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                             Abstract 

   Elastic constants of cubic materials with respect to coordinate systems on superlattices and their surface 

waves are  studied. An exact expression to calculate surface waves is derived for superlattices supposed for 

two kinds of layers to be rigidly stacked upon each other. The formulations are performed for bulk 

superlattices and superlattices on glass. The result of numerical calculations for two kinds of superlattices 

 Cu/Al and Cu/Ag is compared with that obtained by use of the known effective elastic constants  CM. 

 Grimsditch,  Phys.  Rev.  B.  31, 6818  (1985)1. The comparison clarifies the region in which the  Grimsditch's 

expressions may be  used 
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[  I  ] Introduction 

   The elastic properties of metallic multilayers have attracted much  attention.') In order to understand these 

elastic properties we need the elastic constants of such superlattices. The effective elastic constants for a 

periodically laminated medium of orthorhombic symmetry have been derived by  Grimsditch." His effective 
elastic constants are valid in the long-wavelength regime, i.e., they can be used for superlattices with a short 

period, where a period means the shortest unit of layers which consist of the constituents of periodically layered 
structures. The meaning of a "short period" does not seem to be clear, though the effective elastic constants are 

often used in  literatures."m 

   Metallic multilayers are usually made by sputtering or  evaporation.") Such multilayer films have a "pencil 

type texture, i.e., one in which the grains have a common orientation normal to the film but are randomly oriented 

in the plane of the  film.' The subject of our study in the present paper is sputtered or evaporated  multilayer film . 
   In the present work, first we discuss the elastic constants for each of alternating layers of constituents in 

periodically layered  structure  , which is general multilayer and in which the grains may or may not be randomly 

oriented in the plane parallel to each layer. We will consider only cubic materials as constituents of superlattice 

and  [001]  , [110] and [111] planes as the planes of superlattices. The present elastic constants in these cases are 

given in a symmetry adopted form. From these general elastic constants, we can obtain the well known elastic 

constants in sputtered or evaporated  multilayer." 

   By use of those elastic constants, we will formulate the equations for propagating elastic waves in each layer. 

We can deal with elastic propagating waves in periodically layered structures by connecting the above waves with 

the proper boundary conditions in each boundary of layers. There are quasi-transverse and qausi-longitudinal 

elastic waves, each of which has forward and backward modes in the noted (x', y') plane of the coordinate system

* The revised edition of the present paper will be publised soon
, where this paper is rewritten compactly. The present 

 paper contains some valuable descriptions and details passed over in the revised edition.



(x', y', z') defined for superlattice. This means that the propagating waves of interest are treated in terms of 

4  x  4 matrices. 

   Among those elastic waves are involved the waves satisfying the condition of stress-free  114" on either 

terminal plane of the treated multilayer film, where bulk superlattice and superlattice developed on substrate are 

considered. These waves are the surface elastic waves which are known as the Rayleigh wave and the Sezawa 

waves, where the Sezawa waves have larger velocities than the Rayleigh wave. We restrict our discussion to the 

Rayleigh wave, though the Sezawa waves can be obtained from our derivation. Mathematically, the dispersion 

equation for a  surface wave is equivalent to the condition that the determinant of a 4  x4 matrix is zero. 
   We can regard multilayer as medium with the effective elastic constants which are determined by use of the 

Grimsditch'  formulae.s,  6,  3' The  surface elastic wave can be found through the much easier calculation for the 

virtual medium than the direct and complicated calculation for superlattice, which is actually made in the present 

 paper. The numerical calculations are performed for  Cu/Al and Cu/Ag superlattices in the present work. One 
of our main purposes is to clarify the restriction of the approximate treatment based on the Grimsditch's 

expressions by comparison of the result obtained from the virtual medium model with that from the exact 

derivation. Another main purpose is just the exact derivation of the surface elastic wave in superlattice. 

 D11  Film geometric elastic constants 
   We have two kinds of coordinate  systems; one is the crystallographic system  (x1 =  x, x2  =  y, x3 =  z) and 

another is the film geometric system  ( x1' = x', x2' = y', x3'  = z'  ).1" The axis z' is normal to the surface of the 
 film and x' and y' are the two axes with arbitrary orientations in the film surface. The transformation from the 

 coordinate system  ( x, y,  z) to the one  ( x', y',  z'  ) is given by

  =  Atixi  , (2. 1) 

where  Ai; is the rotation matrix. Here and hereafter the usual convention regarding summation on repeated 

subscripts is  used." 

   The primary elastic modulus tensor  Aiiki is related to the film geometric elastic modulus tensor  ?p,/ by the 

following tensor transformation  equation:',  13' 

 Amrs/  =  ApiAgiArkAsiAijkl (2. 2) 

The tensor  Aijki has the symmetric  properties:' 

 Aijkl =  A  jikl  =  Aijlk =  Aklij (2. 3) 

The transformed tensor  Apq„/ also has the same symmetric properties. 

We have only three independent non-zero terms for the primary elastic tensor in the cubic  system  :13) 

         Axxxx =  Amy =  Az.z  C11  Axxvy =  Aviaz =  Axxzz  ==  C12  ,  Ayzyz =  Az= =  Ann :=1  C44  •  (2.  4) 

Substituting the relations  (2.  3) and (2. 4) in Eq. (2. 2) yields the following expression: 

 2.pqrs/ =  Apq„Cii+(apgars—Apq,)C12  (  op,.  a„  6p,6„-2Apq„)C44, (2. 5) 

where  op, denotes the kronecker delta-symbol and the coefficient  Apq„ means 

 Apqrs  =  ApiAgiAriAsi.  (2.  6)



   We will rewrite the expression (2. 5) in the following forms for our practical purposes: 

 Apqrsi =  C11  +  (6pqars— 1)  C12+  (apraqs+  6p,(,-2)  C  44+  (Apqrs—  1)e 

          = 

 C12+  (  ors  —  C  12  +  aqs  aps  (5,0  C44  Apqrse 
 (2.  7) 

             =  C44  +  apq(5rs  C12  +  (apraqs+  6psaqr—  1)  C„+  Apme 

         = 66 C+(66+6)C+AE                      pqrs12prqspsqr44pqrs 

where E =  C11— C12  2C44  . The obtained results are summarized in Table  I  . Here we notice that the elastic tensor 

 Apqrs/ or  CV is independent of coordinates if  C11—  C12  2  C44 = 0 . It is well known that the condition 

 C11—  C12 =  2C44 holds for isotropic  media.12'1' 

   In what follows, the expressions of tensors  Am,/ (or  CV  )  (2.  5) or (2. 7) are given for three transformed 

coordinate systems  (a), (b) and (c), where each z' axis is normal to the  [001]  , [110] and [111] planes of the cubic 

coordinate system, respectively. 

              Table I Tensor  CZ;/ in the superlattice fixed coordinate (x', y', z')

 e =  C11-  C12  -  2C44 

(a) The film coordinate system which arises from rotating the z axis of the original coordinate system by an 

arbitrary angle  0  . 

   Here, the rotation matrix A is expressed as 

          /  cog+  sine  0\ 
  A =  —sine  cos0 0 (2. 8) 

      \ 0 0 1/ 

Calculating the coefficients  Apirs in Table I by substituting  (2.  8) in the expression  (2.  6), we obtain the elastic 
tensor shown in Table II in the present case  (a). 

(b) The coordinate system which arises from rotating by an arbitrary angle 0 the z" of the transformed 
coordinate system  ( x", y",  z"  )  , where  x"  , y" and z" axes are directed toward (0, 0, 1), (  1/A/Y,  —  1/J, 0 ) and 

 (  1/1,  1/,,/T,  0) in the original coordinate  system( x, y,  z)  . In the present case, the rotation matrix A is given 
as



                                                E =  Cu  -  C12  -  2C44 

    ) 

         /  cos°  sing  0\ / 0 0  1 
    A =  —sin°  cos° 0  1/1r2-  —1/VY 0  (2.  9) 

           0 0 1/ \1/1-2--  1/4 0 

By use of the above rotation matrix, the elastic tensor is calculated as in Table  III. 

(c) The coordinate system  ( x', y',  z'  ), which is obtained from transforming the original axes whose unit vectors 
are (1, 0, 0), (0, 1, 0) and (0, 0, 1) first to the ones which have unit vectors (  lAri,  1/16-,  —2/V-6- ), 

(  —141,  1/a,  0) and (  1/J,  1/j,  1/1,/T  ), followed by rotating the new z axis directed toward 

 ( 1/1/I,  i/a,  i/a) by an angle  0  . The present rotation matrix is 

         /  cos°  sin0 0\/ 1/i/T 1/A1T—2/1/T\ 
    A = —sin0 cos0 0 _i/[2-  il,r2- 0  (2.  10) 

      \ 0 0 1/ \  it,,iy  va  i/Vi /

The elastic tensor results in Table IV in this case. Here we notice the relation  C11'—C12' =  2C66' , which means 

that cubic media are isotropic in  [111] plane. 

   As described in Introduction, we treat evaporated or sputtered thin films in which numerous grains have a 

common orientation normal to the foil but are randomly oriented in the plane of the  foil.1® As planes of foils, 

 [001]  ,  [110] and  [HU planes are usually anticipated. The angular 0 dependent parts of the elastic tensors in 

Table  II  , III and  IV disappear under such a situation. The angular independent parts completely agree with those 

given in the  literature."' 
   The present derivations of the elastic tensors are similar to that by  Itoh8), in which the rotations of the field 

are confused with the rotations of the coordinate  system:4) Furthermore, in addition to some misprints, the Itoh's 

expressions do not have the symmetry adopted forms as the present expressions: from his expressions, we can not 

easily detect the elastic tensors for evaporated or sputtered thin films, i.e., the angular independent parts of the 

elastic tensors as described above.



 C2  =  cos20  S2  =  sin29 C4  =cos40 S4  =  sin40  E =  C11- C12 -  2C44 

 [III] Elastic waves in media constituting superlattices 

   In the previous section, we have discussed the transformation of the elastic tensors of cubic materials with 

respect to the coordinate system. By use of the obtained results we can deal with propagating waves in a bulk 

elastic medium in an arbitrary coordinate system. Here we treat superlattices consisting of periodically 

alternating films, in each boundary of which a propagating wave undergoes reflection and refraction, that is, it 

splits in reflected and refracted waves. On the surface of a medium the refracted waves are lacking. There exist 

incident and reflected waves, which include quasi-transverse and quasi-longitudinal waves, and the mixtures of 

them yield surface modes known as Rayleigh wave and Sezawa waves for special frequencies. In the present section 

we formulate the equations giving surface waves in superlattices which consist of two kinds of evaporated or 

sputtered thin films. 

   The equation of motion for a material point in a medium i can be written in the form  11-13) 

    p(i)(32u,"),= aa4"/r = 1, 2,  3  , (3. 1) 
         a'axsi 

where  p(i) denotes the density of the medium,  ur(i)/ is the  r  -th component of the displacement of the medium at 

the point whose position vector has the s -th cartisian component  xs/  , and  ar(:)/ is an element of the stress tensor. 
Superscript  (  i  ) and the  symbol  / correspond to the medium i and the transformed coordinate system 
(x1', x2', x3')  = (x', y', z') , respectively in the above equation. The stress tensor is specified by a generalized 
Hook's law  12) as 

        (/\         ap(gi)/  = 4:rs/grs,grs=1au)/Ou(i)        rs (3 .2)                         2 O
xs/ Oxr/ 

Here 41,.)„/ is an element of the elastic constant tensor of the medium i in the transformed coordinate.



E  =  CH  -  C12  -  2C44

   Substituting the elements of the elastic tensors in Tables  II  ,  III and  IV in eq. (3. 1) with (3. 2) yields the 

equation of motion for the special case (a), (b) and  (c) described in the previous section. We will write below the 

equation of motion for the medium i which is isotropic in the (x', y') plane, that is, which is assumed a layer 

of superlattice, in the case (c). Straightforward calculation gives the followings. 

       ,i, 02uzw, (i) 02 ciy 02 co 402 (i) c3 0 2                                                                            u (0/         p` ' = CH/ 2 + C66 / 2 + C44 / 2 Ux / + ( C11 / C6(6i)/)      at 2 ax/ ay/ az/ ax/ay/  
 (3.3a) 

                                          2 

                                          n 

               +(,+,) UU(i)/                                    44  ox/OZ,z 

        n2 (i) , ( _cry  a2 ___73., 52 _  a2 ,_ 52            (i)  U U f                                                                          u(0        P ate --- Ci / +C / +Cu)/ uu)/±(Ci( 1i) C6(6i)/)                   66 ox, 2 11 oy, 2 44 ozi 2 y (332/19Y, x 

                                                               (3.3b) 

                 +(1317/±c(i)/) °2U(i)/                               44  oy/aziz 

     n2., (0 , n2 02 402 au (0/ ou (0/           (0  Li "z ' ( —(77  (I         P = C / + C i  7 / + C i 7 / )u(i) / ± (Cu) / -FC - 5 7 /) a (- - r . +11)  (3.  3c) 
         at 2 44 Oxi 2 44 aye 2 33 40z/ 2 z 13 44 oz -                                                 i ax/ aye 

Here  UTZ7/ denotes the angular independent parts of the elements of the tensor in Table IV; the averages of sin3 0 
and cos3 0 are equal to zero. In the above calculation we have used the relation 

 Cil)/ =  Cg)/,  ic;7/  --Cc2;7/,  UT/ =  Cg)/ , andiclif —                                       C64/ = CP+UP , the existence of which are obvious 
from Table IV. 

   The above mentioned relationUT/ ——c7                                 Cizi/-2Cg),----0 ensures that the medium i is isotropic in the (x',  y') 
plane. Actually, substituting



        u a") =  Ua")  exp  {i(qx(,"x/  +  qy(,"y/  —  cot)}  = —1) 

into (3. 3a), (3. 3b) and (3. 3c)  ( a = x', y' and  z'  )  , which are the displacements in the case assumed the elastic 
waves propagating in the  ( x',  y'  ) plane, yields the following solutions. 

        p(i)W2 =  ji.),[q(i)]2  ; up);uy(i) =gy(:),uzi)=0 

       p(i)w2 = cg),[guy; up):U(i)= gy(f);= 0 

 p(i)a)2 =___[guy;ux(i)=uy(i)= 0,U(i)0 

Here the notation  q(i) =  (qx(P  ,  qy(f)  , 0) is used for a wave vector and  co and t mean the frequency of the wave and 
time, respectively. Thus, we can confirm that there exist one longitudinal wave and two transverse waves for 
each frequency in the plane of the foil, which holds only for isotropic media. 
   As described above, the medium i with the tensor  elements  "e7/ is isotropic in the  ( x', y' ) plane. 
Considering this fact, we will be able to restrict the elastic waves to those propagating in the  (  x'  ,  z'  ) plane. For 

the wave with the wave vector  q(i) =  (qx(1)  , 0,  qz(P) and frequency  co") , its displacement in the point  ( x', y',  z'  ) 

and time t is expressed in the form 

       ua(i)/=Ua(i)expfi (qx(Px/ +ez/ —cot)} (a = x', y', (3.4) 

Substitution of  (3.  4) for (3. 3a) and  (3.  3c) gives 

    p(i)o(i)2U(i) = ( /e)2 /q(P2)U)+(ai+T/)q(Pq(Pu(i) (3. 5a)xzP i,.zz 

        (i)(i)2U(i) CI7 (f)2 (1)2(i) (1)(i)U)      pcoz(/qx/qz)Uz+ C / /)q.qz P (3. 5b) 

Similarly, substituting  (3.  4) in (3. 3b) yields 

      p (Ow (i)2Uy(i) =Cg)/qx(f)2C,(11:4)/qzci)2)Uy(i)(3. 6) 

   The surface plane is assumed to be  stress-free,"-13) which means 

        (i)(i)(i)    aza/ = ozx/ = azy/0 (3. 7)

We have incident and reflected waves on the surface. In order that the boundary condition may be satisfied for all 

x' and  t  , the reflected wave must have the same  qy and  co as the incident wave. This is generalized as below. 

In the present case, we have boundaries depending on z' axis, on each of which two surfaces of media contacts and 

incident, reflected and refracted waves appear. The boundary conditions depend only on z' axis and they do not 

depend on  x'  , y' and  t  . Hence dependence of solution on  x'  , y' and t remains the same in all space and time, 

i.e.  co,  qx, and  qy,  (  =0 in our case) for reflected and refracted waves are the same as in the incident  wave.") 

   The solutions obtained from (3. 6) represent an incident transverse wave with wave vector  (qx(1), 0,  qz(P) and 

a reflected transverse wave with wave vector  (qx(1), 0,  -  qz(P) in the vicinity of the surface of the medium. We 

can confirm that the present set of incident and reflected waves satisfy the boundary condition (3. 7) at the 

surface. Thus, this transverse wave reflected completely and can not make mixtures as described at the beginning 

of the present section. As a surface mode, this transverse wave is known to cause the Love wave. But the Love 

wave is out of our subject of investigation. Hence we do not deal with eq. (3.  6). 

   We can obtain quasi-transverse and quasi-longitudinal elastic waves from solving eqs. (3. 5a) and (3.  5b). As



described already, the frequency  cow and the x' -th component of the wave vector qx(1) of these waves do not 

depend on the medium  i in the superlattices, where boundaries exist only on z' axis. Hereafter we will remove 

this superscript from these quantities. In order to simplify the treatment, we adopt the following notations: 

 Qi  =  60/qx,  (3.8) 

 Ui = Uz(i)/Ux(i)  (3.  9) 

    Ei2 =  0  (i)(02/(  cazi)/q2,) (3. 10) 

By use of the above notations, eqs. (3. 5a) and (3. 5b) are rewritten as 

                ci.7/Q,2+ c1.7/ — -a7-5/i2 (1+ -e1-4:7/)Qi    U  —  44 11 44  =  2 . (3. 11) 
        (U/ + CD )2i Uci7 2                                 ci3; /Qi +c,`,:),— „ /, 

From the above equations, we have 

       (0)2+ {Ai-- (1 +Bi) el (0) + (1 — e) (Ci—Bie) = 0  (3.  12) 

where  Ai  ,  Bi  , and  Ci denotes the followings. 

            r' (i)1 Cg)/ r' (1)1 
         ( ci.7/ Uci7/                      44   , ci =  11 (3.13)        Ai =   (i) —57 2+  (i) ) , Bi = -c. 7 

         C44 / C33 / C44 / 3; / 3; / 

   The equation (3. 12) is a quadratic equation with respect to  (  0  ) and has two solutions for given w and 
 q.,  . We will represent these two solutions as  Q and  02 (  IQ  1  --  1QL1  ). The expression (3. 11) gives two values 

 Uil and  Ui2 for  Lli corresponding to these  Q and  (4  . For a given  0 we have two waves. One represents the 
wave vector for a forward wave and the other is a backward wave. We can summarize the elastic waves derived 

from eqs. (3. 5a) and (3.  5b) as follows. 

 ai(1, 0,  UdexP(igriQiizi)f(co, t)  (3.  14a) 

 bi(1,  0,  —Uii)exp(—iqx,Qiiv)f(c.o, t)  (3.  14b) 

 ci(1, 0,  Ui2)exP(ig.Qi2V)f(co, t)  (3.14c) 

 di(1, 0,  —Ui2)exp(—iqx,Qi2v)f((,), t)  (3.  14d) 

Here,  ai  ,  bi  ,  ci and  di indicate the x' -th components of the amplitudes for the corresponding elastic waves and 

 f(co, t) is written as 

 f  (co, t)  =  exp  {i(qra/  —  cot)} (3. 15) 

Now we notice that a propagating wave is characterized by a variable set ( ±  Ui;  ,  ±Qii  ) with j  =1 or 2. Forward 

waves are characterized by (  Uil ,  Qii  ) and  (U2  ,  Q12) and backward waves by (  —Uil  ,  —Qii  ) and ( —  Ui2  , 
 —  Qi2  )  . They are in opposite sign relationship to each other. 

   We will roughly estimate variable sets  (U;  ,  Qi.i  ) before going ahead. From Table  IV we have



       UT/ C3"/ E/6 and  Ci(1"/—C717/-2CL"/ =  —E/6  . 

These suggests that we can approximately have the relations  Cn  UT/ and  Ci(ii)/—Cg)/-2UT/ 0 . 
Substituting these relations in (3. 13) gives  Ai  = 2 and  Ci =  1  . Then the quadratic equation have two solutions 

               ) 2        Q21 =Q,22=( 44   C3; 

which correspond to the transverse and longitudinal waves in an isotropic medium. Substitution of the above into 
(3. 11) gives the corresponding solutions as 

  Uii =  Ui2 =  2i2 (3. 16) 

The relation (3. 16) can be used as a rough estimation of elastic waves and a verification of the obtained results 
for the present purpose. Glass, which is treated in the next section as a substrate on which superlattices grow, is 

just a isotropic material corresponding to the present case. 

 [IV] Elastic waves and surface waves in superlattices 
   As in  literature,' we take specimens in the half-space z' < 0, with the surface as the plane z' = 0. The 

specimens consists of alternating layers of thickness d1 of constituent 1 and thickness d2 of constituent 2. These 
specimens are referred to as periodically layered structures or superlattices, where one spatial period is 
D =  d,+d2. 

   The  1  -th constituent 1 from the  surface is located at  —  (1-1)D z'  —  (1-1)D—  d, . The solution of the 
wave equation in this region is written as follows by reference to (3. 14a) — (3.  14d).") 

 ux(1)//f(co, t) = 

 a  tiexp  fiqx,Q„  [z/+  (/  —  ODD  +  bi+iexp  {—iqx/Q„Cz/d-  (/-1)D11 

         + exp {ig./Q12 [V ±(l-1 )-D]1 + dl+iexp { —iqs,Q,2[z/+ (/-1)D]1 (4. la) 

        =  (1  —1)D+diil  +bi-/exPl—iqx/Qii  [V+  (1-1)D  +  d,]1 

          +ciiexpliqx,,Q121,z/+(/-1)D+dill +di-LexP{ —iqx,Q,2Ez/+ (/— +dil } 

 uzw//f(co, t) = 

 a  it  UnexP  fiqx/Qii  IV+  (1-1)  Di}  —  4-117  nexP  {—iqzQii[V  +  (1  1)  D]l 

         + cifiUnexP fiqx'Qi2[V + (1-0,0]} iqx'Qu[z/ + (1 — 1) D]}  (4.1b)                                        d i±iUnexP 1— 

          =  ai-/Unexp  ,iqx/Qii  [z/  +(/-1)D+di]} 

 +  ci7UnexP  {iqx'Q12[V  +  (1  —1)D+d,]}  —d1,1712exp{—iqx,Q12[z/+  (1-1)D+  d,]1 

Here the amplitudes  al+i,  bi,  ci+i and  di+i are related to the waves with the phases referred to the upper end of the 
layer, and the amplitudes czTi,  bli,  ci7 and  dpi are related to those referred to the lower end of the layer. 

   In the  1 -th layer of the second medium, which is located in the region  —  (1-1)D—  d z'  —1D , the 
components of the displacement are



 u?)//f(co, t)  = 

           ci-2f/exPliqx/Q2i[z/H-(/-1)D+c/1]}+NFiexpt—iqx,Q2iCz/+(/-1)D+dil) 

 +  ciexp  fiqx,Q22Ezi+  (1-1)D+  diD  +4exp  {  —iqx,Q22  [z/+  (1—  1)D+  di] (4. 2a) 

       =  a  -2-/exp {iq021[z/d- 11)]}  +  1;,/exp  {  [z/  +1D]} 

 c27exp  iiqx,Q22Ez/  1.D]}  +  {—iqx,Q22  [z/  +  /D]} 

and 
 u.(2)//f(co, = 

 a  "21-/U2lexp  fiqr,Q21  [z/  +  (1  —  +  11  ]}  —14i1121exp  {  [z/+  (/  1)D+  cl,  ]} 

          c;-,U22exp {iqx,C222 [V+ (/— 1)D+ d 1]} — 4U„exp{—iqs,Q22[z/ (l — 1)D + d1 ]1 .  (4.  2b) 

        =  ctit721exp                   L'qx'.‘921rL-Zi+ ID]  b21U21eXP  —igA21  [21+  ID] 

 U22eXP  Q22[z'+1D]} 1.D]  c21U22exp{—iqx,(222[z/+1D]l 

The meaning of the amplitudes  c4-i,  ••• and  a-2-i  ,  ••• is identical to that in medium 1. 
 Two expressions for the displacement (4. la) or (4.  lb) must be the same at the end of layer. It holds also to 

 (4.  2a) or (4.  2b). Thus, the amplitudes are related by 

 = ,  (4.3) 

where we have denoted 

 /a: \ 
 b: 
 luti) = (4.4) 

 ca 

       \d:/ 

 and  Pi is the matrix expressed as 

 p.=  (4.5)       (o  Fi2) 
with 

      F.. =(4, o6 =(0,  (4.6) 
         0 fiT 1 0  01 

where is given by 

   fi; =  exp(—iqx,Qvc/i) . (4. 7) 

   The displacement (ux.(i)/, 0,  uz(i)/) by the elastic waves must be continuous at the boundary 
z' =  (1—  1)D  —  d1 , i.e.,  /411)/ = uz.2)/ and  7.41)/ = uz(2)/



        4-F-q+c2+1+4  (4.  8) 

and 

 Un(au—  +  U12(cii  —du) = U21 (a-21-/1)21;) ± U22(4 —d2+/) •  (4.9) 

                                                           () —c7  au (i)/ 77  au (0/  We have the same stress components cr(:)/ and or(Zi)/ at the boundary, where a: / = / +C / z and 
                                                   are " Oz/ 

          Ou(i)/ Ou(°/  cru)/ = /(51z/+Ox/z. Thus we have 
                    C13  i(ai-cf-bi-i+c+di-i)+ C33 [Q11U11 ± b11) ±Q12 U12 (C17  +dll  )] 

                                                               (4.10) 
       = C13)i(a21-EN'i+4+d21)FQ                              +C ..)/--21 U21 (a21b2I) +Q22 U22 (C2+/ +4)1 

and 

 C4)/  [  (Q11+ U11)  (au  —  bid +  (212+ U12)  (cii  —did] 
                                                                 (4.11)        =  [(Q21+  U21)  (a2i+Nd+  (222+  U22)(4-4)] 

   The boundary conditions (4. 8) — (4. 11) are summarized as 

    =  T2U143>  , (4. 12) 

Where the matrix  T  ( i  =1 or  2)  is written as 

           T(11) T )  =  (4.  13) 
           T211) to 

with 

 1  0 
                                                               (4. 14) 

           ,r
k(i) _                Ll              0  U

k 

and 

          /g7I+UPQikUik 0 
 T2(k1) = (4. 15) 

                0 UT/(Qik+ Uik) 

and the matrix U means 

     (U0  U =  (4.  16) 
          o  U0) 

with 

     (1 1  Uo =  (4.  17) 
            1 —1



Similarly at the boundary z'  =  —1D we have

 7'21/1742,/>  =Ului3+1> (4. 18) 

From the expressions (4. 12) and (4. 18) with (4.  13), the amplitudes in the  1 -th layer and  1  +1-th layer are 
related by the following representations.     

lui+,/±1> =  T121P2T2P1lui+3›  (4.  19)  

1u2±,/> =  (4.  20) 

Here the matrix T12 denotes 

  T12 =  U-1T2-1T1U  (4.  21) 

and  X-1 means the inverse matrix of the matrix  X  . 
   Let us assume that the thickness of the superlattice is  LAT•  D  . The amplitudes of the elastic waves on  the 

 surface at z' = 0 are represented by  lu  14:1> , while those on the opposite side  surface,  i.e.  , the  surface at 
z' =  —LN.  D  , are characterized by  I  u2J,N>  . The relationship between these two kinds of the amplitudes of elastic 
waves are given by 

 1112LN>  =  Tlui+,1>  (4.  22) 

where 

    T =  P2  T12P1  [  T12  1P2  T12  PliLN-1 (4. 23) 

   As described in the previous section, the stress components  ce/ and  az(zi)/ must be zero on the surface.  ThiE 
condition at z' = 0 corresponds to 

 AlUlul+J> =  0,  (4.  24) 

while the condition at z' =  —LAT. D gives 

 A2U1U2:LN) = (4. 25) 

where the matrix  A; (j =1 or 2) is expressed as 

 Ai=  (T2v)  Te)  . (4. 26) 

Here the definition for matrices (4. 15) and (4. 16) is used. By use of (4. 22), the above boundary conditions  (4 
24) and (4. 25) are summarized as 

 Blui+J>  =  0  (4.  27  ) 

with the 4  x 4 matrix B defined by



 B  =  (4.28) 

    In order that the equation (4. 27) has a non-trivial solution, the determinant of the matrix B must be zero: 

 det  B  =  0  (4.29) 

The elastic wave satisfying the above solubility condition  (  4.29) is the desired  surface wave. This equation is a 
dispersion equation. 

   The surface wave obtained from the condition (4. 29) is the one for a bulk superlattice. In practice, however, 
superlattices are formed on the substrate such as glass. So we will derive the condition to obtain the surface wave 
for a superlattice on a substrate. 

   Let us assume that the substrate is located in the region  —  LAT  • D z' —  (LN  +  LS)  • D  . The above 
derivations and relations for the constituents 1  and  .2 of the superlattice remain unchanged for the substrate. The 
boundary condition at z' =  —LN. D is expressed as 

 T2U1u2,LN> =  Tulus±>,  (4.  30) 

where  Ts denotes the matrix obtained from putting  s  , which is the script meaning substrate, instead of i in (4. 
13) — (4.  15), where Qsk and  Usk (k  =1 or 2) are calculated by use of the elastic constants of the substrate, and  
lu:> is the amplitude of the elastic waves on the surface of substrate contacting with the superlattice. We will 
write the amplitude at the other end of substrate as  17,0 . Then we have a similar relation as (4.  3): 

 I/0 =  (4.31) 

Here  I  u:-> is obviously expressed as 

          /a:\ 
         b: 

 lu:> = ,  (4.  32)  c: 
        \d: 

and  P, is the matrix corresponding to replacing i by s in eqs. (4. 5) and (4. 6) with 

 fs; =  exp  (  —  iqxQsj.  LS  •  D) .  (4.  33) 

  Substituting (4. 22) in (4. 30) yields 

  us› =  71,71  (4.  34) 

where the matrix  7'25 means 

         T25 =  u  17;-1T2u                                                                  (4. 35) 

When the substrate is sufficiently thick, we have no backward wave for the surface  wave') in this medium . This 
means that  as and  Cs+ are zero in (4.  32). The present condition is expressed as



 Sdut) = 0  (4.  36) 

with 

       (1 0 0 0  SI = )T2sT  (4.37)           0 0 1 0 

The boundary condition (4. 24) and  (4.  36) are summarized as 

 B„lut,I> =  0  ,  (4.38) 

 where the 4  X 4 matrix  13,1 is given by 

            AlU 
 B,1  =  (4.39) 

              Si 

Thus we have the following dispersion equation determining the surface wave in the superlattice on thick 

substrate: 

  det  B31 = 0  .  (4.40) 

   We must consider the boundary condition on the surface of substrate, i.e., at z' = —  (1N+LS)D , in the case 

where substrate is thin. It is apparent from the analogy to (4.  24)and (4. 25) that we have the  boundary. condition 

 AsUlds->  =  0  (4.41) 

with the 2  x4 matrix 

 As =  (T2is)  T2n  (4.  42) 

The boundary condition(4. 24) and  (4.  41) together with  (4.  31) and  (4.  34) gives the following dispersion equation 
for the surface wave. 

      (let( A  iU = 0                                                                  (4.43) 
           A sUP,T2sT 

 [V] Results and discussions 

   We have derived the dispersion equations (4.  29),  .  (4.  40) and (4. 43), each of which corresponds to the surface 

wave of a bulk superlattice, a superlattice on a thick substrate and a superlattice on a substrate of arbitrary 

thickness, respectively. Solving these dispersion equations determines the numerical  valuesZ defined by (3. 10) 

for a given  co and  qx,  . Now we will define 

            [c.,(14)//i) (0] 1/2 (5.1),



 °  Calculated from Table of Landolt  BUrnstein 

    Obatained from  Dictionary of Physics and Chemistry (In Japanese, 4th ed., Iwanami, 1987) 

 ° Used  datum-for quartz glass in Physical constants (In Japanese, New ed.,  Asakura, 1978) p.25. 

which is anticipated to be the velocity of the transverse wave in the medium  i  . When (5. 1) is substituted in (3. 
 10), we obtain 

    = 6)/ (14)qx') = vs/14) (5. 2) 

Here  vs( =  co/qx,) is the velocity of the surface wave on a superlattice. It is clear from (5. 2) that  Ei ,  E2 and 
Es are not independent. This means that we can choose one, for instance  Ei , as a standard variable. 

   In the present calculation we will assume that the wavelength of the  surface wave  As  , which is associated with 
 qx, by  qx, =  27r/As  , is  LD•  D  : 

 As  =  LD•  D  (5.  3) 

 We have assumed that the thickness of the superlattice is  LAT. D and that of substrate LS  •  D  . It is confirmed



 co: Calculated for the  virtual medium with the effective elastic constants determined 

     by use of Grimsditch's expressions 

that this wavelength  2.s is just equal to that of incident wave  Ai used in the experiment to detect surface 

 waves.' The numerical calculation by use of (4. 40) and  (4.  43) shows that we can obtain almost same results for 

 LS/LD.  3.5  .  This means that if the thickness of the substrate is about more than three times the wavelength 

of the  surface wave, it may be taken as infinite. 

   Here we will calculate the surface waves for  Cu/Al and Cu/Ag superlattices. The used elastic constants 

 Cp,/  , which are isotropic with respect to  ( x',  y'  ) plane, are given in Table  V. We will take the thickness of Cu 

to be equal to  d1 and that of Al or Ag to  d2  . The calculations are performed for both bulk superlattice and



superlattice on a substrate, as which we adopt quartz glass. 

   In order to investigate the width effect of superlattice, we calculate the dispersion equation (4 . 29) and (4. 40) 
in the cases  LN/LD  = 1.0, 1.5 and 2.0 for  Cu/Al, that is, the calculations are attempted for the superlattices of 

the same width as the wavelength of the surface wave  As  , 1.5 and 2.0 times the width of the wavelength  As  . The

Fig. 1 Relative surface wave velocities vs/2/z,in bulk  Cu/Al superlattices of4thick. The lower dashed linedenotes the velocity 
of pure Cu  ( d2 = 0) and the upper dashed line means the velocity of 
pure Al  ( d1  = 0). Curves, successively from the top to the bottom, 
indicate the relative velocities in the superlattices of constitution 
ratio d1  :  d2 =  1  :  3,1  : 2,1 : 1, 2 : 1 and  3  : 1.

Fig. 2 Relative surface wave velocities  vs/vT ,cu in bulk  Cu/Al 
superlattices of 1.5  2 thick. The meaning of lines and curves is the 
same as in Fig. 1.



 results are given in Fig.  1—  Fig.  6: Fig.  1—  Fig. 3 are 

that for the bulk superlattices and Fig.  4  —  Fig. 6 for 

 the-superlattices on glass substrate. In each figure, 

 theFsurf  ace wave velocities  vs relative to the velocity 

 vT,Cu  / which is the velocity of the transverse wave of 
Cu and calculated from (5. 1), are plotted for the 

various periods D  =  di+d2 of the superlattices with 

di/33 = 1/4, 1/3, 1/2, 2/3, 3/4 together with 

pure Cu  ( d2  = 0) and Al  (  d1 =  0). We can 
understand the followings from these figures. 

   The width effect of the superlattice with respect 

to the wavelength  as becomes small as the width 

increases. It will be expected to be negligibly small 

for  ..LD/LD: 3 actually we have confirmed this 

fact on the basis of the calculation for several 

superlattices including  Cu/Al and Cu/Ag. The 

comparison of Figs.  1  —3 with Figs.  3  —  6 shows that 

the width effect of the surface waves for bulk 

superlattices is much larger than the one for 

substrated superlattices. 

   For the small period D we have almost constant 

surface wave velocity  vs the velocity change is 

negligible for  D/As<  10  -1.5 0.032 and it is slight 

for  10  -L5 <  D/as <  10  -1 = 0.1 . But this velocity 

change becomes non-negligible for large period 

 D(D/As > 0.1) . The velocity change is large for 

superlattices on the substrate than bulk superlattices, 

while the ways of the velocity change differ from each 

other according to the constitution ratio  d1/D of 

superlattice. 

   We summarize the surface waves for the bulk 

superlattice and the substrated superlattice 

comprised of Cu and Ag as in Figs. 7 and 8, where the 

width of the superlattice are taken as  .1.5 times the 

wavelength  ( LN/LD =  1.5  ). Here we can see similar 

properties mentioned with respect to the period D for 

superlattice Cu/Al. In the present case, the 

velocities of the  surface waves corresponding to 

different constituent superlattices become divergent 

with increasing period, while those in the case  Cu/Al 

converge. 

   As described above, we can expect a constant 

velocity for the superlattice with the small period. 

This means that such superlattice has its own elastic 

constants. As such elastic constants, the effective 

elastic constants derived by  GrimsditcIP are well 

known. These effective elastic constants

Fig. 3 Relative surface wave velocities  vs/lir,cu in bulk  Cu/Al 
superlattices of 2.0  A thick. The meaning of lines and curves is the 
same as in Fig. 1.

 Fig.  4 Relative surface wave velocities vs/vT.CUin  Cu/Al 
superlattices of  As thick, which are on glass substrate.The meaning of 
lines and curves is the same as in Fig. 1.



 Fig.  5 Relative surface wave velocities  vs/vr ,cu in  Cu/A1 
superlattices of 1.5  As thick, which are on glass substrate. The 
meaning of lines and curves is the same  as in Fig. 1.

 Fig.  6 Relative surface wave velocities  vs/i)T,cu in  Cu/A1 
superlattices of 2.0  As thick, which are on glass substrate. The 
meaning of lines and curves is the same as in Fig. 1.

 C33',  C44/,  C13/ and  C11' are given as follows in our case. 

     1 -= fif2   (5.4a)         C
33/C33+CL"/ 

        1-=  .f2                                                                 (5. 4b)          C
44/ C44)/C.(14"/ 

 Ci3/  Cg)/  
    %-•,- =r (1),  )+f2(r (2), (5.  4c)         33,v33•,..33• 

                                                    C(2)/  C11'  = fiCiii)/+f2Cii2)/±.fi(   cl)/  )(c13/____cT/)+ f(  13  ) (c13/ C' c2),)                                                                  (5. 4d)            CL"/ cg)/ 

Here f1 =  d1/D and f2 =  d2/D 
   Now we suppose a bulk superlattice and a substrated superlattice with the above effective elastic constants 

 Ca',  C33/,  C13/ and  C44/ . Here the substrated superlattice means the superlattice in contact with glass as 
substrate. The thickness of superlattice is considered to be  LN• D . Let us assume that the amplitudes of the 
displacements for elastic waves at z' = 0 and  —  LN. D are described by  lue+,LN> and  lue7L,N> , respectively. 

   The amplitudes  lue,LN> correspond to those obtained from replacing i and 1 in (4. 4) by e and  LN  . 
Apparently from  (4.  4), these amplitudes are related by 

 lue,LN> =  Pe  I  ue,LN>  (5.  5)



where  Pe is the matrix just obtained from the replacement of i by e in (4. 5). Then the coefficient  fej is 

expressed as 

  fej =  exp(  LN  • D) (5. 6) 

The variable  Qe;  (j = 1 or 2) is calculated from (3. 12) by use of the effective elastic constants as those in (3.  11). 

Then the discussions and derivations in Section 4 hold for the present imaginary medium with the effective elastic 

constants given by (5.  4). For instance, we can easily derive the dispersion equation of the surface wave for the 

bulk imaginary  medium: 

     (AeU   det= 0 (5.  7) 
          AeUPe)



Fig. 7 Relative surface wave velocities  vs/2)T,cu in bulk Cu/Ag 
superlattices of 1.5  As thick. The upper dashed line means the velocity 
of pure Cu metal  ( d2 = 0) and the lower dashed is the one of pure Ag 
metal  ( d1 = 0). Dotted, solid and dash-dotted curves show the 
velocities in the superlattices of constitution ratio d1 : d2 = 2  : 1,  1  : 1, 
and  1: 2.

Fig. 8 Relative surface wave velocities  vs/vr ,cu in Cu/Ag 
superlattices of 1.5 thick, which are on glass substrate. The 
meaning of lines and curves is the same as in Fig. 7.

Here  A, is the matrix obtained from replacing j by e in (4 . 26), where the matrix defined by (4. 15) appears and 
have to be calculated for the effective elastic constants. Thus we can calculate the velocity of the surface wave for 

the medium with the effective elastic constants according to the hitherto outlined way . 
   We will tabulate in Tables  VI—  VIII the velocities  vs of the surface waves derived from the calculation for the 

above imaginary media with effective elastic constants together with those already calculated for the 

superlattices. The latter data are the accurate numerical values corresponding to the plots in Figs .  1  —8, except 
Figs 3 and 6. In these Tables, LD means the number of the period D contained in the superlattice of  As thick; 
LD layers consisting of  Cu/Al or Cu/Ag exist in the sample of  As thick . The larger value of LD denotes the 

smaller period D ; D =  As/LD . As already described, the surface wave velocities  vs in these Tables are taken 

relative to the standard velocity  vT,cu , which is the velocity of the transverse wave in pure Cu metal. 
   The data in Tables  VIa and Vila represent the relative velocities  vs/vzcu of the bulk superlattices and the bulk 

media with the effective elastic constants in the cases LN/LD = 1.0 and 1.5, where the ratios Cu : Al  (=  di:  d2) 

represent the ratios the thickness of Cu and Al constituents in one layer in the media . Similarly those in Tables 
 VIb and  VIM are the relative velocities for the same superlattices and imaginary media in contact with glass . In 

Tables  Villa and  Mb are given the results for the superlattices which are made up by the periodical superposition of 

Cu and Ag and the corresponding imaginary media with the effective elastic constants in the case LN/LD  = 1.5. 
Here the meanings of a, b and Cu  : Ag  (=  di:  d2) are the same as in Tables VI and VII. 

   It is apparent from these Tables our prediction of the existence of the effective elastic constants for the 

superlattices with the small period exceeds our expectation. The detailed investigations elucidate the followings .



The results calculated by use of the effective elastic constants derived from the expressions by Grimsditch are just 

those of the periodically layered structures in the limit of the zero period  ( D —> 0 or LD  —>  co). This is reasonable 

because Grimsditch has derived his expressions in such a  limit.' The bulk superlattices with period below  A. /270 

are completely regarded as the media with the zero period. In bulk superlattices the treatment of them as the 

imaginary media with the effective elastic constants is valid in sufficient accuracy up to the period D = As /12. 

However such a model fails, strictly speaking, even for the smallest calculated period  A5 /270 in the substrated 

superlattices or the superlattices directly contacting with glass. From these Tables we can confirm that the 

calculated values approach those obtained from the model as the period D becomes smaller. We must appreciate, 

of course, that, to a fairly good approximation even in this case, the present model can reproduce the calculated 

results derived from the exact treatment of the periodically layered structures, which needs really complicated 

calculations with respect to hundreds of matrices, while we only deal with few matrices in the model. 

   In conclusion, the model based on the Grimsditch's expression for the effective elastic constants gives a good 

approximate result for the surface wave of superlattice except that with a large period. The greatest merit of  the 

calculation by use of  the effective elastic constants is that it is much easier than  the exact  calculation. 

Grimsditch has derived his effective elastic constants which is valid only for excitation wavelengths longer  than 

the modulation  wavelengths." However its applicable region has not been clear. In our paper a criterion for that 

has been presented. 
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