

Nagoya City University Academic Repository

学位の種類	博士 (医学)
報告番号	甲第1947号
学位記番号	第1377号
氏 名	養原 潔
授与年月日	令和5年3月24日
学位論文の題名	Mature dendritic cells enriched in regulatory molecules may control regulatory T cells and the prognosis of head and neck cancer (制御分子に富む成熟樹状細胞は、制御性 T 細胞と頭頸部癌の予後をコン トロールする可能性がある) Cancer Science, in press
論文審査担当者	主查: 稲垣 宏 副查: 飯田 真介, 渋谷 恭之

- 1 Mature dendritic cells enriched in regulatory molecules may control regulatory T cells and
- 2 the prognosis of head and neck cancer
- 3
- 4 Kiyoshi Minohara^{1,2*}, Masaki Imai^{1*}, Takuma Matoba^{1,2*}, James Badger Wing^{3,4}, Hiroaki
- 5 Shime¹, Mizuyu Odanaka¹, Ryuta Uraki^{1,5,6}, Daisuke Kawakita², Tatsuya Toyama⁷, Satoru
- 6 Takahashi⁸, Akimichi Morita⁹, Shingo Murakami², Naganari Ohkura^{10,11}, Shimon
- 7 Sakaguchi¹⁰, Shinichi Iwasaki², Sayuri Yamazaki¹
- 8

9 ¹Department of Immunology, Nagoya City University Graduate School of Medical Sciences,

- 10 Nagoya, Japan
- ¹¹ ²Department of Otorhinolaryngology, Head and neck surgery, Nagoya City University
- 12 Graduate School of Medical Sciences, Nagoya, Japan
- 13 ³Laboratory of Human Immunology (Single Cell Immunology), Immunology Frontier
- 14 Research Center, Osaka University, Osaka, Japan.
- ⁴Human Single Cell Immunology Team, Center for Infectious Disease Education and
- 16 Research (CiDER), Osaka University, Osaka, Japan.
- ⁵Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- 18 ⁶The Research Center for Global Viral Diseases, National Center for Global Health and
- 19 Medicine Research Institute, Tokyo, Japan.
- 20 ⁷Department of Breast Surgery, Nagoya City University Graduate School of Medical
- 21 Sciences, Nagoya, Japan
- ⁸Department of Experimental Pathology and Tumor Biology, Nagoya City University,
- 23 Graduate School of Medical Sciences, Nagoya, Japan
- ⁹Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate
- 25 School of Medical Sciences, Nagoya, Japan
- ²⁶ ¹⁰Department of Experimental Immunology, World Premier International Research Center
- 27 Initiative, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- 28 ¹¹Department of Frontier Research in Tumor Immunology, Center of Medical Innovation and
- 29 Translational Research, Graduate School of Medicine, Osaka University, Osaka, Japan
- 30
- 31 * These authors contributed equally to this work.
- 32

33 Abstract

34

35	We previously reported that regulatory T (Treg) cells expressing CTLA-4 on the cell surface
36	are abundant in head and neck squamous cell carcinoma (HNSCC) ¹ . The role of expanded
37	Treg cells in the tumor microenvironment of HNSCC remains unclear. In this study, we
38	revealed that the tumor microenvironment of HNSCC is characterized by the high expression
39	of genes related to Treg cells, dendritic cells (DCs), and interleukin (IL)-17-related
40	molecules. Increased expression of IL17A, IL17F, or IL23A contributes to a favorable
41	prognosis of HNSCC. In the tumor microenvironment of HNSCC, IL23A and IL12B are
42	expressed in mature dendritic cells enriched in regulatory molecules (mregDCs) ² . The
43	mregDCs in HNSCC are a migratory and mature phenotype; their signature genes strongly
44	correlate with Treg signature genes in HNSCC. We also observed that IL17A was highly
45	expressed in Th17 cells and exhausted CD8 ⁺ T cells in HNSCC. These data suggest that
46	mregDCs in HNSCC may contribute to the prognosis by balancing Treg cells and effector T
47	cells that produce IL-17. Targeting mregDCs may be a novel strategy for developing new
48	immune therapies against HNSCC.
49	

50 **REFERENCES**

 Matoba T, Imai M, Ohkura N, et al. Regulatory T cells expressing abundant CTLA-4 on the cell surface with a proliferative gene profile are key features of human head and neck cancer. *Int J Cancer*. 2019; 144: 2811-2822.
Maier B, Leader AM, Chen ST, et al. A conserved dendritic-cell regulatory program limits antitumour immunity. *Nature*. 2020; 580: 257-262.

56