal divergence between Clade 4 and the remaining taxa in the R.
lateristriata species complex was estimated to be around 6.8 (4.6-9.4) Mya. The separation of
the R. aprotaenia+R. elegans lineage from Clade 1+Clade 2+Clade 3 occurred at 5.4 (3.6-7.6)

Mya of the Miocene-Pliocene boundary. The splits between Clade 3 and Clade 1+Clade 2 and
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Fig. 18. A maximum likelihood tree of the Rasbora lateristriata species complex constructed
using COI gene sequences. Values at nodes show bootstrap probabilities (> 50 % only) and an
asterisk shows that the corresponding node received a Bayesian posterior probability of 1.00.
For other details, see the legend of Fig. 15. Refer to Table 10 for the number of individuals
used from each locality and their voucher numbers. Symbol of “#” indicates haplotypes
identical with the following: Penet 1-3; Buyan 2 3; Batur 6 8-11 18 25 27; Lombok 1-10;
Serange 1-3 5 7-11; and Sekokat 1 2 4-6 9-11.

between Clade 1 and Clade 2 were estimated, respectively, to be the middle Pliocene at 4.0
(2.4-6.0) Mya and the Pliocene-Pleistocene boundary at 1.6 (0.9-2.5) Mya. Finally, subclades
within Clades 1 and 2 were estimated to have diverged in the Pleistocene at 0.5-1.4 Mya.
Figure 20 shows the dating result based on two mitochondrial genes. The molecular dating

using the mitochondrial gene sequences yielded slightly older ages in many nodes than the
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Fig 19. Divergence times estimated using RAG1 and opsin gene sequences. Circled numbers
indicate seven calibration points used as priors for the relaxed-clock time estimation: 1) 78.8
Mya for the H. nigricans vs. M. pulcher+B. barbatula divergence; 2) 63.3 Mya for the
Danioninae vs. Leuciscinaet+Acheilognathinae+Xenocypridinae divergence; 3) 39.74 Mya for
the Xenocypridinae vs. Acheilognathinae+Leuciscinae divergence; 4) 35.01 Mya for the T.
lanceolata vs. Leuciscinae divergence; 5) 35.04 Mya for the M. pulcher vs. B. barbatula
divergence; 6) 22.93 Mya for the S. atromaculatus vs. N. crysoleucas divergence; and 7)
11.48 Mya for the S. curriculus vs. M. piceus divergence (Betancur-R et al., 2013). Bars at
nodes indicate 95% HPD intervals.

dating using the nuclear genes. For example, the divergence time between the R. lateristriata
species complex+R. aprotaenia+R. elegans and R. sumatrana was estimated to be 9.1 Mya
(mitochondrial) vs. 8.6 Mya (nuclear). As another example, separation of Clade 4 from the
remaining taxa in the R. lateristriata species complex occurred at 8.1 Mya (mitochondrial) vs.
6.8 Mya (nuclear) (Fig. 20). Some studies reported significant overestimation of divergence
times using mitochondrial genes due to their rapid evolutionary rates (e.g., Steppan et al.,
2005; Zheng et al., 2011). I thus used dating results primarily from nuclear genes for

biogeographic discussion (see Chapter 4).
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Fig. 20. Divergence time estimated using the first and second codon positions of
mitochondrial COI and Cytb gene sequences. Parameters in the BEAST analysis were set to
be the same as in the nuclear genes analysis.

3.7 Reconstruction of historical biogeography

I conducted the historical biogeography analysis to infer ancestral geographic ranges at
each major node in the R. lateristriata species complex by the Lagrange (Dispersal-
Extinction-Cladogenesis, DEC) model. Results suggested that Sumatra or West Java is the
most likely origin for this species complex (Fig. 21). This view was supported with a
moderately high probability value (63.7%) at a node where the species complex separated
from R. sumatrana. Direct common ancestors between Clade 4 (Sukabumi) and R.
aprotaenia+R. elegans+Clade 3+Clade 2+Cladel and between R. aprotaenia+R. elegans and
Clade 3+Clade 2+Clade 1 were estimated to be in West Java and West-or-Central Java,

respectively. The ancestral area of Clade 3+Clade 2+Cladel was estimated to be Central Java
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Fig. 21. Biogeographic reconstruction of the R. lateristriata species complex by RASP v3.2
(Yu et al., 2015) under the Lagrange (Dispersal-Extinction-Cladogenesis, DEC) model (Ree
et al., 2005; Ree and Smith, 2008). Different colors at the tip of each branch represent current
distributional areas. The first six colors in the left panel represent single region distribution at
present while the next eight colors represent combination of two regions possibly assigned to
ancestral nodes. Pie diagram at each node corresponds to relative probabilities of the
estimated ancestral area reconstructions and only values above 10% are presented. An area or
a combination of two areas which has the highest probability at the node is shown in square.

as supported with a relatively high probability value (77.8%). Central or East Java was
strongly supported (100%) as the ancestral area of Clade 2+Clade 1. Finally, East Java or Bali

was suggested as the ancestral area of subclade 1A+subclade 1B within Clade 1.

3.8 Reconstruction of haplotype network
Figure 22 shows a haplotype network or genealogical relationships among COI gene

sequences of the R. lateristriata species complex. This network corroborates results from the
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Fig. 22. A network showing relationships among COI haplotypes of the R. lateristriata species
complex. Dotted boxes represent four haplogroups corresponding to the major clades
recognized in the phylogenetic tree of Fig. 15. A circle represents each unique haplotype and its
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phylogenetic analyses (Fig. 15) for the existence of four major clades. Within Clade 2, four
geographically distinct groups of haplotypes were identified. Consistent with the phylogenetic
analysis, a single individual of Pasuruan shared a haplotype (H_5) with most individuals of
Sleman. Within Clade 1, haplotype H 1 was shared by many Balinese, Lombok and
Sumbawa individuals commonly. Most of minor haplotypes within Clade 1 were separated by

single base substitutions from the major haplotype H 1.
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3.9 Analysis of morphological characters

Morphological investigations using selected morphometric and meristic diagnostic
characters were conducted to test whether they could discriminate clades and subclades
recognized in the R. lateristriata species complex from others. I first examined whether
individuals from Bali show different morphological features from those of other localities in
Java, Lombok and Sumbawa (Table 11). As a result, none of morphometric and meristic
diagnostic characters suggested by Brittan (1954)(e.g., head and eye size, relative position
when dorsal-hypural distance is carried forward, number of predorsal scales, and number of
lateral line scales and pores) showed clear separation between the Balinese individuals and
the others with considerable overlaps between them. Similarly, the four major clades of the R.
lateristriata species complex were also indistinguishable from each other based on these
characters (Table 11).

However, I noticed that several characters based on the body color pattern
(Lumbantobing, 2014) can discriminate between the four major clades. The combination of
pigmentation patterns of the SAP and BCB separated the R. lateristriata species complex into
four groups (Fig. 23 and Table 12). The presence of SAP and the absence of BCB were
shared by Clade 1 individuals. Clade 2 individuals shared the absence of both SAP and BCB.
The absence of SAP and the presence of BCB were shared by Clade 3 individuals. Finally,
Clade 4 individuals, R. aprotaenia and R. elegans shared the presence of both SAP and BCB.
I examined 38 morphological characters in total, either from Brittan (1954) or Lumbantobing
(2010, 2014). However, except for these two characters in the body color pattern, there
appeared to be no conspicuous characters that can clearly distinguish individuals of some
localities from the others. The details on the shape and melanophore pigmentation intensity of

the body color pattern in the R. lateristriata species complex are shown in Table 13.
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Fig. 23. Left lateral images of a representative individual from each major clade in the R.
lateristriata species complex. The museum voucher number for each specimen is UB.1.118.7
(Lombok, 54.8 mm SL) from Clade 1, UB.1.127.9 (Jepara, 45.2 mm SL) from Clade 2,
UB.1.142.1 (Tegal, 57.1 mm SL) from Clade 3, and UB.1.143.1 (Sukabumi, 75.0 mm SL)
from Clade 4 (see Table 2 for details).
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Chapter 4: Discussion

4.1 Phylogenetic position of the R. lateristriata species complex

Phylogenetic analyses to determine the phylogenetic position of R. lateristriata among
major species from genus Rasbora was conducted based on complete mitochondrial gene
sequences and multilocus gene sequences involving COI, Cyth RAG1 and opsin.
Phylogenetic analyses using the mitogenomic dataset (Fig. 9) showed, with a strong bootstrap
support (100%), that R. lateristriata is more closely related to R. aprotaenia than to any other
Rasbora species examined, pointing to their phylogenetic closeness. Based on a view by
Kottelat and Vidthayanon (1993), R. aprotaenia would be expected to cluster with R. steineri
in the phylogenetic tree but this was not the case. Brittan (1954) separated species in genus
Rasbora into eight groups. Both of Brittan (1954) and Liao et al. (2010) suggested the
phylogenetic closeness between R. lateristriata and R. aprotaenia but they placed these
species in a different group (the R. lateristriata-group and the R. argyrotaenia-group,
respectively). Because my molecular experiments using the mitogenomes did not include R.
argyrotaenia, it seems difficult to infer the phylogenetic position of R. argyrotaenia based on
the mitogenomic dataset.

According to the multilocus dataset 1, the molecular phylogeny (Figs. 10 and 15)
showed that individuals in Clades 1-4 together with R. aprotaenia and R. elegans make a
monophyletic group. Individuals from Clades 1-4 are morphologically very similar to each
other (Tables 11-13) but separated with large genetic distances (> 2%, Table 9). Therefore, I
propose to regard the assemblage of Clades 1-4 as the R. lateristriata species complex until
full taxonomic evaluations can formally define multiple species in it. While Brittan (1954)
and Kottelat and Vidthayanon (1993) placed R. lateristriata in the R. lateristriata-group, a
more recent phylogenetic reconstruction using 41 morphological characters transferred R.

lateristriata into the R. argyrotaenia-group (Liao et al., 2010). My molecular phylogeny (Fig.
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10) showed that the R. lateristriata species complex is distantly related with R. argyrotaenia,
which does not support Liao et al. (2010) who transferred R. lateristriata into the R.
argyrotaenia-group. More recently, Lumbantobing (2014) proposed another view by placing
R. lateristriata within the Sumatrana group, mainly based on the shared presence of the MLS,
SAP, and BCB pigmentations. However, as individuals of Clade 1 and Clade 2 lack BCB and
those of Clade 2 and Clade 3 do not have SAP (Table 12), inclusion of R. lateristriata in the
Sumatrana group may now be questionable. Taken all together, I propose to categorize the R.

lateristriata species complex+R. aprotaenia+R. elegans into the R. lateristriata-group.

4.2 Taxonomic status of R. baliensis

According to Brittan (1954), R. baliensis can be distinguished from R. lateristriata by
the combination of the following diagnostic characters: much bigger head and eye (vs. much
smaller head and eye), dorsal-hypural distance when carried forward falling at anterior rim of
eye (vs. falling at between nostril and anterior rim of eye), 11 to 12 pre-dorsal scales (vs. 12-
14), 28 lateral line scales (vs. 29-33), 26 lateral line pores (vs. 27 or more), faint midlateral
stripe (vs. darker), obsolescent SAP (vs. prominent) and obsolescent subpeduncular streak
(vs. prominent). However, based on my observation using these characters, the delimitation
between Balinese (possibly R. baliensis) and Javanese (possibly R. lateristriata) individuals
was very difficult to recognize with clear morphological segregation (Table 11). Ranges in the
examined morphometric and meristic diagnostic characters for 72 Balinese individuals
considerably overlapped those for non-Balinese individuals in Clades 1-4. Namely, all
diagnostic characters suggested by Brittan (1954) were unable to discriminate the Balinese (or
Bratan) individuals from non-Balinese individuals.

Brittan (1954) described R. baliensis using 4 individuals (holotype with 35 mm in SL,
range of SL=20-35 mm; Fig. 24) collected from Lake Bratan, Bali in comparison with 25 R.

lateristriata individuals obtained from Cikunir River (13 individuals), tributary of Cikunir
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River (2) of West Java; Telaga Teroes (3) of Central Java; Lake Ranu Klakah (3), Lake Ranu
Pakis (4) of East Java. A plausible reason for the discrepancy between Brittan’s (1954) and
my morphological analyses lies in the difference in the number of analyzed Balinese
individuals. Since Brittan (1954) used very few Balinese individuals, their morphological
characters may not have overlapped with those of the Javanese individuals accidentally.
Another possible reason is that Brittan (1954) used only young individuals from Bali, judging
from their body size (20-35 mm SL). Juvenile fishes tend to have larger head and eye than
adults when standardized by the standard length (Loy et al., 1998; Reichard and Jurajda,
1999). An additional possible explanation for the discrepancy is that R. baliensis described by
Brittan (1954) has gone extinct during the last several decades or that I simply could not
collect them in Balinese lakes. Although I cannot strictly deny these possibilities, I consider
that the last explanation is unlikely. I visited Balinese freshwater localities multiple times to
collect 72 samples in total. None of these individuals showed distinct molecular or

morphological features from those of East Javanese individuals (Fig. 15, Tables 11-12).

Fig. 24. Images corresponding to the holotype (A, museum voucher number UMMZ157146)
and the paratype (B-D, voucher numbers UMMZ157127 1, UMMZ157127 2 and
UMMZ157127 3, respectively) specimens used by Brittan (1954) for describing R. baliensis.
All specimens were collected in Lake Bratan, an enclosed-crater lake in Bali Island and
currently deposited in the University of Michigan Museum of Zoology. The images are
available through the courtesy of Dr. Douglas Nelson and Ms. Anna Barget of the University
of Michigan Museum of Zoology (the Great Lakes Invasive Species Project, UMMZ).

59



Taken together, these results point to the need to revise the taxonomic status of R.
baliensis. My molecular and morphological data suggest that Clade 1 consisting of
individuals from Bali, Lombok, Sumbawa and East Java may represent a species. Thus, Clade
1 may be defined as R. baliensis in future by exploring further diagnostic characters in

addition to the body color pattern shown in Table 12.

4.3 Cryptic species

Only three Rasbora species have previously been reported from Java Island (R.
argyrotaenia, R. lateristriata and R. aprotaenia). Whereas R. argyrotaenia and R.
lateristriata are widely distributed throughout Java Island, R. aprotaenia is known only from
western parts of Java Island (Brittan, 1954, 1972; Kottelat et al., 1993; Froese and Pauly,
2015). My molecular (Fig. 15 and Table 9) and morphological (Table 12) analyses agreed in
that Clade 2 and Clade 3 represent unknown cryptic species within the R. lateristriata species
complex. Clade 2 consists of individuals from Central Javanese localities (Pasuruan, Sleman,
Salatiga and Jepara) and Clade 3 consists of those from a west-central location (Tegal). In
contrast to the very shallow divergences and non-monophyletic structure of haplotypes
obtained from different localities (islands) within subclade 1A, haplotypes from the four
central Javanese localities mostly make monophyletic groups corresponding to 4 subclades in
Clade 2 (Fig. 15). This probably reflects sufficient times for the lineage sorting for each of the
central Javanese localities, but not for localities in the subclade 1A. Two major rivers (Solo
and Brantas) run in central Java (Fig. 8) but these rivers do not connect the four localities
directly. Thus, populations in these four localities in central Java may have been disconnected
without gene flow.

Clade 4 is composed of individuals from a west Javanese locality, Sukabumi. I
compared the body color pattern of these individuals with the illustrated figure (original

drawing with watercolor painting) of R. lateristriata specimens used by van Hasselt (1823)
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and Bleeker (1854), which also appear as Fig. 20 in Roberts (1993) and Fig. 116 in Oijen and
Loots (2012), respectively. As a result, Sukabumi samples had similar body color patterns as
R. lateristriata in these papers, especially with respect to the presence of SAP and BCB
pigmentations. As R. lateristriata was described using individuals collected from Bogor, West
Java (Bleeker, 1854), this result is consistent with the geographical location of Sukabumi in
West Java. Taken together, I propose that Clade 4 might be regarded as R. lateristriata in

future revision, enabling Clade 2 and Clade 3 to be described under new species names.

4.4 Evolution of body color patterns

Body color patterns are important features not only for describing new species in the
genus Rasbora (Kottelat, 2005; Kottelat and Tan, 2011; Lumbantobing, 2014) but also for
elucidating their phylogenetic relationships (Liao et al., 2010, 2011). My observation on the
morphological characters especially on the body color pattern revealed that combination of
SAP and BCB serves to separate the R. lateristriata species complex into four groups (see
section 3.9; Fig. 23 and Table 12). Most species of Rasbora possess the SAP and only some
don’t: e.g., R. aurotaenia (Rainboth et al., 2012), R. jacobsoni (Brittan, 1954), R. einthovenii
(Kottelat et al., 1993) and R. tubbi (Kottelat et al., 1993). My phylogenetic analysis suggested
that these species without SAP are distantly related to each other (Fig. 10). On the other hand,
BCB is absent in most of Rasbora species but present in R. sumatrana (Tan and Kottelat,
2009), R. paviana (Kottelat, 2005) R. hobelmani (Kottelat, 1984), R. vulgaris (Kottelat,
2005), R. lateristriata (Roberts, 1993), R. elegans (Kottelat et al., 1993), R. aprotaenia
(Kottelat et al., 1993) and R. kalbarensis (Kottelat et al., 1993). Except for R. kalbarensis,
species that have the BCB are closely related to each other (Fig. 10). The loss of SAP and the
gain of BCB in Rasbora seem to have occurred independently multiple times.

Many species in the Sumatrana group and individuals from Clade 4 of the R.

lateristriata species complex commonly have both SAP and BCB (Fig. 25; Table 12;
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Lumbantobing, 2014). R. sumatrana has a sister-group relationship with the R. lateristriata-
group species in which Clade 4 basally diverged from other clades (Figs. 10 and 15).
Existence of SAP and BCB may therefore represent a plesiomorphic character state in the R.
lateristriata-group (Fig. 26). Whereas SAP and BCB appear to have been retained during
diversification of the Sumatrana group, they were lost differently among species (clades) of
the R. lateristriata-group. The SAP is retained by members of R. aprotaenia, R. elegans,

Clade 1 and Clade 4. Thus, SAP may have been lost independently at Clade 2 and Clade 3 or

Fig. 25. Images of R. lateristriata (A, Bleeker, 1854 as in Roberts, 1993), R. aprotaenia (B,
64.5 mm SL; UB.1.120.25), R. elegans (C, 73.3 mm SL; UB.1.144.5), R. sumatrana (D, 66.6
mm SL; Kottelat et al., 1993); R. hobelmani (E, 50.1 mm SL; Kottelat, 1984); R. paviana (F,
60.0 mm SL; Kottelat, 2005); R. vulgaris (G, 59.7 mm SL; Kottelat, 2005) and R. kalbarensis
(H, 20 mm SL; Kottelat, 1993). Most species of Rasbora possess the SAP. On the contrary,
the BCB is absent in most of Rasbora except for these species.
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Fig. 26. Evolution of SAP and BCB pigmentation patterns in the R. lateristriata-group taxa.
Based on the presence (+) and absence (-) of SAP and BCB in individual taxa, possible
evolutionary changes in these characters were inferred by the parsimony criterion. Note that
the parallel loss of SAP in lineages leading to Clade 2 and Clade 3 is equally parsimonious to
the loss of SAP in the common ancestor of Clades 1-3 and its reversal gain in a lineage
leading to Clade 1.

it may have been regained at Clade 1 (Fig. 26). On the other hand, members of R. aprotaenia,
R. elegans, Clade 3 and Clade 4 retained BCB and its disappearance likely occurred in the
common ancestor of Clade 1 and Clade 2 (Fig. 26).

Based on the similarity in the intensity and shape of melanophore pigmentation of MLS,
Lumbantobing (2014) separated rasboras in the Sumatrana group into three subgroups: (1) the
Hosii subgroup, which is characterized by the presence of wider anterior subdorsal portion of
MLS than the posterior region (Fig. 27A); (2) the Lateristriata subgroup, which can be
identified by the presence of MLS but having indistinct subdorsal blotch (Fig. 27B); (3) the
Elegans subgroup, which can be illustrated by the undeveloped and subtle type of MLS (Fig.

27C). The division into three subgroups in the Sumatrana group does not seem to agree with
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Fig. 27. Schematic drawing of three subgroups in the Sumatrana group: the Hosii subgroup
(A), the Lateristriata subgroup (B) and the Elegans subgroup (C). The variation of intensity
and shape of black midlateral stripe (MLS) running from caudal base extending to the anterior
region serves as the key character in classifying the Sumatrana group into three subgroups.
Images were obtained from Lumbantobing (2014).

my molecular phylogeny (Fig. 10). For example, R. caudimaculata and R. trilineata were
categorized in the Lateristriata subgroup by Lumbantobing (2014) while both species are
distantly related with the R. lateristriata species complex (Fig. 10). As another example, R.
aprotaenia and R. elegans, which were categorized into different subgroups (i.e., the Hosii

and Elegans subgroups, respectively), turned out to be closely related sister species (Fig. 10).

4.5 Historical biogeography
The R. lateristriata-group (i.e., R. lateristriata species complex+R. aprotaenia+R.

elegans clade; see Fig. 10) consists of specimens mostly from Javanese localities but there are
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two exceptions. First, R. elegans occurs in Peninsular Malaysia, Singapore, Sumatra and
Borneo (Kottelat et al., 1993; Froese and Pauly, 2015). Second, Clade 1 extends from eastern
Java and Bali to Wallacean Islands of Lombok and Sumbawa (Fig. 15). Rasboras outside the
R. lateristriata-group all have non-Javanese distributions, except for R. argyrotaenia (Froese
and Pauly, 2015). Thus, it is reasonable to deduce that rasboras colonized Java Island by at
least two independent migrations: one by the ancestor of the R. lateristriata-group and the
other by that of R. argyrotaenia.

The Sundaic region has a shallow continental shelf and the eustatic change of sea level
has repeatedly connected major islands in this region to form Sundaland (Rainboth, 1996;
Voris, 2000). Therefore, migrations of freshwater fishes into and out of Java may have been
possible until the last glacial period (10-70 thousand years ago). However, Lombok Strait
between Bali and Lombok Islands and Makassar Strait between Borneo and Sulawesi Islands
were deep enough not to allow a land bridge across Wallace’s Line even during the
Quaternary glacial period (Moss and Wilson, 1998; Hall, 2009, 2013). This paleogeographical
setting may have allowed the occurrence of the R. lateristriata species complex members also
in Borneo and Sumatra. Weber and de Beaufort (1916) and Kottelat et al. (1993) noted that R.
lateristriata 1s also distributed in Sumatra and Borneo. In order to explore this possibility in
more details, I inspected 104 specimens collected from these islands and registered at the
MZB as R. lateristriata (Table 14). As a result, characteristics of the Sumatran and Bornean
individuals turned out to be different from those of Clade 1-4 individuals based on the body
color pattern (Table 14). Unfortunately, these museum specimens have been stored in
formalin and molecular characterization was unable to be executed. Thus, I do not have a
definitive conclusion on the distributional area of the R. lateristriata species complex,

especially on whether it exists in Borneo or Sumatra, too.
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If the R. lateristriata species complex did not migrate to Sumatra and Borneo Islands,
why was it unable to disperse to these islands while R. argyrotaenia appears to be distributed
in both Java and Borneo Islands (Fig. 7)?. My field observations suggested a possibility that
these two fish prefer different habitats in which the R. lateristriata species complex tends to
inhabit the upstream river whereas R. argyrotaenia tends to occur in the downstream area. To
explore this hypothesis, I obtained the altitude data of each locality using Google Earth
(Google Inc.) based on the GPS data recorded in the field. The average of the altitudes among
17 localities for the R. lateristriata species complex (435 m above the sea level) was higher
than that among 18 localities for R. argyrotaenia (83 m above the sea level) (data not shown).
This may possibly indicate that the R. lateristriata species complex adapted to the higher
altitude had lower mobilities than R. argyrotaenia and that this prevented the species complex
from migrating to Borneo even in the timing of land connection between Java and Borneo
during the Quaternary glacial period.

My molecular phylogeny (Fig. 10) suggests that R. sumatrana of Sumatra is a sister
taxon of the R. lateristriata-group. Some new species that appear to be closely related to R.
sumatrana have also been described from Sumatra (Lumbantobing, 2014) although they were
not sampled in my study. This is consistent with a view that an ancestor of the R. lateristriata-
group diverged from R. sumatrana and its allies in the western part of Java or in Sumatra,
after which the ancestor of the species complex started to colonize Java from the western side
(Fig. 21). This divergence from R. sumatrana was dated to be around 8.6 Mya in the late
Miocene (Fig. 19).

The molecular phylogeny suggests a west-to-east migrational history for the R.
lateristriata species complex (Fig. 28). Clade 4 and R. aprotaenia occur only in west Java.
Clade 3 occurs in west-central Java and Clade 2 has central Javanese localities. Finally, Clade
1 occurs in eastern Java and eastern islands. Within Clade 1, basal divergences occur between

Lumajang individuals and the others, followed by a divergence between Banyuwangi

67



individuals and those from eastern islands. This series of divergence matches the west-to-east
direction of migration (Fig. 28). This conclusion was corroborated by the historical
biogeographic reconstruction in which geographic distribution at ancestral nodes of the R.
lateristriata species complex was estimated to have changed from west to east in Java (Fig.
21).

What caused this west-to-east direction of divergence and migration? Geological
evidence (Hall, 2009, 2013) suggests that Sumatra and Java were mostly submerged in the
shallow sea in the mid-Miocene (~15 Mya) and that global cooling in the late Miocene (5-10
Mya) facilitated the emergence of some land areas in Sumatra and West Java. The Sunda
Strait between Sumatra and Java started to open by the early Pliocene (~5 Mya) and active
volcanic activities created land areas of East Java in the late Pliocene-Pleistocene (1-2 Mya).
The estimated divergence time between R. sumatrana and the R. lateristriata species complex
(8.6 Mya in mean and 5.8-11.9 Mya in 95% HPD; Fig. 19) corresponds to the timing for the
emergence of Sumatra and West Java, somewhat earlier than the opening of the Sunda Strait.
The estimated divergence time between Clade 2 in Central Java and Clade 1 in East Java and
eastern islands (1.6 Mya in mean and 0.9-2.5 Mya in 95% HPD; Fig. 19) corresponds to the
timing for the emergence of land areas in East Java. Thus, I consider that the R. lateristriata
species complex diverged and migrated in association with the geological history of Java
Island.

When and how did Clade 1 individuals cross the deep (> 250 m) and wide (> 20 km)
Lombok Strait over Wallace’s Line? Based on my molecular evidence (Fig. 15), individuals
from Bali, Lombok and Sumbawa have very shallow molecular divergences without
monophyletic structures for each island. It thus seems likely that Lombok and Sumbawa
individuals in Subclade 1A originated from Balinese individuals. The haplotype network
analysis using COI gene sequences also supported this conclusion, in which most Balinese,

Lombok, and Sumbawa individuals shared a major COI haplotype (H_1) and the other minor

68



Present-day rivers

= = = Paleo-East Sunda River System -
Sundaland boundary Indian Ocean

Fig 28. A schematic illustration on the hypothetical migrational pathway of the R. lateristriata
species complex. On top, the phylogenetic tree shown in Fig. 15 is schematically depicted
using different colors for lineages. The colors match geographic occurrence of the
corresponding lineages, pointing to the hypothetical west-to-east divergence and migration.
The paleo-drainage system (the East Sunda River System) was adapted from Voris (2000).
The boundary of Sundaland is based on Bird et al. (2005). The map is produced based on a
satellite image from Google Earth v7.1.5.1557.

haplotypes from these islands likely originated from the major haplotype by single base
substitutions (Fig. 22). Because the estimated divergence time between Subclades 1A and 1B
was around 0.48 Mya (Fig. 19), migration from Bali to Lombok and Sumbawa seems to have
occurred much more recently than 0.48 Mya.

In the early 20th century, several cyprinid species, such as Puntius gonionotus,
Helostoma macrolepidota, Cyprinus carpio and Osteochilus hasseltii, were introduced to
Lombok by the local government for the aquaculture purpose (Monk et al., 1997). Rasbora
might have been unintentionally transported on this occasion. However, there is no clear
record on from which locality the cyprinids were introduced. Since Bali has never been

known as a place for aquaculture activities (Sri Paryanti, 2006), it is not straightforward to
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think that the introduced cyprinids originated from Balinese lakes. Ways for natural migration
across Wallace’s Line are more difficult to envisage. Flood may carry freshwater fishes in
some distances, depending on their tolerance of salt water, and the Miocene seawater
dispersal of the salt-tolerable ricefishes across the Makassar Strait has been proposed by
Mokodongan and Yamabhira (2015). However, there is no big river running in Bali (Whitten et
al., 1996) and Rasbora is not tolerant of brackish water (Brittan, 1998). Taken together,

whether this migration was natural or mediated by human being remains unclear.
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Chapter 5: Conclusions and Future Prospects

Molecular phylogenetic analyses for rasboras from Java and neighboring islands have
never been conducted before and the present study is eventually the first attempt. In this
study, efforts to resolve molecular phylogeny and historical biogeography of the R.
lateristriata species complex were made using the extensive sampling strategy and up-to-date
molecular methods. As a result, I found evidence for the existence of possibly two new
species represented by individuals from Clade 2 and Clade 3. It was also suggested that
Clades 1-4 together with two other valid species (R. aprotaenia and R. elegans) form a
monophyletic group, which I proposed to name the R. lateristriata-group. I also proposed to
regard the morphologically homogeneous individuals of Clades 1-4 as the R. lateristriata
species complex until full taxonomic investigation can be executed to redefine R. lateristriata
and R. baliensis and describe new species in this group. Clade 4, consisting of individuals
from Sukabumi, West Java, might be defined as R. lateristriata whereas Clade 1 comprising
of individuals from eastern Java, Bali, Lombok and Sumbawa Islands may be defined as R.
baliensis in future revision.

I discussed the historical biogeography of the R. lateristriata species complex with
reference to geological history of Indonesian archipelago especially the islands of Sumatra,
Borneo, Java and Bali. I proposed for the first time a hypothetical west-to-east migrational
history of the R. lateristriata species complex. The R. lateristriata species complex was
originated from Sumatra or western parts of Java Island and subsequently dispersed to central
and east Java and Bali before it colonized Lombok and Sumbawa Islands over Wallace’s
Line. The estimation of divergence times suggested that the divergences in this species
complex occurred from late Miocene to Plio-Pleistocene (8.6-0.48 Mya). Ancestors of
Lombok and Sumbawa individuals likely originated from Balinese fresh waters and crossed

Wallace’s Line very recently (< 0.48 Mya). However, how Balinese individuals crossed wide
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and deep Lombok Strait over Wallace’s Line (i.e., an issue on natural vs. human-made
introduction) was not fully resolved in this study. Further investigations involving population
genetic approaches by either denser sampling in Bali, Lombok and Sumbawa Islands and/or
additional genetic markers (e.g., microsatellite DNA) may be worth for deciphering the riddle.

Currently, several species commonly occur in both western (Java and/or Bali) and
eastern (Lombok and/or Sumbawa) sides of Wallace’s Line, e.g., Puntius gonionotus, Puntius
binotatus, Anabas testudineus, Channa gachua, Xiphophorus hellerii and Poecilia sp. The
occurrence of X. hellerii and Poecilia sp. in Lombok and Sumbawa Islands is certainly due to
human introduction because they are native species in South America. Causes for the
distribution of the remaining species over Wallace’s Line are still uncertain. Studies on the
historical biogeography of these species in future will be important to answer the critical
question of natural vs. human-mediated introduction.

R. argyrotaenia is another widely distributed species in Indonesia. I collected
individuals of this species from various localities in Java and Borneo (Fig. 7) and conducted
preliminary phylogenetic analysis using three gene sequences (mitochondrial COI and Cytb
genes and nuclear RAG1 gene). Interestingly, the result suggested no conspicuous
phylogenetic pattern divided into geographical regions and the divergences within R.
argyrotaenia individuals from wide localities (e.g., Java and Borneo) were much shallower
than those within the R. lateristriata species complex (data not shown). Both R. lateristriata
and R. argyrotaenia are small primary freshwater fishes with similar morphological
appearance and no clearly different ecological characteristics between them are reported to
my knowledge. What made the sharp difference in phylogenetic structures between the two
species (species complex) remains an open question.

Indonesia is extremely rich in biodiversity. Unfortunately, this biodiversity has been
rapidly declined and still under serious threats owing to human activities. Many species await

molecular and morphological investigations before their natural habitats are critically
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destroyed by human activities, which is now progressing in an enormous speed unfortunately.
In the worst scenario, they may go extinct before we have a chance to study them. Thus,
effective conservation efforts must be immediately conducted to ensure their sustainability. In
order to do this, basic scientific information on taxonomy, phylogeny, ecology, and genetic
diversity is critically needed but such studies are very rare in Indonesia.

As demonstrated in this dissertation, multidisciplinary approaches by field sampling,
morphological investigations, molecular experiments, and computational analyses will be
effective to tackle complex evolutionary issues. I thus believe that my study may be one of
good examples to concord with the philosophy of “systematic natural sciences” at my

graduate school.
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