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Abbreviation 

 

DLMO dim light melatonin onset 

MCTQ munich chronotype questionnaire 

MS mid-sleep 

MSFsc sleep-corrected mid-sleep on freedays 

NREM non-rapid eye movement sleep 

PSG polysomnography 

REM rapid eye movement sleep 

SE sleep efficiency 

TIB times in bed 

TST total sleep time 

WASO wake time after sleep onset 
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1. Introduction 

 

1.1 Background 

 Homeostasis and circadian rhythm are fundamental functions to understand regulatory 

mechanisms of sleep-wake cycles affected by various internal and external factors, including 

changes of the environment and social needs. In contemporary, developed societies, daily 

life schedules are mainly dependent on social activities, such as the starting time and ending 

time of work and class, and by individual preference, such as TV programs or outdoor 

activities. The wide spread use of air-conditioning and artificial light has created artificial 

environments that are opposed to the natural climate. Due to these influences, habitual sleep 

schedules have changed gradually, and, as a result, the average sleep duration has become 

shorter by more than one hour in Japan and many other countries over the past 30 years1,2. 

It is well known that sleep disorders and poor sleep quality have a negative impact on human 

physical and psychological conditions, and consequently the importance of sleep health is 

now gaining much more attention3. To understand and improve sleep patterns to enhance 

the quality of life, a device that can easily monitor long-term sleep patterns in the home 

environment is needed. In the medical field, polysomnography (PSG) is the gold standard 

method for accurate and objective sleep measurement. PSG measures various physiological 

parameters and is employed for diagnosing and treating sleep disorders. During PSG, 

subjects are required to visit and sleep in a hospital or a sleep laboratory overnight with 

multiple electrodes pasted onto their head and body. In addition, experienced sleep 

technologists are needed to collect, analyze and interpret data. PSG has several limitations. 

First, PSG restricts the subject’s movement and posture because of the diverse range of 

attached electrodes. Second, to conduct PSG over a long period is difficult because of the 

laboratory setting, examination monetary and human cost, and comfort issues. 

 In the sleep research field, wrist actigraphy is widely accepted to be a useful method to 

estimate sleep at home. In this method, subjects wear a monitor on the non-dominant wrist 

to estimate whether the subject is asleep or awake by monitoring their movements using an 

acceleration monitor. The American Academy of Sleep Medicine Practice Guidelines accepts 

that actigraphy is a useful method to estimate sleep in healthy adult populations4. However, 

actigraphy has not become a common method to monitor sleep by oneself because of 

economic and practical concerns. 

 In epidemiological studies, questionnaires are often used to collect subjects’ sleep related 

data, and there have been a variety of questionnaires developed. Therefore, researchers 

must choose questionnaires to suit their specific purpose. One limitation is that subjective 

evaluation depends on the subjects’ memory. 
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1.2 Contactless biomotion sensor 

 To overcome the limitations of PSG and actigraphy, a contactless biomotion sensor was 

developed. It employs radiofrequency waves (10.525 GHz) to detect body and respiratory 

movements of sleeping human subjects (see Fig1). The sensor can detect movements, 

limited to a 45° angle and 50-200 cm distance, looking from the front of the sensor, and is 

designed for indoor use. It automatically assigns one of four labels 

(sleep/wake/absent/unknown) to each 30-s epoch. The “unknown” and “absent” labels signify 

that the subject was outside the range of the monitor, and the difference of two labels is that 

“absent” is assigned when the subject is outside of the range of the monitor for over 20 min. 

For body movements, the monitor detects significant movements to assess activity based on 

the magnitude and duration of each movement. After calculating the activity of each 30-s 

epoch, an algorithm identifies whether the subject is asleep or awake. For respiratory 

movements, it detects whether a person is present according to the existence of respiratory 

band frequencies. This study employed a 10.525 GHz radiofrequency in order to comply with 

the Japanese Radio Law; however, the algorithms related to the process of identifying the 

four conditions is the same as in a previous study, which used 5.8 GHz5. To validate the 

accuracy of the 10.525 GHz contactless biomotion sensor, an examination was conducted 

simultaneously with polysomnography at two institutions (Ota Memorial Sleep Center and 

Kuwamizu Hospital). In total, 211 adult subjects participated in the study, and 148 (99 

subjects with an apnea-hypopnea index score >15) were used for the analysis. In the 

comparison of each 30-s epoch, the overall accuracy of the 10.525 GHz contactless 

biomotion sensor was 84.1%, and its sensitivity and specificity were 91.8% and 37.6%, 

respectively. For the sleep parameters, the algorithm slightly overestimated total sleep time 

(bias: +13 min) and sleep efficiency (bias: +3%) compared with polysomnography. As for 

sleep onset latency and wake time after sleep onset, these were slightly underestimated. 

These results show that the contactless biomotion sensor showed an equivalent sleep 

estimate potency as actigraphy6. 

 

 
Figure 1. The image of how to use contactless biomotion sensor 
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1.3 Social factors and external factors 

 Although humans have their own chronotype, which is the characteristic of biological time, 

it is difficult to spend individual sleep preferences because of social schedules. The 

distributions of mid-sleep (MS) (MS = bedtime + (wake-up time − bedtime)/2) and sleep 

duration differed between work days and free days in a previous study, which used the 

Munich Chronotype Questionnaire (MCTQ)7, and the concept of social jet lag; i.e., the 

discrepancy between biological time and social time leading to adverse effects, were 

advocated8. A recent study found that the discrepancy of MS between work days and free 

days decrease with age in both men and women9. 

 As a result of sleep debt during work days, sleeping for longer on free days can delay an 

individual’s circadian rhythms and lead to adverse effects on subsequent sleep and activities. 

In a previous study, individuals who delayed their sleep schedules on weekends had less 

sleepiness and required a longer sleep onset latency on Sunday nights, but showed lower 

cognitive performance and overall mood ratings on Monday mornings compared with those 

who maintained weekday sleep schedules on weekends10. Even subjects who went to bed 

at their usual bedtimes on weekends, waking up later can cause similar effects11. In another 

study, the administration of melatonin counteracted the phase delay of endogenous 

melatonin onset, increased the severity of daytime sleepiness, and decreased sleep onset 

latency on Sundays12.  

 Many biological indices and behaviors indicate seasonal rhythms in human daily life13. In 

laboratory environments using PSG, seasonal variations including later bedtime, later wake-

up time, increased time of rapid eye movement (REM) sleep, and decreased time of the 

stage 4 of non-REM (NREM) sleep were found to occur more in winter compared with 

summer14. In addition to sleep parameters, markers of circadian rhythms such as rectal 

temperature and melatonin show a delay in winter compared to summer15,16. 

 In some large-scale population studies that use questionnaires, however, it is difficult to 

interpret the reported results of subjective assessments for the seasonality of sleep. For 

example, people in Norway have more trouble sleeping in December than in June17, but 

another study reported that the quality of sleep is worse during the summer in Finland18. 

Furthermore, there are no significant differences in the data collected between April through 

September and October through March19. Finally, another study reported the possibility that 

previous results of seasonal variations in sleep might have been caused by publication 

biases and problems of study design20. 
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1.4 Purpose 

 The contactless biomotion sensor was commercialized in 2012, and more than 7,000 

sensors have been sold and are now in use by Japanese consumers. Their sleep data are 

gathered in a data server via the internet, which enables the objective, large-scale study of 

sleep patterns. The aim of the present study is to analyze weekly and seasonal changes in 

sleep patterns using large-scale, real world data, and to clarify the relationship between 

social factors and environmental changes. 
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2. Materials and Methods 

 

2.1 System 

 The contactless biomotion sensor can upload the data to a web-based healthcare 

application through a USB or near-field communication connection. Informed consent was 

obtained from all subjects when they started to use the web-based application for the first 

time. Data confidentiality and handling procedures regarding this study was explained to the 

subjects before their consent was obtained. 

 The contactless biomotion sensor used in this study employs two methods for determining 

the start and end of the measurement period. First, to obtain automatic measurements, the 

subject sets the start time of the measurement period in advance, and measurements begin 

being taken when the sensor detects the subject. The sensor stops obtaining measurements 

when the subject has been out of range for a fixed amount of time. Second, to obtain manual 

measurements, the subject pushes a button when going to and getting out of bed. In this 

study, we used both types of data for analysis; however, data obtained on nights were 

excluded if more than one “absent” label existed at any period in the data. We used this 

preprocessing to avoid two types of errors: (1) the sensor detects the subject in range and 

starts measuring in automatic mode before they actually wanted to go to sleep; and (2) 

subject forgot to push the stop button when the sensor was in manual mode. Figure 2 and 

Table 1 show the demographic information in databases from May 2012 to November 2016. 

 In the seasonal variations analysis, outside temperature and sun time (sunrise time, 

sunset time) data was used as environmental parameters. Hourly temperature data in all 

Japan prefectures was provided by the Japan Weather Forecast Association. The daily sun 

time data in all prefectures was collected by the National Astronomical Observatory of Japan.  

 

No. Participants 7,086 

No. Nights 2,131,615 

Male / Female 5,663 / 1,423 

Median Age 50 

Median times in bed 7h 5min 

Median total sleep time 5h 58min 

Table 1. Subjects’ characteristics 
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2.2 Weekly sleep pattern (data analysis) 

 Data extracted from complete sets of 7-day periods (starting on Sundays) were used in 

the analysis. Table 2 shows the demographic information in this analysis. Data gathered from 

each subject were from differing numbers of weeks (minimum: 1 week, maximum: 73 weeks). 

Six sleep parameters were examined in this study: bedtime, wake-up time, time spent in bed 

(TIB), total sleep time (TST), sleep efficiency (SE), and initial sleep index. TST is the sum of 

all sleep epochs between sleep onset and waking-up. SE is the ratio of the TST to the time 

spent in bed multiplied by 100. Initial sleep index is employed to measure the difficulty in 

falling asleep. It is defined as the minutes lapsed from bedtime to the first 10-min period 

where all labels are “sleep” and activity is equal to 0. We defined this index since sleep onset 

latency using an activity based algorithm is underestimated compared with PSG. 

Furthermore, to assess the intra-weekday variation, the difference between the maximum 

MS and median MS (MSmax - MSmed) values on weekdays is employed. Some weeks 

(maximum 10 weeks; if a subject has only 3 weeks of valid data, all 3 weeks are used) were 

Figure 2. The distribution of subject-nights 
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randomly selected for each subject and then the average of (MSmax – MSmed) was used. 

After averaging each subject, mean values were calculated for all subjects. This process was 

employed because of the differences in the amount of weeks available for each participant. 

One-way ANOVA was used to test for differences in sleep parameters between days or age 

decades, and Welch’s t-test was used to test for differences between the weekdays and 

weekends and gender in each age decade. 

 

2.3 Seasonal change of sleep (data analysis) 

 Each subject recorded data for different numbers of days (minimum, 1 night; maximum, 

815 nights; median, 53 nights). Table 3 shows the demographic information in this analysis. 

Five sleep parameters were examined in this study: (a) sleep onset time, (b) sleep offset time, 

(c) mid-sleep time, (d) SE, and (e) wake after sleep onset (WASO). Sleep onset time is the 

first epoch attached to the “sleep” label after beginning measurement. Sleep offset time is 

the next epoch to the last epoch labeled as sleep. WASO is defined as the sum of all wake 

epochs between sleep onset and the last epoch labeled as sleep. All sleep parameters were 

adjusted for age according to the following procedures:  

 1) Averages of all five sleep parameters for each age (20 to 79) were calculated. 

 2) Average of age plots were subjected to smoothing with spline interpolation.  

 3) The base line value at 50 years-old (median age) was calculated from the above plot. 

 4) The difference from base line value for each age was calculated.   

 5) All sleep parameters for each night were adjusted by age using the above calculated 

differences in the subjects’ ages. 

This approach was employed because the distribution of subjects’ ages increased with time. 

 For phase analysis between sleep parameters and environmental parameters, spline 

interpolation was conducted to resample from time series weekly averaged data to daily data, 

and local maximum and minimum values were calculated. Intermediate points were 

calculated using these values. 

 The temperature data used for each night was the average of 10 hourly temperature data 

between 23:00 to the next 8:00 from each prefecture. When one prefecture had more than 

one observatory, all observatory data were included. This averaged temperature data of each 

prefecture was linked to each daily sleep data using the date and the subject’s residential 

information. Sunrise and sunset time data for each prefectural capital was also connected to 

each daily sleep data in the same way. Pearson’s correlation coefficient (r) was used to 

quantify the strength of the relationship between the sleep parameters and environmental 

parameters. Welch’s t-test was used to test for differences in sleep offset time between 

conditions (summer solstice to winter solstice, winter solstice to summer solstice).  
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 All data processing and statistical analyses were conducted using the statistical software 

R, version 3 (https://www.r-project.org/). 

 

  

Number of Subjects 2,914 

Male / Female 2446 / 468 

Average Age 47.9 ± 11.6 

Number of Weeks 24,899 

Number of Subjects 5,685 

Male / Female 4664 / 1021 

Average Age 50.5 ± 11.4 

Number of Night 840,903 

Table 2. Participants’ characteristics in weekly sleep pattern analysis (Data are 

expressed as absolute or mean and SD values) 

Table 3. Participants’ characteristics in seasonal sleep pattern analysis (Data are 

expressed as absolute or mean and SD values) 



11 
 

3. Results & Discussion 

 

3.1 Weekly sleep pattern 

3.1.1 All subjects 

 On weekend (Friday and Saturday) nights, the subjects’ mean bedtime, wake-up time, 

and MS were delayed by 26, 53, and 40 min, respectively, compared with those seen on 

weekday (Sunday to Thursday) nights (Table 4). Since wake-up time was delayed more than 

bedtime, TIB and TST values were increased by 27 and 22 min, respectively. Welch’s t-test 

detected significant differences in the bedtime, wake-up time, TIB, and TST between 

weekdays and weekends. In the comparison of data collected for each sleep parameter each 

day (Table 5), on Sunday nights, the initial sleep index was increased compared with that 

seen on Tuesday to Friday (Sunday: 42.8 min, Tuesday to Friday: 36.0–37.5 min). One-way 

ANOVA detected significant differences in the initial sleep index between the day groups (p 

< 0.01). 

 

  

Index Weekdays Weekend p 

Bedtime (HH:MM) 11:46 p.m. ± 87.2 00:12 a.m. ± 102.0 <0.001 

Wake-up Time (HH:MM) 06:32 a.m. ± 80.6 07:26 a.m. ± 105.0 <0.001 

Sleep Midpoint (HH:MM) 03:09 a.m. ± 77.2 03:49 a.m. ± 96.4 <0.001 

Time in Bed (min) 406 ± 65.9 434 ± 75.4 <0.001 

Total Sleep Time (min) 354 ± 60.1 376 ± 70.2 <0.001 

Sleep Efficiency (%) 87.4 ± 8.2 87.1 ± 8.8 0.089 

Initial Sleep Index (min) 38.8 ± 29.5 38.4 ± 33.7 0.613 

Table 4. Comparison of sleep parameters between weekdays and weekends (Data are 

expressed as mean ± SD values. Weekdays, from Sunday to Thursday nights; 

Weekend, Friday, and Saturday nights, significant difference between weekdays and 

weekends assessed by Welch’s t-test). 
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Index Sun Mon Tue Wed Thu Fri Sat 

Bedtime 

(HH:MM) 

23:40 

±96.4 

23:44 

±93.2 

23:47 

±93.9 

23:48 

±92.3 

23:51 

±96.5 

00:15 

±107.1 

00:09 

±109.3

Wake-up Time 

(HH:MM) 

06:33 

±87.9 

06:32 

±86.3 

06:31 

±86.0 

06:33 

±84.8 

06:34 

±87.6 

07:21 

±109.7 

07:31 

±112.6

Sleep Midpoint 

(HH:MM) 

03:07 

±84.0 

03:08 

±81.9 

03:09 

±82.1 

03:10 

±80.5 

03:12 

±84.1 

03:48 

±100.0 

03:50 

±102.5

Time in Bed 

(min) 

413 

±76.3 

408 

±73.5 

404 

±74.1 

405 

±74.0 

402 

±75.3 

425 

±84.1 

442 

±85.1 

Total Sleep Time 

(min) 

360 

±70.2 

354 

±68.3 

352 

±68.6 

353 

±68.6 

351 

±69.1 

369 

±77.7 

383 

±80.5 

Sleep Efficiency 

(%) 

87.4 

±9.1 

87.2 

±9.2 

87.5 

±8.9 

87.5 

±9.1 

87.7 

±8.8 

87.1 

±9.1 

87.0 

±9.5 

Initial Sleep 

Index 

 (min) 

42.8 

±42.2 

39.5 

±37.8 

37.5 

±35.8 

37.4 

±36.3 

36.7 

±34.4 

36.0 

±35.5  

40.7 

±41.7 

 

 

3.1.2 Differences between the genders and age decades 

 The weekend delay in the MS was greatest in the individuals in their 20s, in both men 

and women. Men had prolonged TIB and TST values by 39 and 36 min, respectively, since 

their bedtime, wake-up time, and MS were delayed by 44, 84, and 64 min, respectively, on 

weekends compared with weekdays. Similarly, women increased their TIB and TST values 

by 37 and 32 min, respectively, since their bedtime, wake-up time, and MS were delayed by 

46, 82, and 64 min, respectively, on weekends. One-way ANOVA detected significant 

differences in MSweekend – MSweekday between the age groups (p < 0.01); however, 

Welch’s t-test did not detect any significant differences in this parameter between the 

genders. Figures 3, 4, and 5 show the changes in bedtimes, wake-up times, and TIB 

values, respectively, for each age decade on weekdays and weekends. Figure 6 shows the 

changes in MSweekend − MSweekday among the genders and age decades. 

 

  

Table 5. Comparison of sleep parameters among day (Data are expressed as mean ± SD 

values). 
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Figure 3.  A plot of the subjects’ weekday and weekend bedtimes according to age 

decade (Data are shown as mean and SEM values). 

Figure 4.  A plot of the subjects’ weekday and weekend wake-up times according to 

age decade (Data are shown as mean and SEM values). 
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Figure 5.  A plot of the subjects’ weekday and weekend TIB values according to age 

decade (Data are shown as mean and SEM values. TIB, time spent in bed). 

Figure 6.  A plot of the subjects’ MSweekend − MSweekday values according to gender 

and age decade (Data are shown as mean and SEM values). 
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3.1.3 Differences among weekdays 

 Assessment of intra-weekday (from Sunday to Thursday) variations showed that the 

difference between MSmax and MSmed was greatest among the subjects in their 20s (47 

min) and smallest among those in their 70s (35 min). One-way ANOVA detected a 

significant relationship between MSmax − MSmed and age (p < 0.05); however, Welch’s t-

test did not detect significant differences in the MSmax − MSmed values between the 

genders, except for those in their 60s (p < 0.01). Of the subjects in their 20s, MSmax – 

MSmed values of more than 1 h was 22.9%, bedtime delays of more than 2 h was 12.2%, 

and wake-up time delays of more than 2 h was 10.3%. These percentages tended to 

decrease as the age decades increased. Table 6 shows the differences between the 

subjects’ maximum and median bedtimes, wake-up times, and MS values according to age 

decade. Table 7 shows the percentage difference between the subjects’ maximum and 

median values over the threshold according to age decade. 

 

  

Age Decile N MSmax – MSmed BTmax – BTmed WTmax – WTmed

20s 165 47 ± 41 61 ± 48  46 ± 57 

30s 513 43 ± 42 57 ± 49 44 ± 51 

40s 960 44 ± 53 58 ± 61 42 ± 58 

50s 793 38 ± 34 52 ± 44 37 ± 45 

60s 359 40 ± 34 52 ± 45 42 ± 43 

70s 124 35 ± 25 47 ± 40 40 ± 29 

Table 6.  Difference between the maximum and median values of various sleep 

parameters according to age decade (Data are expressed as mean ± SD values. N, 

number of participants; MS, mid-sleep; max, maximum value of the parameter on 

weekdays; med, median value of the parameter on weekdays; BIT, bed in time; BOT, 

bed out time). 
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3.1.4 Discussion of weekly sleep pattern 

 In this study, we found that subjects tended to go to bed and wake-up later on weekends 

than on weekdays. Since they delayed their wake-up times to a greater extent than their 

bedtimes, their TIB and TST values were increased. Furthermore, initial sleep index 

increased on Sundays. The difference between the subjects’ weekday and weekend TIB 

values was greatest among individuals in their 20s and decreased with age, however the 

difference between male and female could not be seen. We assume that this trend indicates 

lifestyle changes. Our results show that people in their 60s and 70s have greater weekday 

TIB values than those in their 20s–50s. People generally retire around the age of 60. As a 

result, they are released from social obligations and accumulate less sleep debt on weekdays, 

and therefore do not need to change their sleep patterns on weekends. Previous studies 

have reported that weekend sleep delays cause disturbances in circadian rhythms. Waking-

up later on both weekend mornings caused the delay of dim light melatonin onset (DLMO), 

increased sleep onset latency on Sunday nights, and greater daytime fatigue and sleepiness 

during the following week11. Interestingly, exposure to light on weekend mornings was not 

effective at stabilizing circadian rhythms in younger subjects21, which indicates the difficulty 

of recovering from circadian rhythm delays in the short term. Such circadian disturbances 

are also associated with reward-related brain functions in healthy adolescents and worse 

academic performance among adolescents with behaviorally-induced insufficient sleep 

syndrome22,23. Regarding difference between the genders, we assume that since 

employment situation (full-time job, part-time job, homemaker) have important role in lifestyle 

Age 

Decile 
N 

MSmax-MSmed ≧ 60

(%)  

BTmax-BTmed ≧ 120

(%)  

WTmax-WTmed ≧ 120

(%)  

20s 166 22.9 ± 1.9 12.2 ± 1.1  10.3 ± 1.0 

30s 523 20.3 ± 1.2 10.0 ± 0.7 10.2 ± 1.0 

40s 959 19.5 ± 0.8 9.4 ± 0.6 8.1 ± 0.4 

50s 810 18.8 ± 0.9 10.2 ± 0.7 7.1 ± 0.3 

60s 360 18.0 ± 1.2 8.7 ± 0.8 6.2 ± 0.7 

70s 125 18.0 ± 2.2 8.7 ± 1.3 6.7 ± 1.3 

Table 7.  Percentage difference between the maximum and median values of various 

sleep parameters according to age decade (Data are expressed as mean ± SD values. 

N, number of participants; MS, mid-sleep; max, maximum value of the parameter on 

weekdays; med, median value of the parameter on weekdays; BIT, bed in time; BOT, 

bed out time). 
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schedule, the social characteristic (especially in employment situation) of subjects both male 

and female might be similar in our database. Investigation by Ministry of Internal Affairs and 

Communications in Japan reported female tend to have short sleep duration compared with 

male in weekdays, however the weekly variation was smaller than male (about 10 min). 

 In this study, MSweekend − MSweekday (which is similar to ΔMS) was used as an index 

of sleep pattern delays (about 1 h and 30 min in their 20s and 50s) (see Fig. 6). A previous 

study using the MCTQ to examine the sleep patterns of more than 65,000 subjects (primarily 

central Europeans) reported that the ΔMS values in the subjects in their 20s and 50s was 

about 2 h and 1 h, respectively9. Another questionnaire study examined the sleep patterns 

of subjects with a mean age of 36 and found that their ΔMS value was about 1 h24. 

Comparing these results with ours suggests that objective ΔMS values might tend to be 

smaller than subjective ΔMS values, but trends of decreases in ΔMS with age were 

detected in both studies. Although it is unclear the effect of differences in the subjects’ 

characteristics, the discrepancy between studies might be caused by differences the nature 

of data acquisition method. Previous studies have found that diary-based bedtime and wake-

up times were strongly correlated with objective observational data25,26; however, there have 

been no studies on the relationship between data regarding “usual” sleep patterns obtained 

using a questionnaire and objective daily sleep measurements. Further studies are required 

to assess the difference of subjective and objective sleep parameters. 

 Subjects’ maximum and median values for various sleep parameters were used to 

examine intra-weekday variations in sleep patterns. Our results showed that the greatest 

mean MSmax − MSmed value was seen in subjects in their 20s (47 min). Furthermore, 22.9% 

of these subjects exhibited mean weekly MSmax – MSmed values of more than 60 min using 

repeated random sampling analysis. This indicates that these subjects’ sleep schedules 

varied not only on weekends, but also on weekdays. Although the delays seen on the 

weekend resulted from delayed wake-up times and demand an extension of TIB, intra-

weekday variations were primarily caused by subjects going to bed later on weekdays, and 

hence, getting less sleep because of their obligations on weekday mornings. A previous study 

reported that even minor variations in weekday wake-up times are associated with poor 

subjective sleep quality and that weekday bedtime stability is strongly correlated with 

consistent weekday wake-up times27. Some studies from college students to senior citizens 

reported that highly regular lifestyles including regular sleep patterns are related to better 

subjective sleep28–30. The subjects with stable bedtimes and wake-up times (variation of ≤15 

min) exhibited better subjective sleep quality and slightly higher SE than the subjects with 

variable bedtimes or wake-up times (variation of >15 min) among retired senior citizens31. 

Subjects with irregular sleep patterns were instructed to stabilize their sleep schedules by 
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going to bed and waking up within pre-assigned 1-hour time windows, and the study found 

that this decreased subjective daytime sleepiness, sleep onset latency, and increased SE32. 

The subjects’ circadian rhythms (DLMO) were significantly delayed in the late bedtime 

conditions (1:00 a.m.) compared with the early bedtime conditions (10:00 p.m.) in 7-19 night 

periods involving a fixed lights on time (7:00 a.m.)33. Clearly, further studies are required to 

assess the effects of abrupt sleep delays on circadian rhythms and daytime fatigue and 

sleepiness. 

 Such delays affect not only sleepiness and daytime performance, but can also influence 

lifestyle diseases or behaviors. A previous study reported that MSFsc (MSF – (sleep duration 

on free days – sleep duration in week) / 2) was correlated with body mass index (BMI) among 

overweight and obese subjects (BMI ≥ 25), but not among individuals with normal body 

weights (BMI < 25)9. The risk of diabetes and inflammation might be increased by circadian 

misalignment independent of insufficient sleep34. In addition, reduced weekday sleep and 

weekend oversleeping were found to be associated with suicidality in adolescents35,36. On 

the other hand, some studies have reported that catch-up sleep on weekends decreases the 

risk of overweightness and hypertension37,38. Further studies are required to assess the 

advantages of getting extra sleep and the disadvantages of the circadian rhythm 

disturbances caused by catch-up sleep on weekends. 

 

3.2 Seasonal change of sleep 

3.2.1 The magnitudes of the seasonal changes in sleep over 3 year periods 

 Figure 7 shows the changes in five sleep parameters plotted as weekly time series data 

over three years. The age-adjusted average of the all weekly data is plotted in each upper 

panel with temperature (red) and sunrise time (blue), and separated weekday and weekend 

data are plotted in each lower panel. It does not show clearly periodic variation in sleep onset 

time over three years, even after separation of weekdays and weekends (Fig. 7A). On the 

other hand, sleep offset time showed significant periodic variation with a single peak within a 

year, especially during weekends (Fig. 7B). The magnitude of variation in sleep offset from 

mid-winter to mid-summer is early by nearly 30 min (three-year average, 29.2 min) during 

weekends. Furthermore, even on weekdays, the seasonal variation was significant (15.6 min). 

MS also fluctuates as a result of the sleep onset and offset time fluctuation (Fig. 7C) 

 In sleep quality parameters, WASO reflecting intervening arousal during sleep showed a 

change with two peaks in mid-summer and mid-winter within a year (Fig. 7D). These two 

peaks indicated that both high and low temperatures impaired sleep. Similarly, SE which also 

indicates sleep quality, showed a change with two different peaks within a year (Fig. 7E). 

Regarding yearly peaks, SE decreased sharply in mid-summer, especially during the highest 
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temperature period, and decreased a smaller amount around mid-winter. The difference of 

the two peaks derived from the difference in the length of TST, since the WASO increase 

peaks were not much different compared with sleep offset time variation. Total sleep time 

during winter was longer than during summer, which made the SE during winter appear to 

be greater than the SE during summer. 
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Figure 7.  Weekly changes of the averages of the sleep parameters for all subjects 

(adjusted for age; open circles), temperature (red line, upside down) and sunrise time 

(blue line). Upper panels:  All day averages. Lower panels: Weekday average (open 

circles) and weekend average (filled circles). Dotted line indicates smoothed data with 

spline interpolation. One plotted dot corresponds to more than 1,000 subject-nights. (a) 

Sleep onset time, (b) Sleep offset time, (c) Mid-sleep (MS), (d) Wakefulness after sleep 

onset (WASO), (e) Sleep efficiency (SE). 
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3.2.2 The annual phases of the seasonal changes 

 The data was smoothed using the spline interpolation method the local maximum, 

minimum and intermediate points were calculated to evaluate the annual phase of seasonal 

change. Figure 8 shows the smoothed data of sleep offset time, temperature (upside down), 

sunrise time and sunset time (upside down). Table 8 shows the summary of the phase 

calculation of five parameters, temperature and sun time. Clearly, the annual temperature 

change followed the annual photo period change. The greatest difference between 

temperature and sunrise is about two months in Japan, as a result of the earliest sunrise time 

in early June and the highest temperature day in early August. The earliest sleep offset time 

is in early July, which is approximately halfway between the sunrise time and temperature 

peaks. Since the latest sunset time is about two weeks later than the earliest sunrise time, 

sleep offset rhythm is closer to sunset time than to sunrise time. 

 On the other hand, the day with the maximal WASO during summer and minimal SE are 

nearly synchronous with the highest temperature day. The day with the second smallest 

WASO peak during winter corresponds to the coldest temperature day. 

 

  

Figure 8.  Comparison of smoothed data with spline interpolation of sleep offset time 

(black, upside down), temperature (red), sunrise time (blue, upside down) and sunset 

time (green). 
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 2013   2014    2015  

 summer autumn winter spring summer autumn winter spring summer

sunrise time 6/8 9/21 1/4 3/23 6/10 9/22 1/4 3/23 6/10 

sunset time 6/26 9/14 12/3 3/15 6/26 9/14 12/3 3/15 6/26 

temperature 8/5 10/28 1/20 4/26 8/1 10/22 1/13 4/23 7/31 

offset time 7/9 10/15 1/21 4/13 7/5 10/9 1/14 4/1 6/17 

MS 7/19 10/21 1/22 4/23 7/23 10/10 12/28 3/22 6/15 

WASO 8/4 - 2/17 - 8/1 - 1/10 - 7/30 

SE 7/29 - - - 7/30 - - - 7/28 

 

 

3.2.3 Correlation with temperature and light phases 

 We next examined the correlation of sleep parameters with temperature and sunrise time. 

Sleep offset time significantly correlated with sunrise time and temperature (r = 0.890 (p < 

0.01), -0.924 (p < 0.01), respectively). Sleep onset time did not significantly correlate to 

sunrise time (r = 0.097), but weakly correlated to the temperature (r = -0.365 (p < 0.01)). MS 

also correlated to both sunrise time and temperature (r = 0.779 (p < 0.01), -0.896 (p < 0.01), 

respectively). Fig 9 shows the sleep parameter plot against temperature and sunrise time. 

Since the seasonal fluctuation is small, sleep onset time did not show a clear correlation with 

either temperature or sunrise time (Fig 9A). Sleep offset time showed significant correlations 

both with temperature and sunrise time (Fig 9B). The regression coefficient was bigger during 

weekends than during weekdays. Sleep offset time became earlier and earlier within the 

temperature region between 5 to 25 ℃ and almost linearly correlated with sunrise time. MS 

also showed a similar trend, but the correlation was slightly weaker than the sleep offset time 

(Fig 9C). WASO showed a U-shaped correlation with temperature (Fig 9D). WASO was at 

minimum at around 15 degrees ℃, and increased gradually with colder temperatures and 

increased rapidly with higher temperatures. WASO showed a complex correlation curve with 

sunrise time. SE showed an inverse U shape correlation with the temperature (Fig 9E). SE 

was at maximum at around 15 degrees ℃  and decreased very gradually with colder 

temperatures and decreased very rapidly with higher temperatures.  

Table 8.  Date of local maximum, minimum and intermediate points of each parameter. 

Local maximum and minimum date were calculated using spline interpolated data in 

summer and winter. Intermediate date were then calculated as the half point between 

the maximum and minimum in spring and autumn. 
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 In order to clarify the relationship between sleep offset time and sunrise time, the data 

were separated into two groups according to the period, one from winter solstice to summer 

solstice (December - June, Fig 10, blue) and the other from summer solstice to winter solstice 

(June - December, Fig 10, red). The sleep offset time is significantly earlier in the latter group 

(June - December) (p < 0.01). 
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Figure 9.  Correlation of the averaged sleep parameters, (a) Sleep onset time, (b) 

Sleep offset time, (c) MS, (d) WASO, and (e) SE compared with temperature (left 

panels) and sunrise time every 5 min (right panels). All day (open circles), weekday 

(open triangles) and weekend (crosses). Averaged data are plotted. Dotted lines 

indicate smoothed data with spline interpolation. One plotted dot corresponds to more 

than 1,000 subject-nights. 

(d) 

(e) 
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Figure 10.  Correlation of the average of sleep offset time with sunrise time every 5 min 

(corresponds to Fig. 8b, right panel). All day (open circles), weekday (open triangles) 

and weekend (crosses). Averaged data are plotted. The data is also divided into two 

periods (Dec, winter solstice to Jun, summer solstice; blue, and Jun, summer solstice to 

Dec, winter solstice; red). Dotted lines indicate smoothed data with spline interpolation. 

One plotted dot corresponds to more than 500 subject-nights. 
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3.2.4 Discussion of seasonal change of sleep 

 In this study, we analyzed seasonal changes in human sleep using large-scale longitudinal 

objective sleep data in the Japanese population obtained by a contactless biomotion sensor. 

We used age adjusted sleep parameter values, because the data were from an age-sex 

mixed population. We found significant seasonal fluctuations both in the phase and the 

quality of sleep.  

 As for sleep / wake phases, sleep onset time was stable over the course of a year, while 

sleep offset time changed significantly according to the season of the year. This suggested 

that Japanese people spend night time on their own preferred schedule, and bed time was 

not significantly affected by natural climate changes. Although social time restricts the wake-

up time, especially on weekdays, sleep offset time followed the change of sunrise time, and 

it also followed the change in temperature. Therefore, even though the sunrise time is the 

same, sleep offset time in spring is later than sleep offset time in autumn (see Fig 10). 

 The seasonal difference during the course of a year, i.e. amplitude of the sleep offset time 

on weekends averaged over the three years, was 29.2 min, and was larger than that on 

weekdays (15.6 min), suggesting that sleep offset time on weekends is more susceptible to 

natural environmental changes. However, the amplitude of sleep offset time on weekends is 

smaller than the difference of sleep offset time between weekday and weekends (51.4 min), 

which is associated with social jet lag. This may suggest that effects from natural 

environmental changes are weaker than the effects of social restraints. 

 Our results are comparable to a recent study which investigated the seasonal variation in 

sleep-wake times using a questionnaire in a large scale of population (9765 subjects) in 

Europe39. First, seasonal changes of photoperiod influenced the mid-sleep time on free days 

adjusted for sleep debt, age and sex through the season (DST and standard zonetime 

periods - SZT). Second, social jet lag contributed more to the variation in sleep duration than 

natural seasonal sleep time variation. As discussed above, weekly variation was bigger than 

the amplitude of fluctuation through the year. The characteristic point of our study using the 

Japanese population instead of people from other countries is the absence of DST in Japan. 

This may the one reason that clear seasonal variation can be seen through the year 

compared with previous studies in the weekly average analysis. 

 One previous study indicated that the seasonal adaptation to changing photoperiods does 

not occur during the period of DST and that the human circadian system could not adjust to 

the transition pertaining to DST40. Under both controlled conditions and natural routine life, 

significant seasonality was detected in the in-bed and wake-up times in young males14,15. In 

another study using actigraphy in the subjects’ homes, a significant difference was detected 

only in wake-up time in elderly subjects41. Our results coincided with the latter study. One 
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possible explanation for this discrepancy is the difference in measurement conditions, 

particularly in the artificial conditions of the laboratory compared to natural conditions at home. 

In an advanced society, as humans are exposed to strong artificial lights after sunset and our 

life is influenced by social factors, the effects of seasonal sun light differences on in-bed time 

become weaker. On the other hand, we are exposed direct sun light before our usual wake-

up time during summer, which is strongly influential. 

 In the analysis of weekly variation, bedtime and wake-up times were more delayed on 

weekends than on weekdays. On the other hand, seasonal variation showed that the 

magnitude of fluctuation of sleep offset time is larger on weekends (29.2 min) than on 

weekdays (15.6 min). This suggests that social time more strongly regulates our activity 

during weekdays, and the effects of natural entrainment factors emerge more explicitly on 

weekends when people usually become released from social obligations. However, sleep 

offset time also fluctuated by about 15 min according to season, while social obligations start 

at similar times throughout the year. The seasonal variation is smaller than social jet lag, also 

reflected in the results from previous work that examined the chronotype of nearly 10,000 

people in Europe using the Munich Chronotype Questionnaire (MCTQ)8. 

 Another interesting finding in this study is the relationship of the phases between sleep 

offset time and natural photoperiods. The phases of natural seasonal climate changes are 

different. From winter to summer, sunrise time, sunset time and temperature get earlier, later 

and higher, and they reach their summer peaks on approximately June 9, June 26 and August 

1 in Japan, respectively. As a result, day length becomes longer and the longest day is 

around June 21, which is between the earliest sunrise and the latest sunset. The day of the 

highest temperature delay is nearly two months from the day of earliest sunrise in Japan. 

The earliest sleep offset time was observed around July 10 in 2013 and 2014, which is after 

all of the photoperiod-related peaks (sunrise, sunset and day length) and before the 

temperature peak. Conversely, from summer to winter, sunrise time, sunset time and 

temperature become later, earlier and lower, and they reached to their winter peaks at around 

January 4, December 3, and January 15, respectively. Day length becomes shorter and the 

shortest day is around December 21. Sleep offset time becomes progressively later and its 

winter peak is around January 17, which is near the temperature nadir. Therefore, even when 

the sunrise times are equal, sleep offset time in spring is later than in autumn. Since our 

circadian time is entrained strongly by light42, this delay may be due to nonphotic entrainment, 

including temperature. In sum, the timing of sleep is affected by multiple environmental 

factors, predominantly photoperiod, but the impact is smaller compared with the effects of 

social needs. 

 The most remarkable findings in this study are the seasonal changes in sleep quality. 
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Since it is very hard to assess sleep quality properly by subjective sleep log scoring or 

questionnaires, an objective method is necessary in order to look into sleep quality. However, 

it is difficult to gather large scale data using previous objective methods such as actigraphs, 

because subjects need to wear it during sleep and they involve considerable cost. Since our 

monitor is contactless, the subjects do not feel any stress during sleep measurement. 

Measurements start either automatically or by pushing one button, and after that the resulting 

data is transferred over the internet. Therefore, the cost of gathering data is almost negligible, 

which enabled us to analyze nearly one million nights of data. 

 One good parameter of sleep quality, WASO, increased in both high and low temperatures. 

Previous studies reported that both cold exposure and heat exposure increased the total time 

of wakefulness in a laboratory environment; however, the subjects were instructed not to 

wear a night suit or use a blanket, which differs from real life43. There was no significant 

difference between cold exposure and normal conditions if the subject uses normal bedding44. 

Another study reported that WASO significantly increased in elderly people in summer 

compared to fall and winter, where the outside temperature was 25.2, 9, and 1.4 degrees ℃, 

respectively41. Our result indicated that even inside houses and using the preferred settings 

of subjects’ air conditioners, bedding and outfit, both the hottest and coldest outside 

temperatures impaired the sleep quality and increased WASO in Japan. However, since the 

worsening changes in SE is milder in winter than in summer, increasing WASO in winter 

caused by the longer times in bed in winter is longer than that of summer. 
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4. Limitation 

 

 Our study has several limitations. First, the subjects might not have been representative 

of the general Japanese populations because they bought the contactless biomotion sensor 

and uploaded the data to the web-based healthcare application of their own volition. Thus, 

they may have sleep problems or have been interested in sleep. Second, although the validity 

of the system is confirmed, the contactless biomotion sensors tend to underestimate the 

wake condition. When subjects are awake but motionless, the contactless biomotion sensors 

label the condition as sleep, and as a result, sleep onset latency, WASO and SE may be 

shorter than the actual states that measure using PSG. 

 Furthermore, although data from the “absent” state were excluded to avoid measurement 

errors, the database may include other types of measurement errors. For example, people 

stay awake intentionally after starting the measurement (e.g., reading a book, using a 

smartphone), do something near the sensor when it remains measuring because the person 

forgot to push the stop button (e.g., change clothes, brushing teeth), or go back to sleep after 

stopping the measurement. The first and second types of errors detect incorrectly early 

bedtimes or later wake-up times, and as a result overestimate the TIB and wake state 

(sometime overestimate sleep state, it depends on the person’s behavior). The third type of 

error may underestimate the TIB and sleep state by detecting an incorrectly early wake-up 

time. Thus, these measurement errors affect the all of sleep parameters, and may tend to 

happen more on weekends than on weekdays. Third, although sometimes data were 

separated by weekdays and weekends similar to workdays and free days, the database did 

not contain any information about the subjects’ occupations. Therefore, some of the subjects 

might have worked on weekends and been off on weekdays. This might explain the 

differences between MSweekend − MSweekday values between our study and previous 

studies. Finally, environmental factor data such as temperature and sun time was connected 

to the subjects by their residence within prefectures. Therefore, data might not have reflected 

the subjects’ environment when they stayed far from home.  
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5. Conclusion 

 

 The size of our dataset is large enough to conclude that the weekly variation caused by 

social factors is larger than that caused by seasonal variation. Therefore, Japanese people 

tend to be forced to social jet lag every week. However, seasonal variation influences sleep 

phase and quality even in the highly artificial environment of the home, which is very 

informative.  

 Since some of the subjects measured and uploaded other health parameters along with 

sleep data, such as blood pressure, body weight, exercise and body temperature, which have 

been recorded in our database, we will analyze the relationship of sleep and other 

parameters to improve quality of life in future studies. Furthermore, widespread to measure 

sleep in home environment can help to clarify the index and criteria to diagnosis and 

treatment sleep related disorders. 
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