

Nagoya City University Academic Repository

学位の種類	博士(薬学)			
学位記番号	第 302 号			
氏名	赤堀 禎紘			
授与年月日	平成 26 年 3 月 25 日			
学位論文の題名	Ireland-Claisen 転位による二連続第四級不斉中心の一段階構築を機軸と する酸化型テルペノイド類の合成研究			
論文審查担当者	主查: 樋口 恒彦 副查: 中村 精一, 中川 秀彦, 池田 愼一			

学位論文

Ireland-Claisen 転位による二連続第四級不斉中心の一段階構築を機軸 とする酸化型テルペノイド類の合成研究

> 名古屋市立大学大学院薬学研究科 薬品合成化学分野

> > 赤堀 禎紘

謝辞

本研究を行うにあたり、終始御懇篤なる御指導と御鞭撻を賜りました名古屋市立大学大学院薬学研究科 中村精一教授に心から感謝致します。

本研究を進めるにあたり、有益なる御教示、御助言を賜りました北海道大学大学院 薬学研究院 橋本俊一教授に深謝致します。

日々有益なる御助言を賜りました名古屋市立大学大学院薬学研究科 山越博幸博士 に心から深謝致します。

本論文を審査していただきました名古屋市立大学大学院薬学研究科 樋口恒彦教授、 中川秀彦教授、池田慎一准教授に深謝致します。

各種スペクトルデータを測定するにあたり御指導頂きました名古屋市立大学大学 院薬学研究科 加藤信樹博士に深く感謝致します。

各種スペクトルデータを測定して頂きました名古屋市立大学共同利用研究施設の オペレーターの皆様に深謝致します。

X線結晶構造解析を行うにあたり御指導いただきました名古屋市立大学大学院シス テム自然科学研究科 青柳忍准教授に深く感謝致します。

高分解能質量分析を行うにあたり、機器の利用許可および利用上での御助言を頂き ました名古屋大学大学院創薬科学研究科 天然物化学分野の皆様に心から感謝致しま す。

日々活発な御討論、御助言を頂きました薬品合成化学分野の皆様に感謝致します。

最後に、あらゆる面で筆者を支えてくれた家族、友人に心から感謝致します。

2014年春

略語表

本論文において下記の略語を使用した。化合物の位置番号は天然物の位置番号に準じた。

Ac	acetyl				
All	allyl				
aq.	aqueous				
Ara	arabinose				
9-BBN	9-borabicyclo[3.3.1]nonane				
Bn	benzyl				
Boc	<i>tert</i> -butoxycarbonyl				
Bu	butyl				
^t Bu	<i>tert</i> -butyl				
Bz	benzoyl				
cat.	catalyst				
Ср	cyclopentadienyl				
CSA	10-camphorsulfonic acid				
Су	cyclohexyl				
DABCO	1,4-diazabicyclo[2.2.2]octane				
dba	dibenzylideneacetone				
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene				
DCC	dicyclohexylcarbodiimide				
DET	diethyl tartrate				
DIBALH	diisobutylaluminum hydride				
DMAP	4-dimethylaminopyridine				
DMF	<i>N</i> , <i>N</i> -dimethylformamide				
DMPU	<i>N</i> , <i>N</i> -dimethyl propylene urea				
DMSO	dimethyl sulfoxide				
dppp	1,3-bis(diphenylphosphino)propane				
dr	diastereomeric ratio				
EDCI	1-ethyl-3-(3-dimethylaminopropyl)carbodiimide				
ee	enantiomeric excess				
Et	ethyl				
Gal	galactose				
Glc	glucose				
HMDS	1,1,1,3,3,3-hexamethyldisilazane				
HMPA	hexamethylphosphoric triamide				
HPLC	high-performance liquid chromatography				
IBX	2-iodoxybenzoic acid				
IPP	isopentenyl pyrophosphate				
KHMDS	potassium hexamethyldisilazide				
L	leaving group				
LDA	lithium diisopropylamide				
LHMDS	lithium hexamethyldisilazide				

LTB_4	leukotriene B ₄			
LTMP	lithium 2,2,6,6-tetramethylpiperidide			
<i>m</i> -CPBA	<i>m</i> -chloroperbenzoic acid			
Me	methyl			
MOM	methoxymethyl			
Ms	methanesulfonyl			
MS	molecular sieves			
NMO	N-methylmorpholine N-oxide			
NMR	nuclear magnetic resonance			
NOE	nuclear Overhauser effect			
NOESY	nuclear Overhauser effect spectroscopy			
[O]	oxidation			
ORTEP	Oak Ridge thermal ellipsoid plot			
Ph	phenyl			
Piv	pivaloyl			
PMB	<i>p</i> -methoxybenzyl			
PMP	<i>p</i> -methoxyphenyl			
PPTS	pyridinium <i>p</i> -toluenesulfonate			
ⁱ Pr	isopropyl			
Rha	rhamnose			
rt	room temperature			
SM	starting material			
TBDPS	tert-butyldiphenylsilyl			
TBHP	tert-butyl hydroperoxide			
TBS	tert-butyldimethylsilyl			
TES	triethylsilyl			
Tf	trifluoromethanesulfonyl			
TFA	trifluoroacetic acid			
TFAA	trifluoroacetic anhydride			
THF	tetrahydrofuran			
TLC	thin layer chromatography			
TMS	trimethylsilyl			
Tr	triphenylmethyl			
Ts	<i>p</i> -toluenesulfonyl			
TS	transition state			

目次

序論

本論

第1章 酉	<u>後</u> 化型テルペノイド類の合成を指向した	
E	Fラルビルディングブロックの立体選択的合成	
第1節	背景と合成計画	3
第2節	α-ベンジルオキシ酪酸エステルの Ireland–Claisen 転位	15
第3節	テトラヒドロフラン-2-カルボン酸エステルの	
	Ireland-Claisen 転位	19
第4節	ラブダン骨格の構築	25

- 第2章 抗腫瘍性サポニン・シラシロシドE-1 アグリコン部 CDE 環フラグメントの合成研究
 第1節 背景 29
 第2節 他グループによるオイコステロール類縁化合物の合成例 31
 第3節 合成計画とこれまでの成果 34
 第4節 β-ケトエステルを基質とする Ireland-Claisen 転位による 二連続第四級不斉中心の構築 38
 第5節 α,β-不飽和エステルを基質とする Ireland-Claisen 転位と
 - CDE 環部の構築
 42

 第6節
 CDE 環フラグメントに向けた変換
 47

結語
実験の部
参考文献
93

序論

古くから人々は、植物に含まれる特有の成分を活用してきた。とりわけ生薬として 利用されていた痕跡は紀元前の文明でも発見されている。古代インドの伝統医学アー ユルヴェーダにおいてインドジャボクの根茎が毒蛇の咬傷の治療薬として処方されて いたことや、古代ギリシャでヒポクラテスがヤナギの樹皮を鎮痛薬として使用してい たことなどはその例である。こうした中、薬用植物が"薬"として臨床の場に普及し ていた 16世紀のヨーロッパにおいて、薬の中にはある特定の有効成分が含まれている ことがスイス人医師の Paracelsus によって提唱された。この Paracelsus の推測が原点と なり、薬はなぜ効くのか?という解析的医学研究が西洋で発展した。19世紀初頭には 阿片から鎮痛物質モルヒネを単離することに Sertürner が成功している。これを契機に 薬用植物から有効成分を取り出す研究が盛んに行われ、先述のインドジャボクとヤナ ギに含まれる薬理活性物質はそれぞれ神経遮断薬レセルピンおよび抗炎症薬サリチル 酸であることが判明している。現在でも植物に含まれる生物活性物質は医薬品やその リード化合物として研究対象とされている。

植物から単離される代表的な化合物群の一種 としてテルペノイド類が挙げられる。多種多様な 骨格を持つ植物性テルペノイド類には顕著な生物 活性を示すものも数多く存在し、その中でも最も 注目を集めた化合物の一つとしてジテルペノイド に属するタキソール(1)が挙げられる(表 1)¹⁾。 1971年、イチイ科 *Taxus brevifolia*の樹皮から単離 されたタキソール(1)は、顕著な抗腫瘍活性と特異 な作用機序から発見以来多くの科学者の注目を浴 び、臨床での早期実用化が望まれていた。しかし、 天然からの供給量が極微量であり、1 人の患者を

Table 1. Structure of taxol and taxotere.

治療するためには成木を約6本も必要とすることから、医療の現場ですぐさま利用されるには至らなかった。この問題を解決するため大量合成法の探索研究が競って行われ、半合成²⁾、全合成³⁾の報告が1980年代後半から相次いでなされた。現在では、イチイ科 *Taxus baccata* から得られる 10-デアセチルバッカチンを原料とする、Holton らが開発した半合成ルートに従いタキソール(1)の大量供給が行われている。これらの研究過程においてタキソールを凌駕する活性を持つタキソテール(2)が見出され、現在、抗がん剤として使用されていることも見逃すことができない^{3h)}。また、最近 Baran らは、合成難易度が高いタキソール(1)には天然から入手困難な誘導体を用いる構造活性相関研究に未開拓の領域が残されている点に着目した。そこで、従来とは抜本的に異なる合成経路に基づく誘導体合成への展開を試み、現時点で鍵中間体となるタキサジェノン(3)の大量合成法を確立している(スキーム1)⁴⁾。以上のように、有機合成化学は植物を資源とする創薬化学において多大な功績を上げており、今後も更なる貢献が期待される。

Scheme 1. Synthesis of taxadienone and plan for functionalization to taxol oxidation state by Baran.

筆者の所属する研究グループでは、誘導体合成に基づく構造活性相関研究も念頭に おきながら生物活性を示す植物性テルペノイド類の合成研究を行っている。筆者は Ireland-Claisen 転位による二連続第四級不斉中心の一段階構築を機軸とする酸化型テ ルペノイド類の合成研究を行った。以下に

- 第1章 酸化型テルペノイド類の合成を指向したキラルビルディングブロックの 立体選択的合成
- 第2章 抗腫瘍性サポニン・シラシロシド E-1 アグリコン部 CDE 環フラグメント の合成研究

の順に述べる。

本論

第1章 酸化型テルペノイド類の合成を指向したキラルビルディングブ ロックの立体選択的合成

第1節 背景と研究計画

テルペノイドは生合成の過程で様々 な部位が酸化され、多様な酸化型テル ペノイドへと変換されていく。中でも トリテルペノイドやステロイド^{*}の C17 位 ⁵およびラブダンジテルペノイ ドの C9 位 ⁶は酸化されやすいことが

Figure 1. Common motifs of oxygenated terpenoids.

知られており、この位置が酸化されたテルペノイド類は代表的な化合物群を形成して いる。これらの酸化型テルペノイド類には二連続第四級不斉中心を含めた共通モチー フが含まれ、酸素原子が置換した第四級不斉中心の立体化学の違いからα型とB型に分 類できる(図 1)。共通モチーフを含む天然物には顕著な生物活性を示すものも数多く 存在し、α型天然物としては OSW-1(4、抗腫瘍活性)⁷⁾、17,20-ジヒドロキシビタミン D₂(5、転写促進因子)⁸⁾、ウィタノン(6、LTB₄産生抑制作用)⁹⁾、シラシロシド E-1(7、 抗腫瘍活性)¹⁰⁾、シラサポニン E(8、殺細胞活性)¹¹⁾などトリテルペノイド類が多く知 られている (図 2)。一方、 β 型天然物にはカドコシラクトン A (9、殺細胞活性)¹²⁾、ジ ャボロサラクトンP(10、摂食阻害作用)¹³⁾、フィサグリンC(11、抗トリパノソーマ活 性)¹⁴⁾などのトリテルペノイド類だけでなく、マルリブアセタール(12、鎮痙作用)¹⁵⁾、 イソプレレオヘテリン(13、神経保護作用)¹⁶⁾などのラブダンジテルペノイド類も含ま れる(図3)。また、β型共通モチーフは、デキサメタゾン(14、抗炎症作用)のようにス テロイド性自己免疫疾患治療薬として臨床応用されている合成医薬品にも見られる構 造単位である。このように多彩な生物活性を示す化合物群に含まれるα型およびB型共 通モチーフを立体選択的に構築することができれば、これらの化合物およびその誘導 体を供給するための合成中間体として利用可能なことが期待される。

^{*} ステロイドは、トリテルペノイドから脱メチル化などを受けて生合成される化合物群の総称である。本来はトリテルペノイドとステロイドは区別すべきであるが、骨格の共通性を考慮し、本論 文では場合によってステロイドを含めて"トリテルペノイド"と記述している。

scillasaponin E (8)

Figure 3. Bioactive natural products containing a β -type common motif.

共通モチーフを含む化合物はこれまでに様々な方法で合成されている。ここでは、 トリテルペノイド類とラブダンジテルペノイド類に分けて、いくつかの代表的な合成 法を報告された年次順に紹介する。

共通モチーフを含むトリテルペノイド類および関連化合物合成の歴史は古く、半世 紀以上前には既に Mazur らの報告がある^{17a)}。アンドロスタン誘導体 **15** の C17 位カル ボニル基に対する Reformatsky 試薬の付加反応はα面側からキレート型六員環遷移状 態 A を経て進行する(式 1)。得られる粗生成物を強塩基処理することで C16, C17 位ト ランスジオール 16 を立体選択的に合成することができる。

Mazur (1960)

Reformatsky 試薬の代わりにリチウムエノラートを用いた場合、アセトキシ基が置換 した C16 位の立体化学により面選択性を制御できることを 1990 年に Doller と Gros が 報告している^{17b)}。ケトン 15 に対しては Mazur らと逆のβ面側から付加が進行して 17 が、一方の 16-*epi*-15 を基質とした場合にはα面側から付加が進行して 18 が得られる (スキーム 2)。この知見を活用して Yu らは OSW-1(4)の C17 位側鎖を立体選択的に導 入することに成功し、全合成を達成している^{17c)}。

Doller & Gros (1990)

Scheme 2. Stereoselective addition of lithium enolate by Doller and Gros.

1991 年、Grieco らはウィタノリド E(21)の全合成を報告している(スキーム 3)^{17d)}。 C17 位の酸化法として用いたオレフィン 19 のジヒドロキシ化は、立体選択性には課題 を残したが、良好な収率で進行している。

Grieco (1991)

Scheme 3. Total synthesis of withanolide E by the Grieco group.

第1章第1節

その後も C17 位の第四級不斉中心を酸化的に構築する試みが報告されている。Fuchs らは 22 の Prins 反応により生じたアルケン 23 をジヒドロキシ化して OSW-1(4)のアグ リコンを合成し(スキーム 4)^{17e)}、Jin らはエノン 25 に対するビニル銅試薬 26 の 1,4-付加と Davis 酸化により連続不斉中心を立体選択的に構築している(スキーム 5)^{17f)}。

Fuchs (1998)

Scheme 4. Stereoselective construction of contiguous chiral stereocenters by the Fuchs group.

Jin (2001)

Scheme 5. Total synthesis of OSW-1 by the Jin group.

次にβ型モチーフを含むラブダンジテルペノイド類の合成を紹介する。代表的な合成法として、1982年に Corey らによって報告された環化反応が挙げられる^{18a)}。予め C10位第四級不斉炭素を持つビシクロ化合物 30に対して塩酸処理を行うと、MOM 基の除去と位置及び立体選択的なエーテル化が一挙に進行し、スピロ構造を持つ四環性化合物 31を合成できる(スキーム 6)。得られた 31からさらに 10工程の変換を行うことにより、Corey らは抗炎症物質 K-76(32)の全合成を達成した。類似の環化反応を鍵工程とするラブダンジテルペノイド類の全合成が、1985年には McMurry ら^{18b)}、2003年には Kende ら^{18c)}、2013年には Alvarez-Manzaneda ら^{18d)}により報告されている。

Corey (1982)

Scheme 6. Total synthesis of K-76 by the Corey group.

トリテルペノイド関連化合物の合成例で述べた有機金属試薬の付加反応は、ラブダ ンジテルペノイド類の合成にもしばしば利用されている。1988年、Kienzle らはシス-デカリン 33 に対してリチウムアセチリドを立体選択的に付加させている(スキーム 7)^{18e)}。生じた 34 を 10 工程の変換によりα,β-不飽和エステル 35 へと変換した後にオキ シ Michael 反応による THF 環の構築を行い、エリゲロール(37)の全合成を達成した。

第1章第1節

また1995年、Paquette らはセミピナコール転位型環拡大反応を鍵工程として ent-グリ ンデル酸(43)の全合成を達成している(スキーム 8)^{18f)}。38 と 39 のカップリングによ り得られるジヒドロフラン 40 を酸処理して転位させることで、二連続第四級不斉中 心を持つスピロ環構造を構築した。本反応で高い立体選択性が発現した理由は、嵩高 い C10 位第四級炭素とビニル基がトランスの位置関係にある 41 から転位反応が進行 したためと説明されている。

Paquette (1995)

Scheme 8. Total synthesis of grindelic acid by the Paquette group.

このように、これまでに報告されている共通モチーフを含む化合物の合成に共通し ているのは、予め核間メチル基を持つ多環式化合物に対してジアステレオ選択的な反 応を行うことで隣接するもう一方の第四級不斉中心を立体選択的に構築している点で あり、連続する第四級不斉中心を一挙に構築した例は皆無である。

ところで、Ireland-Claisen 転位は、①基質調製が容易なこと、②緩和な条件下で反応が進行すること、③連続する不斉中心を高立体選択的に構築できることから、天然物合成においてしばしば利用されている反応である¹⁹⁾。二連続第四級不斉中心の構築に利用された実績もあり²⁰⁾、複数の立体異性体の作り分けに成功した例も2グループから報告されている²¹⁾。

2007 年、Zakarian らは不斉塩基を用いて Ireland-Claisen 転位を行った^{21a)}。塩基 (*S*,*S*)-45 および(*S*)-46 を用いてエステル 44 の脱プロトン化を行うことにより、Z 体お よび *E* 体のシリルケテンアセタール 47 がそれぞれ高立体選択的に得られる(スキーム 9)。40 °C に昇温するといす形遷移状態 B および B'を経て転位反応が進行することを 見出しているが、*E* 体の転位では舟形遷移状態を経て生じた生成物も若干副生する結 果となっている。

Scheme 9. Diastereoselective Ireland–Claisen rearrangement using chiral base by the Zakarian group.

また、2012 年には Zhai らがオレフィンの立体化学が異なる基質を用いて Ireland-Claisen 転位を行っている^{21b)}。Z体と E体それぞれのアリルアルコールから合成した エステル(Z)-49と(E)-49を基質として調製した(Z)-シリルケテンアセタールからはい す形遷移状態 C および C'を経て転位反応が進行し、酸処理後にカルボニルβ位の立体 化学が異なるラクトン 50a と 50b がそれぞれ立体選択的に得られることを報告してい る(スキーム 10)。

Zhai (2012)

Scheme 10. Diastereoselective Ireland–Claisen rearrangement of (*Z*)-49 and (*E*)-49 by the Zhai group.

このように、非環状アリルアルコール由来のエステルを基質とすると、ほとんどの 場合で優先的にいす形遷移状態を経て Ireland-Claisen 転位が進行する。一方、環状ア リルアルコール由来のエステルを用いると、基質の構造やシリルケテンアセタールの 立体化学によっては転位反応が優先して舟形遷移状態を経ることも知られている。 Ireland らは、プロピオン酸 2-シクロヘキセニル(51)から DMPU 存在下で立体選択的 に調製した(Z)-シリルケテンアセタール 52 を基質とすると、いす形遷移状態 D にお けるシクロヘキセン環とシリル基間の立体反発を避けるため舟形遷移状態 E を経る転 位反応が優先して 53b が主生成物になると報告した(スキーム 11)²²⁾。一方、(E)-シリ ルケテンアセタール 52 を調製すると、転位の際にいす形遷移状態 D'と舟形遷移状態 E'のいずれにおいてもシクロヘキセン環に起因する立体障害が生じる。その結果、エ ネルギー的に有利ないす形遷移状態 D'を経て転位反応が進行し、53b が主生成物とし て得られる。

Scheme 11. Ireland–Claisen rearrangement of cyclohex-2-enyl propionate by the Ireland group.

この知見を踏まえ、グリコール酸 2-シクロヘキセニルを基質として Ireland-Claisen 転位を試みた例がいくつか報告されている。通常、グリコール酸エステルを基質とす ると、エステルα位に置換した酸素原子によるキレート効果から(Z)-シリルケテンア セタールが良好な立体選択性で生成することが知られている²³⁾。1999 年、Burke らは ブレイノリドの全合成の過程で、エステル 54 の Ireland-Claisen 転位と生成物の還元を 行うと、高い立体選択性でアルコール 56 が得られることを見出した(スキーム 12)^{24a)}。 この立体選択性は、キレーション制御により生成した(Z)-シリルケテンアセタール 55 から Ireland らの報告どおり舟形遷移状態 G を経て転位反応が進行したためと解釈さ れている。

Scheme 12. Ireland–Claisen rearrangement of cyclohex-2-enyl glycolate by the Burke group.

2007 年には Mulzer ら(式 2)^{24b)}、2012 年には、Kündig ら(式 3)^{24c)}が類似の基質を用いて舟形遷移状態を経る Ireland–Claisen 転位を報告している。

Mulzer (2007)

一方、山本らは TBDPS 基で保護されたグリコール酸エステル 61 を基質とすること で(*E*)-および(*Z*)-シリルケテンアセタール 62 を立体選択的に調製し、Ireland–Claisen 転位を行った(スキーム 13)²⁵⁾。その結果、いずれも舟形遷移状態を経る転位反応が優 先してそれぞれ 63a および 63b を主生成物として与えたと報告している。

Yamamoto (1994)

Scheme 13. Ireland–Claisen rearrangement of cyclohex-2-enyl glycolate by the Yamamoto group.

ただし、2 位が置換されたアルコールに由来する基質を用いた場合には話が異なる。 Shea らは2-ブロモ-3-メチル-2-シクロヘキセン-1-オール由来のエステル 64 を基質とし て Ireland–Claisen 転位を行い、65a を主生成物として得ている(式 4)²⁶⁾。キレーション 制御により(Z)-シリルケテンアセタールが立体選択的に生成していると仮定すると、 いす形遷移状態を経る反応が優先したことを意味している^{*}。

Shea (1994)

* この結果に関連して、Houk らは計算化学を駆使して 2-シクロヘキセニルエステルを基質とする Ireland-Claisen 転位の遷移状態を解析している²⁷⁾。ケテンアセタール 66 をモデル化合物として考 えうる 4 種の遷移状態エネルギーを計算した結果、R=Me の場合はアンチ-いす形、シン-いす形、 アンチ-舟形の 3 つの遷移状態間に有意なエネルギー差が認められなかった。

model substrate	computed activation barriers			
R M Me	R TO OMe	R TO-OMe	R OMe	R OMe
66	<i>anti</i> -chair	<i>syn</i> -chair	<i>anti</i> -boat	<i>syn</i> -boat
R = H	22.9 kcal/mmol (+0.9 kcal/mol)	22.9 kcal/mmol (+0.9 kcal/mol)	22.0 kcal/mmol	23.7 kcal/mmol (+1.7 kcal/mol)
R = Me	23.4 kcal/mmol	23.5 kcal/mmol (+0.1 kcal/mol)	23.5 kcal/mmol (+0.1 kcal/mol)	25.0 kcal/mmol (+1.6 kcal/mol)

ここまでで紹介した例では三置換シリルケテンアセタールを中間体としていたが、 2010年、Zakarian らは四置換シリルケテンアセタールを中間体とする 2-シクロヘキセ ニルエステルの Ireland-Claisen 転位を報告した²⁸⁾。不斉塩基 68 を用いて立体選択的に 調製した四置換(E)-および(Z)-シリルケテンアセタール 69 を中間体とすると、いずれ もいす形遷移状態 I および I'を経て反応が進行して二連続第四級不斉中心を含む転位 生成物 70a および 70b が良好な立体選択性で得られることを見出している(スキーム 14)。この結果は、舟形遷移状態 J および J'において(E)-52 を中間体とした場合と同 様の立体反発が生じるためと解釈することができる。

Scheme 14. Ireland–Claisen rearrangement of cyclohex-2-enyl α-methylbutyrate by the Zakarian group.

以上の知見を踏まえ、筆者は、カルボニルα位に置換基を持つグリコール酸 2-シク ロヘキセニル 71 を基質として Ireland-Claisen 転位を行い、酸化型テルペノイド類に含 まれる共通モチーフの立体選択的な構築を目指すことにした(スキーム 15)。このよう な基質を用いての反応の報告は未だ皆無であるが、Zakarian らの報告同様、いす形遷 移状態 K および K'を経る反応が優先すると予想した。スキーム 13(P. 12)で示した山 本らの反応条件などを参考に(E) -および(Z)-シリルケテンアセタール 72 を立体選択 的に合成することで 2 つの立体異性体を作り分けられると考え、本研究に着手した。

Scheme 15. Plan for stereoselective construction of common motifs.

第2節 α-ベンジルオキシ酪酸エステルの Ireland–Claisen 転位

第1節で述べた計画を実行に移すため、Ireland-Claisen 転位の基質となるエステル の合成に着手した。Sharpless 不斉エポキシ化²⁹⁾により95% ee で得られる文献既知化 合物 74³⁰⁾のエポキシドを大島-野崎法³¹⁾により位置選択的に開裂して 1,2-ジオール 75 を得た^{*}。次に、PPTS を触媒としてベンジリデンアセタール化を行った後、DIBALH を用いて位置選択的にアセタールを開裂して第二級アルコールのベンジルエーテル 77 へと導き、生じた第一級アルコールを Dess-Martin 酸化³²⁾によりアルデヒド 78 に 変換した。最後に、亜塩素酸酸化³³⁾を行いカルボン酸 79 とした後、別途調製したア リルアルコール 80^{**}と EDCI を用いて脱水縮合することで転位反応の基質となるエス テル 81 を合成した。なお、95% ee の出発物質を用いたため痕跡量のジアステレオマ -81'が含まれていたが、分離困難なことからそのまま用いることにした。

Scheme 16. Preparation of ester 81.

* この際、微量の 1.3-ジオールが副生した。

** 光学活性な 80 を調製するために参考とした文献では Novozym 435[®]による光学分割により 96% ee の 80 が得られている³⁴⁾。筆者は光学分割を二度行うことで>99% ee のアルコールを調製した。

合成したエステル81を基質として Ireland-Claisen 転位による二連続第四級不斉中心の構築を試みた。塩基として LDA、シリル化剤として TMSCl を用いて-78 ℃ でシリルケテンアセタールを調製した後に反応溶液を室温まで昇温して 18 時間撹拌したところ、転位生成物が3種の異性体混合物(ジアステレオマー比94:5:1*)として得られた**。シリカゲルカラムクロマトグラフィーにより収率48%で単離した主生成物82aをヨードラクトン83aへと変換して NOE 実験による構造決定を試みた(図4)。その結果、核間位の水素原子と側鎖上の水素原子間に強い相関が観測されたことから、カルボン酸82a はカルボニルα位が S 配置、すなわちα型転位生成物であると決定した。また、

Scheme 17. Ireland–Claisen rearrangement of ester 81.

* ジアステレオマー比は粗生成物のままメチルエステルへと変換後に HPLC を用いて決定した。

^{**} 本転位反応における主な副生成物として 86 が得られている。Gajewski らは、重水素化した基質 を用いて Ireland-Claisen 転位を行い、C-O 結合開裂/C-C 結合形成の順に反応が進行したことを支 持する二次同位体効果を観測している³⁵⁾。筆者の系では C-O 結合が解離して生じたラジカル対 85 から二連続第四級不斉中心を持つ生成物を与える C1-C6 結合形成だけでなく、C1-C4 結合形成も 一部進行してしまったため 86 が副生したと考えられる。副生成物 86 はメチルエステルとして単 離、構造決定を行っている。

なお真の反応中間体については諸説あるが、溶媒効果がほとんど観測されない等、ラジカルに近い中間体を支持する報告が多いため上図の表記とした³⁶⁾。

82b と 82c を完璧に分離することは困難だったが、分取 TLC により一部分離できたカ ルボン酸 82b をヨードラクトンに変換して NOE 実験を行ったところ、シクロヘキサ ン上の水素原子 H_a と側鎖上の水素原子間に NOE 相関が観測されたことから、83b はβ 型生成物であることが明らかとなった^{*}。

Figure 4. NOE correlations of iodolactones 83a and 83b.

^{*} 極微量に生成したカルボン酸 82c はエステル 81'由来の生成物であることを以下のように決定した。まず、82b と 82c の異性体混合物をメチルエステル化した後に Adams 触媒を用いて二重結合を還元した結果、¹H-NMR から 87b と ent-87b のエナンチオマー混合物が得られたことがわかった。 一方、主生成物のカルボン酸 82a からメチルエステル化と水素添加を行って得られる還元体 87a と 87b は異なる化合物だった。以上より、カルボン酸 82c は原料に微量に含まれているエステル 81'の転位生成物と判断した。

ここで、本転位反応における立体選択性について考察した。エステル 81 に対して LDA を作用させた場合、カルボニルα位に置換した酸素原子のキレート効果により立 体選択的にエノラート 89 が形成されることから、TMSCI との反応後に(Z)-シリルケ テンアセタール 84 が生成したと推測される。84 からエネルギー的に有利ないす形遷 移状態 L を経て転位反応が進行することで、α型モチーフを含む主生成物 82a が生成 する。また、転位反応が一部舟形遷移状態 M を経て進行した結果、少量のβ型転位生 成物 82b が得られたと考えられる。

Scheme 18. Plausible reaction pathway for the Ireland–Claisen rearrangement.

以上のように、エステル 81 からキレーション制御により(Z)-シリルケテンアセター ル 84 を調製して Ireland–Claisen 転位を行うことにより、α型転位生成物 82a を高立体 選択的に合成できることを見出した。生成物 82a はα型モチーフを含む天然物のビル ディングブロックとして利用可能と考えられる。 第3節 テトラヒドロフラン-2-カルボン酸エステルの Ireland–Claisen 転位

C17 位酸化型トリテルペノ イド類の中には、抗腫瘍活性 を示すサポニンであるシラシ ロシド E-1(7)のようにオキ サスピロ環構造を含む α 型モ チーフを持つ天然物も存在す る(図 5)^{10b)}。予め THF 環を 持つエステルを基質として Ireland-Claisen 転位を行えば、

Figure 5. Structure of scillascilloside E-1.

これらの天然物により直接的にアプローチ可能なα型転位生成物が合成できると考えられる。そこで、実際に THF 環を持つエステルを合成して Ireland–Claisen 転位を試みることにした。

基質となるエステルの合成法をスキーム 19 に示した。Corey-Seebach 法 ³⁷⁾に従い調 製したフェニルチオメチルリチウムを文献既知のラクトン 90³⁸⁾に付加させた後、得ら れたヘミケタール 91 をシラン還元 ³⁹⁾してスルフィド 92 とした。*m*-CPBA 酸化により 得られるスルホキシド 93 を 2,6-ルチジン存在下、トリフルオロ酢酸無水物で処理して Pummerer 転位 ⁴⁰⁾を行った後、生成物に対して弱塩基性条件下での加水分解を行って アルデヒド 94 を合成した。生成物 94 は単一異性体であり、反応条件下で

Scheme 19. Preparation of ester 97.

熱力学的に安定な 2,5-cis-テトラヒドロフランに完全に異性化したことになる^{*}。この アルデヒド 94 を Tollens 酸化⁴¹⁾して得られるカルボン酸カリウム塩 95 に対して触媒 量の DMF 存在下、塩化オキサリルを作用させて酸クロリド 96 とした後、アリルアル コール 80 と縮合して Ireland-Claisen 転位の基質となるエステル 97 へと導いた^{**}。

合成したテトラヒドロフラン-2-カルボン酸エステル97を基質として Ireland-Claisen 転位を行った(スキーム 20)。酪酸エステル 81 の際と同一条件下でシリルケテンアセ タールを調製して室温に昇温したところ、10時間でシリルケテンアセタールが消失し て転位生成物の異性体混合物 98ab を収率 74%で得ることができた***。酪酸エステル 81の時よりも反応時間が短縮されて収率が向上したことは、環構造により基質の自由 度が減少して遷移状態を形成しやすくなったためと考えられる。この異性体混合物 98 はメチルエステル 99ab に変換することで分離可能であり、ジアステレオマー比は 6:94

Scheme 20. Ireland–Claisen rearrangement of ester 97.

** アルデヒド 94 を酸化して得られるカルボン酸は安定性に問題があったため、カリウム塩 95 と して扱っている。カルボン酸が不安定なためか、アルデヒド 94 からエステル 97 までの一連の変 換において、亜塩素酸酸化によるカルボン酸の調製や脱水縮合剤 DCC によるエステル化を行うと 低収率となった。

**** 本反応では副生成物として 103 と 105 が得られている。中間体であるシリルケテンアセタール 101 の一部がケテン 102 を経由して分解した結果、103 が生じたと考えられる⁴²⁾。また、酪酸エス テル 81 を基質とした場合と同様の理由により、転位反応が進行する際に 105 が副生したと予想で きる。これらの副生成物はメチルエステルとして単離し、各種スペクトルデータを測定した。

であることがわかった。次に転位生成物の立体化学を決定するため、ヨードラクトン 化を行った後に分離し、それぞれの異性体に対して NOESY 実験を行った。その結果、 少量得られた異性体 100a において望みの α 型モチーフを含むことを示す核間メチル基 と THF 環上の水素原子間の相関が観測された(図 6)。一方、主生成物 100b では H_a と H_b間の相関が観測されたことから、 β 型モチーフを含むことが明らかとなった。なお、 主生成物 99b の立体配置は、ヨードラクトン 100b の X 線結晶構造解析によっても確 認している(図 7)。このように、THF 環を持つエステルを基質として Ireland-Claisen 転位を行うと、酪酸エステル 81 を基質とした場合とは異なる立体選択性が発現する ことが明らかになった。

Figure 6. Stereochemical correlations of the iodolactones 100a and 100b.

Figure 7. ORTEP drawing of iodolactone 100b.

そこで、立体選択性が逆転した原因を考察した。まず、アルデヒド 94 を酸化して 得られるカルボン酸カリウム塩 95 をシクロヘキサノールと縮合させたエステル 106 を用いてシリルケテンアセタールの異性体比を確認することにした(スキーム 21)。エ ステル 106 を転位反応の際と同一条件下でシリルケテンアセタール 107 に変換したと ころ、単一異性体のみが生成していることがわかった^{*}。この結果から、エステル 97 を用いた場合にも、高い立体選択性で(Z)-シリルケテンアセタール 101 が生成してい ると考えられる。

Scheme 21. Preparation of cyclohexyl silyl ketene acetal 107.

次に(Z)-シリルケテンアセタール101から生じる2つの遷移状態の比較を行った(ス キーム 22)。その結果、環構造を導入したことで配座が制限されたため、いす形遷移 状態 N において THF 環上のメチル基とシクロヘキセン環の間に立体反発が生じてい ることがわかった。この立体的な相互作用を回避するために通常エネルギー的に不利 な舟形遷移状態 O を経て転位反応が進行し、β型モチーフを持つ 98b が主生成物にな ったと考えられる。

Scheme 22. Plausible reaction pathway for the rearrangement of tetrahydrofuran-2-carboxylate.

^{* 1}H-NMR により四置換シリルケテンアセタールの立体化学の決定を試みたが、決定的な NOE 相 関は観測されなかった。過去の報告を考慮して Z 体と判断した。

β型モチーフを含む主生成物98bのカルボニルα位の立体反転を試みたが失敗に終わ り*、シラシロシド E-1(7)などの合成に98bは利用不可能と判断した。すなわち、本 法によりTHF環を含むα型モチーフを立体選択的に構築するためには、転位反応の立 体選択性を逆転させる必要があることを意味している。方法の一つとしていす形遷移 状態の立体障害を軽減させることが考えられる。その詳細は本論文第2章で述べる。

予想外の結果から得られた転位生成物 99b にはβ型モチーフを含まれていることか ら、位置選択的に THF 環を開環できれば 99b をβ型ビルディングブロックとして利用 と考えられる。テトラヒドロフルフリルアルコール類の開環反応は古くから知られて いるため THF 環の開環法を検討することにした⁴³⁾。まず、主生成物 99b にフッ化ア ンモニウムを作用させて温和な条件下で TBDPS 基を除去し、第一級アルコール 108 とした⁴⁴⁾。108 をヨウ素した後に亜鉛による還元的開裂反応を試みたところ、還流酢 酸を溶媒に用いると収率 83%で末端アルケンを持つβ型ビルディングブロック 110 に 導くことが可能だった。

Scheme 23. Ring opening of tetrahydrofurfuryl alcohol 108.

* 2000 年に Suárez らは、α-アミノ酸誘導体 111 に 2 当量の PhI(OAc)₂を作用させると脱炭酸が起こ ってイミニウム中間体 112 が生成し、続いて BF₃·OEt₂ とアリルシランを添加することでアリル化 反応が進行することを報告している⁴⁵⁾。

Suárez (2000)

筆者はこの論文を参考に同様の変換を行って異性体 98bの C17 位の立体化学を反転させることを 試みた。ヨードラクトン化が起こらないよう二重結合を還元したカルボン酸 114 をモデル化合物と して調製し、脱炭酸/アリル化反応を試みたが、基質の分解が起こるのみであった。

また、108 を塩素化して得られる化合物 116 を基質として塩基による二重脱離反応 を検討した(表 2)。はじめに過剰量の LDA を作用させたところ解析困難な混合物が得 られる結果に終わったが、溶媒に HMPA を添加すると低収率(15%)ながらも目的のア ルキン 117 が得られた(entries 1, 2)。アミド系塩基の中では LTMP を用いた場合に最も よい結果が得られたが、収率(42%)と再現性に課題を残した(entry 3)。基質 116 は分 子内にメチルエステルを持つが、過剰量の BuLi を作用させた場合も中程度の収率 (52%)でアルキン 117 を得ることができた(entry 4)。最終的には液体アンモニア中で ナトリウムアミドを作用させると良いことがわかり、収率 96%でアルキン 117 が得ら れることを見出した(entry 5)^{*}。

Table 2. Base-induced double eliminative ring opening.

このように、基質制御により Ireland-Claisen 転位の立体選択性を逆転させることで、 α型およびβ型ビルディングブロックを立体選択的に合成することに成功した。

* ナトリウムアミドを長時間作用させるとアリル転位生成物 119 が副生した。

また LDA や LTMP、BuLi を用いた際には、次のような副生成物が得られていることが確認された。

第四節 ラブダン骨格の構築

図 8 に示したラブダン(122)は、1956 年にハンニチバナ科の樹脂から単離・構造決 定されたビシクロ[4.4.0]デカンを含むジテルペンである⁴⁶⁾。これまでに数多くの酸化 型類縁体が単離されてお

り、本章の冒頭で紹介し たように C9 位酸化型ラ ブダン類であるマルリブ アセタール(12)やイソプ レレオヘテリン(13)など はβ型モチーフを含んで いる。そこで、前節で得 られたβ型ビルディング ブロック 117 の有用性を 示すべく、酸化型ラブダ ン類の合成中間体として 利用可能と考えられるビ シクロ化合物 123 に変換 することとした(式 5)。

Figure 8. Structure of labdane and labdane terpenoids.

まず、117 の第三級アルコールを TMS 基で保護したエンイン 124 に対して原・鈴木 らが報告しているヨードホウ素化⁴⁷⁾を行ってヨウ化ビニル 125 へと導いた。この 125 を基質として分子内 Heck 反応⁴⁸⁾を試みたところ、高希釈条件下で触媒量の酢酸パラ ジウムと二座配位子 dppp、添加物として硝酸銀を用いた場合に収率 88%でシス縮環し

Scheme 24. Conversion of alkyne 117 to *trans*-decalone 130.
た望みの環化生成物 126 が得られることがわかった***。一般的に銀塩は、ハロゲン化 ビニルから生成する中性中間体をカチオン性中間体とするために用いられる^{49a)}。さら に、筆者のようにエキソメチレンを含む生成物が得られる系においては、パラジウム ヒドリドによる生成物の 1.3-ジエンへの異性化を抑制する効果もあるとされている ^{49b)}。ここで、生成物 126 に含まれる 2 つのアルケンを識別する必要があるが、Lindlar 触媒を用いて水素添加を行うと内部アルケンのみを選択的に還元できることを見出し た。この内部アルケンはビシクロ環の歪に寄与しているため、エキソメチレンと比較 して水素添加に対する反応性が僅かに高かったと考えている。続いて、生じた還元生 成物127のエキソメチレンをジオールを経由して酸化的に開裂しようとしたが***、一 般的なオスミウム酸化の条件下では中間体のオスミウム酸エステルが加水分解されず に反応が停止してしまった。そこで、オスミウム酸エステルの分解を促進するフェニ ルボロン酸を添加物として用いる奈良坂らの条件⁵⁰⁾を利用したところ、四酸化オスミ ウムを触媒量(15 mol %)しか用いなくても原料の消失を確認できた。得られたボロン 酸エステル128は、メタ過ヨウ素酸ナトリウムを作用させることで酸化的に開裂する ことができ、3工程収率71%でケトン129へと導くことができた。最後にTHF中、0℃ で触媒量のナトリウムメトキシドを短時間作用させることで核間位の異性化が進行し ****、ラブダン類の合成中間体として利用可能と考えられるトランス体 130 を得ること に成功した。

* 当初は Trost らが報告しているエンインの環化異性化反応⁵¹⁾や分子内ラジカル環化反応⁵²⁾により 六員環を構築する予定だった。しかし、エンイン **117** に対してパラジウムヒドリド種を作用させる と、二量化が優先して進行した。

また、ラジカル反応は分離困難な多数の生成物を与える結果に終わった。

** 分子内 Heck 反応では基質濃度が 0.01 M となる量の溶媒を用いている。一般的な溶媒量で反応 を行うと二量体と思われる複数の化合物が副生し、目的物 126 の精製が困難となった。また、銀 塩として炭酸銀やリン酸銀を用いた場合にも二量体と思われる複数の化合物が副生した。

**** オゾン分解を試みた場合、ケトン 129 の収率は中程度に留まった。

**** シス縮環体 129 とトランス縮環体 130 の最安定配座の立体エネルギーを、パラメーターとして MM3*、初期入力座標の自動発生法としてモンテカルロ法を用いて MacroModel 10.1⁵³⁾により計算 したところ、トランス縮環体 130 のほうが 5.01 kcal/mol も熱力学的に安定であった。 さらに、より高度に官能基化された天然物の合成も視野に入れ、内部アルケンを保持したままラブダン骨格を構築する方法の確立を目指した。Heck 生成物に対して種々の反応剤を作用させた結果、*m*-CPBA 酸化を行った場合にエキソメチレンが優先してエポキシ化されることがわかった(スキーム 25)。そこで、求核試薬を用いてエポキシド 133 の開環を試みたが、反応条件下での脱 TMS 化により生じるアルコキシドが分子内エポキシドを求核攻撃して環状エーテル 134 が生成する結果に終わった^{*,**}。

Scheme 25. Attempt at epoxide opening.

^{*} エポキシド 133 の開環反応を種々検討した結果、このエポキシドの反応性は非常に低いことがわ かった。検討した中では唯一ベンゼンチオラートアニオンのみがエポキシドを開環可能であった。 そこで、スルフィド 135 を酸化して得られるスルホン 136 の脱離 ⁵⁴⁾を試みたが、基質が分解する のみであった。

^{**} TMS 基よりも塩基性条件下での安定性に優れる TES 基で保護したエポキシドを調製して同反応 を試みたが、結果は変わらなかった。

そこで、分子内に存在する求核性官能基による開環を考え、Boc 基で保護されたエ ポキシドの分子内環化反応を行えばこの問題を解決できると予想した。126 に Bu4NF を作用させて TMS 基を除去した後、得られたアルコール 132 を強塩基性条件下で Boc 化してジエン 138 とした。この 138 を基質として先程同様に 0 ℃ で *m*-CPBA 酸化を行 った場合には位置選択性が低下して異性体 140 が多く副生したが、反応温度を-20 ℃ に下げることで良好な位置選択性が発現した*。ビスエポキシドの生成を抑えるために 原料のジエン 138 が約7割消費された時点で一度反応を停止し、回収したジエン138 を用いて再度同反応を行うことで、エポキシド139の異性体混合物が2サイクル合計 収率 69% (139:140 = 5.4:1)で得られ、11%のジエン 138 を回収することができた**。得 られた Boc 基を持つエポキシド 139 を McDonald らの報告を参考に環状カルボナート 141 とすることでエポキシドを開環した後55)、ナトリウムメトキシドを作用させてト リオール 142 へと導いた。1,2-ジオールの開裂は四酢酸鉛を用いると円滑に進行する ことがわかり、ヒドロキシケトン143を得ることができた。生成物143に含まれるヒ ドロキシ基とケトンカルボニル基は TBSOTf を用いて一挙に保護することが可能であ り、高度に官能基化されたラブダン類の合成中間体として利用可能と考えられるシリ ルアセタール 144 の合成を完了した ⁵⁶⁾。

Scheme 26. Synthesis of silyl acetal 144.

^{*}Boc 基で保護されたエポキシド 138 の¹H-NMR では一部のピークがブロード化しており、安定な 配座が複数存在することが示唆される。TMS 基で保護されたエポキシド 133 ではピークのブロー ド化は観察されないため、位置選択性には立体配座が影響していると考えられる。なお、望みの エポキシド 139 の¹H-NMR では顕著なピークのブロード化が確認され、¹³C-NMR では一部ピーク が消失していた。

^{**} 収率 20%でビスエポキシドが副生している。

第2章 抗腫瘍性サポニン・シラシロシド E-1 アグリコン部 CDE 環フラ グメントの合成研究

第1節 背景

第1章にて示したシラシロシド E-1(7)を含むシラシロシド類 7,145–147 は、中国で 古くから生薬として使用されてきたユリ科の植物ツルボ Scilla Scilloides の生鱗茎から 1985年に川崎らによって単離・構造決定されたサポニンである(表 3)^{10a)}。2002年に Kho らはシラシロシド E-1(7)および類縁化合物 148,149などを単離し、これら一連の 化合物群がヒト線維肉腫由来 HT-1080細胞株や前立腺がん由来 PC-3細胞株など数種 のがん細胞に対し殺細胞活性を示すことを報告している^{10b)}。中でも最も強い活性を示 すシラシロシド E-1(7, ED₅₀ = 1.53–3.06 nM)には、*in vivo*においてもサルコーマ 180移 植マウスに対する延命効果(7: T/C = 239.4%,シスプラチン: T/C = 154.3%)が認められ ている。本化合物群は5つの第四級不斉中心(C4, C10, C13, C14, C17)を持つ 15-デオキ ソオイコステロール骨格のアグリコン C3 位ヒドロキシ基に分岐したオリゴ糖鎖が結 合した構造をしており、アグリコン CDE 環部は α 型モチーフの1-オキサスピロ[4.4]ノ ナン構造を含んでいる。

	1ם	R ²	R ³	R^4	R ⁵	R ⁶	ED ₅₀ , nM	
	ĸ						HT1080	PC-3
Scillascilloside E-1 (7)	COEt	Н	ОН	н	Rhalpha	Glcβ	1.66	1.53
Scillascilloside E-2 (145)	COEt	н	Н	ОН	Araα	Glcβ	2.30	3.95
Scillascilloside E-3 (146)	COEt	н	OAc	н	Rhalpha	Glcβ	1.69	2.33
Scillascilloside G-1 (147)	COEt	Н	Н	Н	Rhalpha	Glcβ→3Galβ1→3Glcβ	2.28	1.73
Scillanoside L-2 (148)	_0~∕	,0	ОН	Н	Rhaα	Glcβ	2.34	4.82
Scillasaponin B (149)			ОН	ОН	Rhalpha	Glcβ	—	—

オイコステロール(**150**)は 1975 年、ユリ科の *Eucomis autumnalis* や *Eucomis puntata* などから Tamm らによって単離・構造決定されたノルトリテルペイドである(図 9)^{57a)}。 その後、Parrilli らや三巻らによってユリ科の植物からオイコステロール配糖体が次々 に単離・構造決定されている^{11),57b-1}。この一連の化合物群には殺細胞活性を示すもの が多く存在し、シラシロシド E-1 (7) と類似した配糖様式を持つシラサポニン E(8)は、 ヒトロ腔扁平上皮がん由来 HSC-2 細胞株に対し顕著な殺細胞活性(8: IC₅₀ = 6.3 µg/mL, エトポシド: IC₅₀ = 24 µg/mL)を示すことが知られている¹¹⁾。

Figure 9. Structures of eucosterol and scillasaponin E.

第2節 他グループによるオイコステロール類縁化合物の合成例

シラシロシド E-1(7)のようなラノスタン配糖体の合成例は報告されておらず、アグリコンであるオイコステロール類縁体の合成例も皆無である。類似の骨格を持つラノステロール類にまで対象を広げても、Woodward らによるラノステノールの半合成⁵⁸⁾を除けば、1994 年の Corey らによるラノステノールの全合成⁵⁹⁾と 2009 年の小林らによるフォミテル酸 B の全合成⁶⁰⁾の 2 例しか報告されていない。

1. Corey らによるラノステノールの全合成

Corey らは、エポキシアリルシランのポリエン環化反応を鍵工程としてラノステノ ール(159)の合成を達成している(スキーム 27)。Grundemann ケトン(151)を出発物質 としてシリルエノールエーテルのシクロプロパン化を含む3工程でC14位の第四級不 斉炭素を立体選択的に構築している。ケトン153を2工程でヨウ化物154とした後、 *tert*-ブチルリチウムを作用させてビニルリチウムに変換し、別途合成したアルデヒド 155とカップリングさせることにより、アルコール156をジアステレオマー比1:1で 合成した。さらにアリルシラン157へと導き、MeAlCl₂を作用させることでポリエン 環化反応により四環性化合物158を得ることに成功している。最後にジエンの一電子 還元による四置換オレフィンの導入を行い、ラノステノール(159)の合成を達成してい る。

Scheme 27. Total synthesis of lanostenol by the Corey group.

2. 小林らによるフォミテル酸 B の全合成

フォミテル酸類 160–163 は、坂口らによってサ ルノコシカケ科オオスルメタケ属 Fomitella fraxinea のアセトン抽出液から 1998 年に単離・構 造決定されたノルトリテルペノイドであり、AB 環が高度に酸素官能基化された特徴を持つ(表 4)^{61a)}。同年、ヒトトポイソメラーゼ I, II 阻害活性 を示すことが報告されている^{61b)}。小林らは Cp₂TiCl による連続型ラジカル環化反応を鍵工程 として、Corey らの知見を随所に利用しながらフ ォミテル酸 B(161)の全合成を達成している。
 Table 4. Structure of fomitellic acids.

まず、小林らはA環部に相当するアルデヒド169の合成を行っている(スキーム28)。 シリルケテンN,O-アセタール164とアルデヒド165のビニロガス向山アルドール反応 は、ルイス酸としてTiCl₄を用い、触媒量の水を共存させると、良好な収率(76%)で進 行してアルコール166を立体選択的に与えた。生じたヒドロキシ基をTBS基で保護し た後、水素化アルミニウムリチウムにより不斉補助基を除去することでアルコール 167を95% ee で得た。その後、Sharplessエポキシ化を含む4工程の変換を行いアルデ ヒド169へと導いている。

Scheme 28. Synthesis of aldehyde 169 by the Kobayashi group.

一方の CD 環フラグメント 171 は、文献既知のジケトン 170 に C17 位への側鎖導入 を含む 16 工程の変換を行ってヨウ化物として合成した (スキーム 29)。Corey らと同様 にヨウ化物 171 からビニルリチウムを調製してアルデヒド 169 に付加させた後、生じ たヒドロキシ基をアセチル基で保護してカップリング生成物 172 をジアステレオマー 比 1:1 で得ている。鍵工程である連続型ラジカル環化反応に関しては、還元剤として Cp₂TiClを用いてトルエン/THF 混合溶媒中、100 ℃ で加熱すると収率 58%で望みの四 環性化合物 173 が得られることを見出した。生じたヒドロキシ基を Bz 基で保護し、 濃塩酸によりオレフィンの異性化と第一級 TBS エーテルの開裂を行ってアルコール 174 とした後、4 工程を経てカルボン酸 175 へと導いた。C7 位の酸化は、Salvador ら の方法⁶²⁾を用いることで進行し、低収率(40%)ながらもケトン 176 を得ている。最後 に側鎖部の伸長、保護基の除去を行ってフォミテル酸 B(161)の全合成を完了している。

Scheme 29. Synthesis of fomitellic acid B by the Kobayashi group.

このように、報告されている2例はいずれも(1)CD 環部を持つ化合物をAB 環部に 相当するアルデヒドとカップリングさせた後に、(2)ポリエンの環化を行い、続いて二 重結合を異性化させるものである。

第3節 合成計画とこれまでの成果

シラシロシド E-1 の全合成を行うにあたり、第一に問題となるのは糖鎖を導入する 順序である。糖鎖が結合しているアグリコン C3 位水酸基近傍は C4 位第四級不斉炭素 に隣接するため立体障害が大きく、直接五糖とカップリングすることは困難と考えら れる。そこで、まずグルコース単糖 179 のみをアグリコン 180 に導入して 178 とした 後、分岐型四糖 177 をカップリングさせることにした(スキーム 30)。研究開始当初、 アグリコン 180 はラノステロールから半合成する計画であったが、困難に直面したた め断念した。そこでアグリコン 180 は完全な化学合成によって調達することとし、誘 導体合成を念頭において収束的な合成ルートを考案した。アグリコンを合成する上で は5 つある第四級立体中心(C4, C10, C13, C14, C17 位)と C8-C9 四置換二重結合をいか に構築するかが問題となる。筆者は分子内 Heck 反応により B 環構築を行えば C8-C9 四置換二重結合と C10 位第四級不斉炭素が一挙に構築可能と考え、環化前駆体は A 環 フラグメント 181 と CDE 環フラグメント 182 をカップリングさせて得ることとした。

Scheme 30. Retrosynthetic analysis of scillascilloside E-1.

第1章第3節で述べたように、α型モチーフを持つ CDE 環フラグメントの C13, C17 位二連続第四級不斉中心をエステル97の Ireland-Claisen 転位により構築しようとして も、本転位反応では望みとしない C17位異性体 98b が高い立体選択性で得られるため、 望みの異性体 98a を収率よく得ることは困難であった (P.20-スキーム 20)。この問題を 解決するため、C20 位を sp²炭素に変更した基質 183 を用いて Ireland-Claisen 転位を行 うことを立案した (スキーム 31)。中間体であるシリルケテンアセタール 184 からいす 形遷移状態 P を形成する際の立体障害が大幅に軽減され、その結果望みの異性体 185 が得られると予測した。

Scheme 31. Plan for construction of contiguous quaternary stereocenters.

以上の考察に基づく CDE 環フラグメントの逆合成解析をスキーム 32 に示した。C14 位メチル基は、隣接水酸基を配向性基として利用する Simmons-Smith 反応と生じた三 員環の位置選択的な開環により導入できると考えた^{*}。三環性化合物 186 の D 環はニ トリルオキシド 188 の分子内 1,3-双極付加環化反応により構築することを想定して

Scheme 32. Retrosynthetic analysis of CDE ring fragment 182.

^{*} 小林らは、フォミテル酸 B の全合成の際に Corey らの変換を参考にしてケトン 191 に由来するシ リルエノールエーテルのシクロプロパン化を試みたが、望みの *trans*-193 は僅か 8%でしか得られ なかったと報告している⁶⁰⁾。そこで、反応面の選択を確実に行うために配向性基が必要と考えた。

C14-C15 位間で切断し、ニトリルオキシド 188 は転位生成物であるカルボン酸 185 から C20 位メチル基と C15 位炭素の導入を経て合成することとした。転位反応の基質となるエステル 183 は、アリルアルコール 80 とアルデヒド 190 から得られるジアゾアルコール 189 に対してロジウム触媒を用いる分子内 O-H 挿入反応による E 環形成を行うことで調製可能と考えられる^{*}。

ところで、筆者の所属する研究グループでは含リン脱離基を用いる化学選択的なオ リゴ糖鎖合成戦略を開発し、シラシロシド E-1 分岐型四糖部 **198** をアラビノース単糖 **194** からわずか四工程で合成することに成功している(スキーム 33)⁶³⁾。

Scheme 33. Synthesis of branched tetrasaccharide fragment 198.

^{*}本合成ルートを立案する以前に、カルボン酸カリウム塩 201 を経由してエステル 202 の合成を試みた。ラクトン 199 から 7 工程で合成したアルコール 200 を段階的に酸化して得られる 201 は極めて不安定であり、アルコール 80 とのカップリング反応は低収率かつ再現性に乏しかった。したがって、下記合成ルートによるエステル 202 の大量供給は不可能と判断した。

また、筆者は博士前期課程において A 環フラグメントの合成研究に取り組み、カッ プリング前駆体 181 の合成を達成している(スキーム 34)⁶⁴⁾。文献既知アルデヒド 203⁶⁵⁾ に対して 4 工程の変換を行って 1,3-ジエン 205 とした後、第一級 TBS エーテルを選択 的に除去して生じるアルコールとメタクリル酸(206)を縮合させてトリエン 207 を得 た。このトリエン 207 を *o*-ジクロロベンゼン中、220 ℃ で加熱すると分子内 Diels–Alder 反応が進行して望みの付加環化生成物 208 を立体選択的に得ることができた。さらに 208 から 2 工程でヨウ化物 209 へと導いた後、ラクトン環の還元的開裂など 3 工程の 変換を経て A 環フラグメント 181 の合成を完了した。

Scheme 34. Synthesis of A ring fragment 181.

そこで、筆者はシラシロシド E-1 の全合成に向けてスキーム 32 に示した逆合成解 析に基づく CDE 環フラグメント 182 の合成に着手した。

第4節 β-ケトエステルを基質とする Ireland–Claisen 転位による二連続第 四級不斉中心の構築

O-H 挿入反応の基質となるジアゾアルコール 189 の合成に着手した(スキーム 35)。 まず、アリルアルコール 80 をジケテン(210)と反応させてアセト酢酸エステル 211 と した後*、メシルアジドを用いて C17 位にジアゾ基を導入した。得られた生成物 212 に対し、水酸化リチウムを作用させてレトロ Claisen 縮合を行うことでジアゾ酢酸エス テル 213 へ導いた。続いて、Wenkert らの方法⁶⁶⁾に従ってリチオ化したジアゾ酢酸エ ステル 213 を C20-C24 炭素ユニットである文献既知のアルデヒド 190⁶⁷⁾に付加させる ことにより、高収率で目的物 214 を得ることができた。ここで生じた第二級アルコー ルに対して IBX 酸化⁶⁸⁾を行ったところ、反応時間の経過と共に脱 TES 化が起こって 反応が複雑化してしまった⁶⁹⁾。この副反応は5 当量のピリジンを添加することで抑制 可能であり、アルコール 214 を収率 94% でα-ジアゾ-β-ケトエステル 215 に変換できる ことを見出した**。最後にメタノール/塩化メチレン混合溶媒中、0°C でトリフルオロ 酢酸処理を行い、環化前駆体となるジアゾアルコール 189 を合成した。

Scheme 35. Preparation of diazoalcohol 189.

* エステル 211 はシリカゲル上で一部分解するため、この段階での精製は避けることにした。

** Dess-Martin 酸化も試みたが、反応が途中で停止してしまうだけでなく、アルコールの脱水が競合してアルケン 216 が副生した。

続いて、分子内 O-H 挿入反応による E 環構築を試みた。本反応は 1985 年に Rapoport らにより開発されたものであるが⁷⁰⁾、その後 Moody らが詳細な検討結果を論じてい る⁷¹⁾。彼らの報告から、①ロジウムカルベン中間体は O-H 結合に速やかに挿入する ため、シクロプロパン化や C-H 挿入反応などの副反応と競合しないこと、②生成する 3-テトラヒドロフラノン-2-カルボン酸エステルはシリカゲル上で分解しやすいことの 2 点が予想された。実際に Moody らが最適化した条件下でジアゾアルコール 189 の分 子内 O-H 挿入を行ったところ、反応は瞬時に完結したが、シリカゲルカラムクロマト グラフィーでの精製中に生成物 183 が一部分解したため、単離収率は中程度(約 60%) となった(式 6)。

そこで、β-ケトエステル 183 を精製せずに用いて転位を試みることにした(表 5)。 まず、過剰の LDA を加えた後にシリル化剤を加えず昇温して Carroll 転位⁷²⁾を試みた が望みの反応は進行せず、室温以上で基質が分解する結果に終わった(entry 1)。次に、 -78 °C で LDA と TBSCIによりビス TBS エーテルを調製して0 °C に昇温すると Ireland-Claisen 転位⁷³⁾が進行し、反応溶液を塩酸処理して不安定なシリルエステルを加水分解 することでシリルエノールエーテルが保持された望みの立体異性体 **218**(R = TBS)が 低収率(25%)ながらも得られることがわかった(entry 2)。この際、C17 位炭素上でシ

Table 5. Rearrangement of β -ketoester **183**.

Me 13 C 8'''O	TBDPSO 0,20 17 N ₂ OH 189	Rh ₂ (OAc) ₄ (2 mol %) benzene reflux	TBDPSO 0,20 E 17,2 0 183	base, silyl chloride THF, temp., 3 h then aq. HCl	B B B C C C C C C C C C C C C C
entry	base (equiv)	silyl chloride (equiv)	temp., °C	yield, % (2 steps)	
1	LDA (5)	none	-78 ightarrow rt	decomposed	
2	LDA (2.5)	TBSCI (2.5)	-78 ightarrow 0	25	
3	KHMDS (2.5)	TBSCI (2.5)	$-78 \rightarrow 0$	32	Me
4	KHMDS (5)	TBSCI (5)	$-78 \rightarrow 0$	52	C ¹³ ¹⁷ CO ₂ H
5	KHMDS (5)	TMSCI (5)	-78 ightarrow 0	0	8 185
6	KHMDS (5)	TESCI (5)	-78 ightarrow 0	50 ^{<i>a</i>}	
7	KHMDS (5)	TBSCI (5)	-78 ightarrow rt	60	
8	KHMDS (5)	TBSCI (5)	-78 ightarrow 40	30	

^aSilyl enol ether was hydrolyzed under acidic work up to give ketone **185**.

リル化が進行したと思われる副生成物が得られたことから塩基の検討を行った。 KHMDS で脱プロトン化を行ってハードなカリウムエノラートを調製すると原料 183 が一部残存したものの収率(32%)はわずかに改善された(entry 3)。用いる試薬を5当 量に増やすと原料 183 は完全に消失し、収率は52%まで向上した(entry 4)。次に、シ リル化剤のスクリーニングを行った。TMSCIを用いた場合生成物は複雑な混合物とな ったが(entry 5)、TESCIを用いた場合には望みの転位反応が進行した(entry 6)。ただ し、TES エステルを加水分解する際にシリルエノールエーテルも分解したためケトカ ルボン酸 185 が得られた^{*}。転位時の温度を検討したところ、室温まで昇温した場合が 最良の結果を与え、収率 60%で目的物 218 が得られることを見出した(entries 7, 8)。本 反応はスキーム 31 (P. 35)に示した計画通りいす形遷移状態 Pを経て進行したと考えら れることから、C20 位の結合様式が立体選択性に大きな影響を及ぼしていることが明 らかになった。

生成物 218 を用いて D 環構築に向けた変換を試みた。218 を TMSCHN₂処理して得 られるメチルエステル 219 を-60 °C で DIBALH 還元するとアルコール 220 まで反応が 進んだため、得られた 220 を Dess-Martin 酸化することでアルデヒド 221 に導いた(ス キーム 36)。続いて一炭素増炭の目的でニトロメタン溶媒中でトリエチルアミンを作 用させたが、目的のニトロアルドール反応⁷⁴⁾よりも先にシリルエノールエーテルの分 解が起こって一旦不安定なβ-ケトアルデヒド 223 が生じることがわかり、アルドール 生成物 222 の収率に再現性が得られなかった。β-ケトアルデヒド 223 は反応条件下で レトロ Claisen 縮合を起こして分解していると考えられる。

Scheme 36. Attempt at introduction of C15 one-carbon unit by a nitroaldol reaction.

^{*} ケトン 185 から得られるヨードラクトン 224 を用いて転位生成物の立体化学を決定した。C13 位 メチル基から C22 位および C23 位の水素原子間に相関が確認されたことから望みの異性体と判断 できた。

そこで、問題の原因と考えられる C20 位カルボニル基を先に変換することを考え、 ケトカルボン酸 185 から得られるメチルエステル 225 を基質として Wittig 反応などの オレフィン化を検討したがジエン 226 の生成は全く確認できなかった(スキーム 37)。 転位反応後の E 環はα面が 'Bu 基に相当する C 環に、またβ面がメトキシカルボニル基 と TBDPS オキシメチル基によって遮蔽されている(図 10)。これらの置換基に起因す る立体的な要因から C20 位カルボニル基は極めて反応性に乏しいと考えられた。

Scheme 37. Attempt at introduction of methylene to C20 position.

Figure 10. Conformation of ketoester 225.

以上の結果は Ireland-Claisen 転位を行う前に C21 位炭素を導入する必要があること を示唆している。 第5節 α,β-不飽和エステルを基質とする Ireland–Claisen 転位とD環形成

前節で得られた知見を踏まえ、β-ケトエステル 183 の C20 位のオレフィン化を検討 することとした。はじめに、一般的な塩基性条件下で調製したリンイリドを作用させ てみたが目的物 202 の生成は確認できず、反応温度の上昇とともに原料 183 が分解す る結果に終わった(スキーム 38)。このβ-ケトエステル 183 は¹H-NMR からケト型で存 在していることがわかっていたが、塩基性条件下ではエノール化してしまうため Wittig 反応が進行しなかったと考えられる。Petasis 試薬⁷⁵⁾のような Lewis 酸性のオレ フィン化試薬を用いると、酸に対して不安定な基質 183 は速やかに分解してしまった。 また、Grignard 試薬などのアルキル金属試薬を作用させると複雑な混合物を与えた。 そこで、183 のエノラートを McMurry 試薬⁷⁶⁾と反応させてビニルトリフラート 228 へ と変換し、クロスカップリング反応によるメチル基の導入を試みた。パラジウム⁷⁷⁾、 ニッケル⁷⁸⁾、鉄⁷⁹⁾を触媒とする条件下では基質が分解する結果となったが、有機鋼試 薬を使用した場合には低収率ながらも目的物 229 が得られた⁸⁰⁾。しかし、還元生成物 230 の副生を抑制することができなかった^{*}。

Scheme 38. Attempts at introduction of C21 one-carbon unit.

^{*} 反応点近傍の立体障害が大きい基質を用いた場合、還元生成物が副生してしまうことが知られている^{80b)}。

そこで筆者は、Lebel らが報告した Wilkinson 触媒存在下で TMSCHN2 とトリフェニ ルホスフィンからリンイリドを調製する Wittig 反応の改良法に着目した⁸¹⁾。本法では 中性条件下でイリドを調製できるため、エノール化しやすいカルボニル化合物でも収 率よくオレフィン化できることが知られている。O-H 挿入反応により得られるB-ケト エステル183の粗生成物を5 mol%の Wilkinson 触媒とトリフェニルホスフィンが溶解 した 1,4-ジオキサン溶液に加え、さらに 2-プロパノールを添加して 60 ℃ に加熱した 後に TMSCHN₂を滴下したところ、Wittig 反応と生じたエキソメチレンの異性化が一 挙に進行して2工程収率60%でα,β-不飽和エステル229が得られることを見出した(ス キーム 39)。続いて、Ireland-Claisen 転位による二連続第四級不斉中心の構築を試みた。 -78 °C で LDA と TMSCI を作用させた後に昇温したところ、これまでの基質と比較し て反応速度は大幅に改善され、0℃以下でも30分以内に転位反応が完結した。得られ たカルボン酸 231 を TMSCHN2 で処理することで、2 工程収率 62%、極めて高い立体 選択性で望みの立体配置を持つ転位生成物 226 を得ることができた*。α.β-不飽和エス テル229を基質とした場合にも転位反応はいす形遷移状態Oを経て進行したことが予 想されることから、やはり C20 位の結合様式によって反応の立体選択性が左右されて いるといえる。なお、反応はグラムスケールでも問題なく行えることが確認されてお り、3gのジアゾアルコール189から1.3g(収率44%、1工程平均81%)のメチルエス

Scheme 39. Wittig-Lebel olefination of 183 and Ireland-Claisen rearrangement of 229.

^{*} 転位生成物の立体化学はヨードラクトン 232 の NOESY 実験により決定した。C21 位水素原子から C13 位メチル基および C14 位水素原子間に相関が観測されたことから、望みの異性体と判断できる。

テル **226** を得ることができた^{*,**}。

得られた転位生成物を用いて D 環構築を行う前に、C20 位エキソメチレンの反応性 及び還元の立体選択性に関する知見を得るため、水素添加を行った。予想されたこと ではあるが、スキーム 37 (P.41) で示したケトン 225 と同様に立体的要因から C20 位エ キソメチレンは反応性に乏しく、触媒がパラジウム/炭素等の場合には一切反応しな かった(式7)。Adams 触媒を用いることで還元可能であったが、本条件下では C 環の オレフィンの方が先に還元された。また還元の立体選択性も 1.3:1 に留まった^{***}。

^{***} 大量スケール時には以下の異性体と考えられる化合物 226', 235 が極微量(<1%)生成していた。

^{***} ジアステレオマー比は粗生成物の¹H-NMR により決定した。異性体の分離および各異性体の立体化学の決定は行っていない。

^{*} α,β-不飽和エステル 229 は、シリカゲルカラムクロマトグラフィーによる精製中に一部分解して しまうことがわかっている。Wittig-Lebel 反応後の処理はホスフィンオキシドを除去するだけにと どめ、他の副生物が混ざったまま転位反応を行うと4工程通算の収率は向上する。

この結果から、エキソメチレンの還元は D 環構築後に行うこととし、次に D 環構築 に向けて分子内 1,3-双極付加環化反応の基質の合成を開始した。まず、メチルエステ ル 226 を DIBALH により還元したところ、-78 °C でもアルコール 236 まで反応が進行 したことから、Dess-Martin 試薬により酸化して良好な収率(2 工程 80%)でアルデヒド 237 へ導いた(スキーム 40)。ニトロアルドール反応によるアルデヒド 237 の増炭条件 を種々検討した結果、ニトロメタン溶媒中で触媒量の 1,1,3,3-テトラメチルグアニジン (238)を作用させると良いことがわかった。ただし、本反応は原料 237 が約 9 割消費 された段階で反応が平衡に達し、収率 89%で望みの生成物 239 を得るとともに、10% のアルデヒド 237 を回収した*。このように、C20 位カルボニル基を先に変換すること で、ニトロアルドール反応中の分解を完全に抑制できることがわかった。

Scheme 40. Introduction of C15 one-carbon unit.

続いて、アルドール生成物 239 の脱水条件を検討した(表 6)。はじめに、ピリジン 溶媒中で無水酢酸を作用させたところ、収率 50%でしか望みの生成物 241 は得られな かった(entry 1)。C17 位四置換炭素に隣接する C16 位に置換した水酸基のアセチル化 は非常に遅く、レトロニトロアルドール反応やニトロアルカンの脱水により生じるニ トリルオキシドの分子内 1,3-双極付加環化反応が競合してアルデヒド 237 やイソオキ サゾリン 242 が副生していた。より反応性が高い塩化メシルを用いて低温で反応させ た場合、レトロニトロアルドール反応の割合は低下したが、分子内 1,3-双極付加環化 反応による 242 の副生を抑制するには至らず、目的物 241 の収率(66%)は中程度のま

* 塩基としてトリエチルアミンを用いると反応速度が著しく低下した。また、一挙に脱水も進行するとされている条件下では、加熱により Cope 転位が進行して 240 が得られた。

まだった(entry 2)。そこで反応条件を抜本的に変更して酸性条件下でのアシル化を試みた結果、濃硫酸を触媒として無水酢酸中反応させることにより望みのアセチル化のみが進行することがわかった(entry 3)。生成物は塩基処理することで容易に脱離反応を起こし、α,β-不飽和ニトロ化合物 241 が2工程収率94%で得られることを見出した。

Table 6. Dehydration of β -nitroalcohol 239.

得られた生成物 241 からさらなる変換を続けた。α,β-不飽和ニトロ化合物 241 に含まれる共役アルケンを水素化ホウ素ナトリウムを用いて化学選択的に還元して環化前駆体 243 を合成した(スキーム 41)。還流ベンゼン中でフェニルイソシアナートによりニトリルオキシド 244 を発生させる向山らの条件下で分子内 1,3-双極付加環化反応を試みたところ、極めて高い収率(97%)で四環性化合物 245 が立体選択的に得られた⁸²⁾。生成物 245 は NOE 実験によりシス縮環していることを確認している(図 11)。

Scheme 41. Construction of CDE ring moiety.

以上、Ireland-Claisen 転位による二連続 第四級不斉中心の一段階構築と 1,3-双極付 加環による D 環構築を鍵工程として、CDE 環骨格を構築した。

Figure 11. NOE correlations of isoxazoline 245.

第6節 CDE 環フラグメントに向けた変換

CDE 環フラグメントの合成に向けた残る課題は①Ireland-Claisen 転位の遷移状態を 制御する目的で導入した C20 位エキソメチレンの立体選択的な水素化と②C14 位メチ ル基の立体選択的導入の 2 点である。初めに、C20 位エキソメチレンの水素化に着手 した。

四環性化合物 245 を-20 °C で DIBALH 還元してイソオキサゾリジン 246 とし、この 246 を基質として C20 位エキソメチレンの水素化を検討した^{*,**} (スキーム 42)。その結 果、水素雰囲気下、酢酸エチル中で Adams 触媒⁸³⁾を作用させると N-O 結合の加水素 分解に続いて C20 位エキソメチレンが徐々に水素化されることがわかった^{***}。生成物 であるアミノアルコール 248 のジアステレオマー比はアミノ基を Boc 化した後に決定 し、4.3:1 で望みの異性体が主生成物であった^{****}。本反応の立体選択性は、C13 位メ

Scheme 42. Hydrogenation of exomethylene.

^{*} イソオキサゾリン 245 の接触還元によりβ-ヒドロキシケトンが得られると期待したが⁸⁴⁾、解析困 難な混合物が得られる結果に終わった。

^{**} イソオキサゾリジン 246 を基質として Le Bel エノン合成反応の適用を検討したが、低収率に終わった⁸⁵⁾。

*** 水素化の反応溶媒をメタノールや THF に変更すると、立体選択性が低下した。

**** 水素化生成物の立体配置は異性体混合物の NOESY 実験により決定した。望みの異性体 249 では C20 位メチル基と C23 位水素原子間に、他方の望みとしない異性体 249'では C20 位メチル基と C16 位水素原子間にそれぞれクロスピークが観測された。

NOESY М́е́н Me OTROPS НÓ BocHN

desired isomer 249

NOESY н Ме OTBDPS НÓ BocHN Ъ

undesired isomer 249'

チル基により望みとしない Re 面からの 反応が妨げられたことで発現したと考 えられる(図 12)。得られた異性体混合物 249 は Dess-Martin 酸化によりケトンへ 変換することで容易に分離可能であり、 望みの異性体 250a を 3 工程収率 52%で 得ることができた。

Figure 12. Newman projection of aminoalcohol 247.

続いて、Boc 基を除去する目的でケトン 250a を塩化メチレン中、TFA で処理した ところ、以下の興味深い現象が観測された(式 8)。

- ① 反応開始と同時に核間位(C14 位)の異性化が進行した。1 時間でほぼ平衡状態に達し、基質であるシス縮環体 250aのほとんどがトランス縮環体 250b に異性化した*。
- ② 望みとする脱 Boc 化は遅く、2 時間で反応を停止するとアミノケトン 251 の収率は 10%以下であった。
- ③ 副生成物としてエノン 252 が収率 35%で得られた。このエノン 252 はシス縮環体
 250a が多く存在する反応初期に生成し、概ねトランス縮環体 250b に異性化した
 後ではほとんど増加しなかった。
- ④ 単離したβ-アミノケトン 251 を TFA 処理したが、エノン 252 の生成は確認されなかった(式9)。③と合わせると、エノン 252 はシス縮環体 250a からのみ生成したと推察できる。

^{*} シス縮環体 **250a** とトランス縮環体 **250b** の立体エネルギーをパラメータとして OPSL 2005 を用 いて MacroModel 10.1 により計算した。その結果、トランス縮環体 **250b** はシス縮環体 **250a** に比べ て 2.53 kcal/mol も熱力学的に安定であった。

ここで副生したエノン 252 は、CDE 環フラグメントに向けた有用な合成中間体と考 えられる。そこで、本反応によるエノン 252 への変換法の確立を目指した。先に示し た知見①-④を踏まえると、酸に安定なカルバマート系保護基を持つβ-アミノケトンを TFA 処理することで、核間位の異性化と共にアミノ基の脱離が進行し、基質は徐々に エノン 252 へ収束することが期待される。

この仮説に基づき、イソオキサゾリジン 246 を水素化したアミノアルコール 248 に 対してクロロギ酸メチルを作用させてカルバマート 253 へ導いた(スキーム 43)。次い で、第二級アルコールを Dess-Martin 試薬により酸化して C20 位異性体を分離するこ とでケトン 254a を 3 工程収率 54%で得ることができた。254a を基質としてメトキシ カルボニルアミノ基の脱離反応を種々検討した結果^{*}、5% TFA/トルエン溶液中で 60 ℃ に加熱すると原料 254a と C14 位異性体 254b の平衡混合物は 8 時間後にエノン 252 に 収束することを見出した(収率 86%)^{**}。

Scheme 43. Synthesis of enone 252.

続いて、最後の課題である C14 位メチル基の立体選択性な導入に着手した。本章第 3 節の逆合成解析でも触れたが、Grundemann ケトン類の核間位のメチル化に関して Corey⁵⁹⁾らと小林ら⁶⁰⁾は相反する結果を報告している。そこで、まずは筆者も彼らと同 じ手法を利用して核間メチル基の導入を試みることにした。合成したエノン 252 から 2 工程で調製した四置換シリルケテンアセタール 256 に対して古川改良条件下での Simmons-Smith 反応⁸⁶⁾を行うと、単一異性体としてシクロプロパン 257 が得られた(ス キーム 44)。水酸化ナトリウムで処理してシクロプロピルシリルエーテルを加水分

^{*}本反応では顕著な溶媒効果が観測された。非極性溶媒である塩化メチレンやトルエン中では異性化と共に脱離が進行したが、メタノール、アセトン、DMFといった極性溶媒中では異性化しか進行しなかった。

^{**} 本反応の詳細な反応機構はわかっていない。文献検索を行ったが、類似の反応に関する報告は 発見できなかった。

Scheme 44. Attempts at introduction of angular methyl group at C14 from silyl enol ether 256.

解⁸⁷⁾した後、反応条件下で一部除去された TBDPS 基を 再び導入してケトン 258b を高収率(5 工程 81%)で得た。 しかしながら、NOE 実験を行ったところ C13 位メチル基 と C14 位メチル基の間に強い相関が観測されたことから、 生成物 258b は小林らと同様にシス縮環体であることが 明らかになった(図 13)。また、四置換シリルケテンアセ タール 256 にメチルリチウムを作用させて生じるリチウ ムエノラートに HMPA 存在下でヨウ化メチルを反応さ せた場合もシス縮環生成物 258b が 3 工程収率 49%で得 られる結果に終わった。以上のように筆者の基質におけ

る CD 環の concave 面は反応性に乏しいことが示されたことから、逆合成解析で示したように配向性基による立体制御が不可欠といえる。

そこで、エノン 252 を Luche 還元⁸⁸⁾して得られるアリルアルコール 186 の Simmons-Smith 反応を行った (スキーム45)。環状アリルアルコールを基質とする Simmons-Smith 反応は高立体選択的に syn 体を与えることが知られており⁸⁹⁾、筆者の場合にも立体選 択的かつ高収率(92%)で望みの立体化学を持つシクロプロパン 259 に導くことができ た^{*}。次に酢酸中で Adams 触媒によるシクロプロパン環の加水素分解を試みたが、 TBDPS 基のベンゼン環が一部水素化された生成物 260 やシリルエーテルが開裂したジ オール 261 が主生成物として得られ、望みの開環生成物としては極微量のジオール 262 が得られるに留まった。加圧条件下での加水素分解を試みた場合にも目的物を満足い く収率で得るには至らなかった。これらの検討の過程でシリルエーテルを保持した開

^{*} シクロプロパン環のメチレン水素原子と C13 位メチル基間に NOE 相関が観測されなかったこと から望みの立体異性体と推測した。

Scheme 45. Stereoselective introduction of one carbon unit at C14.

環生成物が全く確認されなかったことから、シクロプロパンの加水素分解はジオール 261 からのみ進行したと考えられる。本反応で用いた基質 259 はシクロプロパンがシ リル基に覆われた配座を取っているため、Adams 触媒の接近が妨げられていると予測 した。

この考察に基づき、シクロプロパン 259 の TBDPS 基を Bu₄NF により除去したジオ ール 261 に対して加水素分解を試みた結果、常圧下でも反応が位置選択的に進行して 開環生成物 262 を収率 74%で与えることを見出した(スキーム 46)。最後に第一級アル コールを再び TBDPS 基で保護した後、第二級アルコールを Dess-Martin 試薬により酸 化することでケトン 258a の合成を達成した。258a の立体化学は¹H-NMR により確認 している。カップリング定数から帰属可能な C9 位アキシアル位の水素原子と C14 位 メチル基間に NOESY のクロスピークが観測されたことから、258a はトランス縮環し たビシクロ[4.3.0]ノナン構造を持つことが示された。

Scheme 46. Completion of synthesis of the CDE ring system.

このように、C24 位エチル基を除く全ての炭素が立体選択的に導入されたケトン 258aの合成を完了した。筆者は時間の都合上検討できなかったが、C24 エチル基は高 橋らが報告しているスルホン酸アミドを配位子とするエチル化反応⁹⁰⁾などにより導 入可能と考えられる。今後、A 環フラグメントとのカップリング、B 環構築、糖鎖の 導入を経てシラシロシド E-1 の全合成が達成されることを望む。 結語

筆者は Ireland-Claisen 転位による二連続第四級不斉中心の一段階構築を機軸とする 酸化型テルペノイド類の合成研究に取り組み、(1)酸化型テルペノイド類の合成を指向 したキラルビルディングブロックの立体選択的合成および(2)抗腫瘍性サポニンであ るシラシロシド E-1 アグリコン部 CDE 環フラグメントの合成研究を行った。以下に得 られた知見をまとめる。

(1) 文献既知のエポキシアルコール 74 から合成した酪酸エステル 81 を基質とする Ireland-Claisen 転位が、主にいす形遷移状態 L を経て進行し、α型ビルディングブロッ クとして利用可能なカルボン酸 82a が高立体選択的に得られることを見出した (スキ ーム 47)。一方、文献既知のラクトン 90 から合成したテトラヒドロフラン-2-カルボン 酸エステル 97 を基質とする Ireland-Claisen 転位は優先的に舟形遷移状態を経て進行し、 β型モチーフを含む生成物 98b が高立体選択的に得られることを明らかにした。これ らの結果は、カルボニル基α位に置換基を持つグリコール酸 2-シクロヘキセニルを基 質とし、シリルケテンアセタールの立体化学および Ireland-Claisen 転位の遷移状態を 制御した初めての例である。β型モチーフを含む生成物 98b の THF 環を位置選択的に 開裂してβ型ビルディングブロックとして利用可能なアルキン 117 へと誘導した後、分 子内 Heck 反応によるビシクロ環形成など数工程の変換を行うことで、C9 位酸化型ラ ブダン骨格を含む化合物 130 と 144 への変換を達成した。

Scheme 47. Construction of contiguous quaternary stereocenters by an Ireland–Claisen rearrangement.

(2) 文献既知のアルコール 80 から6 工程で合成したジアゾアルコール 189 に対して 分子内 O-H 挿入反応と Wittig-Lebel 反応を行うことで C20 位を sp² 炭素としたエステ ル 229 を合成した(スキーム 48)。229 を基質として Ireland-Claisen 転位を行うと、い す形遷移状態 Q を経て反応が進行し、望みの転位生成物 226 が極めて高い立体選択 性で得られることを見出した。続いて、転位生成物 226 から6 工程の変換を経て得ら れるニトロアルケン 243 を用いて、向山らの条件下で分子内 1,3-双極付加環化反応を 行うと高収率で D 環を構築できることがわかった。最後に、C20 位エキソメチレンの 立体選択的な水素化とシクロプロパン 261 を経る C14 位メチル基の導入を行い、CDE 環フラグメントの主要な炭素骨格を含むケトン 258a へと導くことに成功した。

Scheme 48. Stereoselective synthesis of tricyclic ketone 258a.

以上のように、Ireland-Claisen 転位により二連続第四級不斉中心を一挙に構築する ことで、酸化型テルペノイド類に含まれる共通モチーフを持つ化合物の立体選択的な 作り分けに成功した。さらに、テルペノイド類の合成に向けたビシクロ環の構築法と して、本論文中では Heck 反応と 1,3-双極付加環化反応が利用可能なことを示した。他 にも、最近 Corey らが報告したジアゾケトンを基質とする五員環形成反応を適用する ことで、C16 位に酸素官能基を持つトリテルペノイド類にアプローチ可能な環化生成 物が得られると予想される⁹¹⁾。この多様性を活かし、本法が様々な酸化型テルペノイ ド類やその誘導体合成に利用され、新規生物活性物質の探索の一助となることを期待 する。

実験の部

General Information

Melting points were determined on an AS ONE ATM-02 digital melting point apparatus and were uncorrected. Optical rotations were recorded on a JASCO P-2100 digital polarimeter. Infrared (IR) spectra were recorded on a SHIMAZDU IR Affinity-1 fourier transform infrared spectrophotometer and absorbance bands are reported in wavenumber (cm⁻¹). Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a Varian VNMRS 500 (500 MHz) spectrometer with tetramethylsilane ($\delta_{\rm H}$ 0.00) or C₆H₆ ($\delta_{\rm H}$ 7.16) as an internal standard. Coupling constants (*J*) are reported in hertz (Hz). Abbreviations of multiplicity are as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br. broad. Data are presented as follows: chemical shift, multiplicity, coupling constants, integration and assignment. Triterpenoid numbering is used for proton assignments. Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on Varian VNMRS 500 (125.7 MHz) spectrometers with CDCl₃ ($\delta_{\rm C}$ 77.0) or C₆D₆ ($\delta_{\rm C}$ 127.0) as an internal standard. High resolution mass spectra (HRMS) were obtained on a JEOL JMS-SX 102A spectrometer in electron ionization (EI) method or in fast atom bombardment (FAB) method or on a JEOL JMS-T 100LP AccuTOF LC-plus in electrospray ionization (ESI) method or in direct analysis in real time (DART) ionization method.

Column chromatography was carried out on Kanto silica gel 60 N (40–50 μ m or 63–210 μ m) or Wakogel[®] C-200 (75–150 mesh). Analytical thin layer chromatography (TLC) was carried out on Merck Kieselgel 60 F₂₅₄ plates. Visualization was accomplished with ultraviolet light and anisaldehyde or phosphomolybdic acid stain, followed by heating.

Analytical high performance liquid chromatography (HPLC) was performed on a HITACHI Pump L-2130 with a HITACHI UV Detector L-2400 or a JASCO PU-980 Intelligent HPLC Pump with a JASCO UV-970 Intelligent UV/VIS Detector. Detection was performed at 254 nm. Chiralpak IC-3 (0.46 cm \times 25 cm) from Daicel and Zorbax[®] Sil (0.46 cm \times 25 cm) from Agilent Technologies were used. Retention times (t_R) and peak ratio were determined with Run Time Instruments Chromato-PRO. Hexane and 2-propanol which was HPLC grade, was filtered prior to use.

Reagents and solvents were purified by standard means or used as received unless otherwise noted. Dehydrated dichloromethane (CH_2Cl_2) and tetrahydrofuran (THF, stabilizer free) were purchased from Kanto Chemical Co., Inc. Trifluoroborane etherate ($BF_3 \cdot OEt_2$), chlorotrimethylsilane (TMSCl), diisopropylamine, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and 2,6-lutidine were distilled from calcium hydride. All reactions were conducted under an argon atmosphere unless otherwise noted.

Dess–Martin periodinane^{32a)}, trimethylsilyldiazomethane $(TMSCHN_2)^{92}$, *tert*-butyldimethylsilyl trifluoromethanesulfonate $(TBSOTf)^{93}$, methanesulfonyl azide $(MsN_3)^{94}$ and 2-iodoxybezoic acid $(IBX)^{68}$ were prepared by according to literature procedures.

第1章第2節に関する実験

(2R,3R)-4-(tert-Butyldiphenylsilyl)oxy-3-methylbutane-1,2-diol (75).

OTBD Me_{7,20} 16 0H Trimethylaluminum in *n*-heptane (2.0 M, 8.15 mL, 16.3 mmol) was added to a solution of epoxy alcohol **74** (1.87 g, 5.44 mmol) in *n*-pentane (60 mL) at 0 °C. After stirring for 3 h, the reaction was quenched with MeOH (2 mL), and 10% aqueous potassium sodium tartrate (100 mL) was added to the solution. The mixture was vigorously stirred at room temperature for 29 h, and extracted with AcOEt (3×300 mL). The combined organic extracts were washed with brine (100 mL) and

dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (2.19 g), which was purified by flash column chromatography (silica gel 100 g, 10:1 CH₂Cl₂/Et₂O) to give diol **75** (1.67 g, 86%) as a colorless oil: R_f 0.40 (1:1 *n*-hexane/AcOEt); $[\alpha]_D^{17}$ –11.0 (*c* 1.06, CHCl₃); IR (neat) 3401, 2960, 2931, 2859, 1472, 1427, 1123, 1113 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.80 (d, *J* = 7.0 Hz, 3H, C21-*H*₃), 1.06 (s, 9H, ^{*t*}*Bu*), 1.94 (m, 1H, C20-*H*), 2.33 (t, *J* = 5.9 Hz, 1H, C16-O*H*), 3.60 (m, 1H, one of C16-*H*₂), 3.66 (dd, *J* = 8.4, 10.3 Hz, 1H, one of C22-*H*₂), 3.68–3.74 (m, 2H, one of C16-*H*₂ and C17-*H*), 3.74 (dd, *J* = 4.0, 10.3 Hz, 1H, one of C22-*H*₂), 4.00 (d, *J* = 2.5 Hz, 1H, C17-O*H*), 7.40–7.47 (m, 6H, aromatic-*H*), 7.66–7.69 (m, 4H, aromatic-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 13.1 (CH₃), 19.0 (C), 26.8 (CH₃), 37.0 (CH), 64.9 (CH₂), 68.8 (CH₂), 76.5 (CH), 127.8 (CH), 127.9 (CH), 129.9 (CH), 130.0 (CH), 132.5 (C), 132.6 (C), 135.52 (CH), 135.54 (CH); HRMS (FAB) *m/z*: [M + H]⁺ Calcd for C₂₁H₃₁O₃Si 359.3043; Found 359.3047. (YA10085)

[4R,4(1R)]-4-{[2-(tert-Butyldiphenylsilyl)oxy-1-methyl]ethyl}-2-phenyl-1,3-dioxolane (76).

Pyridinium *p*-toluenesulfonate (116 mg, 0.461 mmol) was added to a mixture of diol **75** (1.66 g, 4.63 mmol) and benzaldehyde dimethyl acetal (1.55 mL, 10.4 mmol) in CH₂Cl₂ (46 mL), and the mixture was stirred for 48 h. Triethylamine (1.0 mL) was added to the mixture, and the solvent was removed in vacuo. The residual pale-yellow oil (2.95 g) was purified by flash column chromatography (silica gel 120 g, 30:1 *n*-hexane/AcOEt) to give benzylidene acetal **76** (1.92 g, 93%, dr = 1.6:1) as a colorless oil: R_f 0.42 (10:1 *n*-hexane/AcOEt); $[\alpha]_D^{17}$ -3.6 (*c* 0.95,

CHCl₃); IR (neat) 2961, 2932, 2859, 1427, 1113 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.01 (d, J = 6.9 Hz, 1.2H, C21- H_3 of minor isomer), 1.03 (d, J = 6.9 Hz, 1.8H, C21- H_3 of major isomer), 1.06 (s, 3.5H, ^tBu of minor isomer), 1.07 (s, 5.5H, ^tBu of major isomer), 1.97 (m, 0.38H, C20-H of minor isomer), 2.03 (m, 0.62H, C20-H of major isomer), 3.73 (dd, J = 4.3, 10.0 Hz, 0.62H, one of C22-H₂ of major isomer), 3.76 (dd, J = 3.8, 9.9 Hz, 0.38H, C22- H_2 of minor isomer), 3.75–3.82 (m, 1.38H, one of C22- H_2 of major isomer, one of C22- H_2 of minor isomer and one of C16- H_2 of minor isomer), 3.84 (t, J = 7.6 Hz, 0.62H, one of C16- H_2 of major isomer), 4.07 (dd, J = 7.1, 7.6 Hz, 0.62H, one of C16- H_2 of major isomer), 4.20-4.27 (m, 1.38H, C17-H of major isomer, C17-H of minor isomer and one of C16-H₂ of minor isomer), 5.78 (s, 0.62H, CHPh of major isomer), 5.86 (s, 0.38Hz, CHPh of minor isomer), 7.32-7.47 (m, 11H, aromatic-H), 7.66-7.70 (m, 4H, aromatic-H); ¹³C NMR (125.7 MHz, CDCl₃) δ 12.6 (CH₃), 12.7 (CH₃), 19.31 (C), 19.32 (C), 26.8 (CH₃), 26.9 (CH₃), 38.89 (CH), 38.94 (CH), 65.6 (CH₂), 65.7 (CH₂), 68.0 (CH₂), 69.1 (CH₂), 77.4 (CH), 78.4 (CH), 103.4 (CH), 103.6 (CH), 126.3 (CH), 126.56 (CH), 127.57 (CH), 127.59 (CH), 127.61 (CH), 127.62 (CH), 128.25 (CH), 128.26 (CH), 128.9 (CH), 129.1 (CH), 129.52 (CH), 129.55 (CH), 129.57 (CH), 129.58 (CH), 133.59 (C), 133.65 (C), 133.67 (C), 133.71 (C), 135.59 (CH), 135.60 (CH), 137.8 (C), 138.6 (C); HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₈H₃₄O₃SiNa 469.2175; Found 469.2152. (YA10097)

(2R,3R)-2-Benzyloxy-4-(tert-butyldiphenylsilyl)oxy-3-methylbutan-1-ol (77).

DIBALH in *n*-hexane (1.0 M, 15.0 mL, 15.0 mmol) was added to a solution of benzylidene acetal **76** (1.92 g, 4.30 mmol) in CH₂Cl₂ (43 mL) at -78 °C. After stirring at -20 °C for 9 h, the reaction was quenched with MeOH (2 mL), and 20% aqueous potassium sodium tartrate (50 mL) was added to the

OTBDP Me₁, 22 16 0Bn OH solution. The mixture was vigorously stirred for 16 h, and extracted with AcOEt (2×200 mL). The combined organic extracts were washed with brine (50 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (2.20 g), which was purified by flash column chromatography (silica gel 60 g, 5:1 *n*-hexane/AcOEt) to give alcohol 77 (1.70 g, 88%) as a colorless oil: R_f 0.42 (3:1 *n*-hexane/AcOEt); $[\alpha]_D^{17}$ –2.4 (*c* 1.05, CHCl₃); IR (neat) 3435, 2959,

2857, 1427, 1113 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.96 (d, J = 6.9 Hz, 3H, C21- H_3), 1.07 (s, 9H, ¹Bu), 2.06 (m, 1H, C20-H), 2.16 (t, J = 5.3 Hz, 1H, C16-OH), 3.61–3.66 (m, 2H, one of C16- H_2 and one of C22- H_2), 3.68–3.74 (m, 2H, C17-H and one of C22- H_2), 3.80 (m, 1H, one of C16- H_2), 4.54 (d, J = 11.6 Hz, 1H, one of C H_2 Ph), 4.57 (d, J = 11.6 Hz, 1H, one of C H_2 Ph), 7.27–7.43 (m, 11H, aromatic-H), 7.65–7.67 (m, 4H, aromatic-H); ¹³C NMR (125.7 MHz, CDCl₃) δ 13.2 (CH₃), 19.3 (CH), 26.9 (CH₃), 37.1 (CH), 61.6 (CH₂), 65.5 (CH₂), 72.1 (CH₂), 80.9 (CH), 127.65 (CH), 127.66 (CH), 127.70 (CH), 128.4 (CH), 129.6 (CH), 129.7 (CH), 133.4 (C), 133.5 (C), 135.6 (CH), 135.7 (CH), 138.4 (C); HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₈H₃₆O₃SiNa 471.2331; Found 471.2311. (YA10104)

(2R,3R)-2-Benzyloxy-4-(tert-butyldiphenylsilyl)oxy-3-methyl-1-butanal (78).

Dess–Martin periodinane (136 mg, 0.321 mmol) was added to a solution of alcohol 77 (120 mg, 0.267 mmol) in CH_2Cl_2 (2.7 mL) at 0 °C. After stirring at room temperature for 1 h, the reaction was quenched with a mixture of 1 M aqueous $Na_2S_2O_3$ (1 mL) and saturated aqueous $NaHCO_3$ (1 mL), and the resulting mixture was vigorously stirred for 30 min. The mixture was partitioned between

AcOEt (30 mL) and H₂O (5 mL), and the aqueous layer was extracted with AcOEt (30 mL). The combined organic extracts were washed with brine (10 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (245 mg), which was purified by column chromatography (silica gel 15 g, 10:1 *n*-hexane/ AcOEt) to give aldehyde **78** (112 mg, 94%) as a colorless oil: R_f 0.57 (5:1 *n*-hexane/AcOEt); $[\alpha]_D^{15}$ +33.3 (*c* 0.99, CHCl₃); IR (neat) 3071, 2961, 2930, 2856, 1732, 1472, 1427, 1389, 1113, 1074 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.93 (d, *J* = 7.0 Hz, 3H, C21-*H*₃), 1.02 (s, 9H, ^{*i*}*Bu*), 2.30 (dddq, *J* = 4.3, 4.9, 8.4, 7.0 Hz, 1H, C20-*H*), 3.54 (dd, *J* = 4.9, 10.0 Hz, 1H, one of C22-*H*₂), 3.73 (dd, *J* = 8.4, 10.0 Hz, 1H, one of C22-*H*₂), 3.78 (dd, *J* = 2.2, 4.3 Hz, 1H, C17-*H*), 4.54 (d, *J* = 11.6 Hz, 1H, one of CH₂Ph), 4.75 (d, *J* = 11.6 Hz, 1H, one of CH₂Ph), 7.32–7.42 (m, 11H, aromatic-*H*), 7.62–7.67 (m, 4H, aromatic-*H*), 9.83 (d, *J* = 2.2 Hz, 1H, C16-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 13.4 (CH₃), 19.1 (CH), 26.7 (CH₃), 39.2 (CH), 64.3 (CH₂), 73.2 (CH), 85.5 (CH₂), 127.6 (CH), 127.7 (CH), 127.88 (CH), 127.92 (CH), 128.4 (CH), 129.6 (CH), 129.7 (CH), 133.3 (C), 135.59 (CH), 135.60 (CH), 137.58 (C), 204.5 (CH); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₂₈H₃₄O₃SiNa 469.2174; Found 469.2160. (HY1037)

(R)-3-Methylcyclohex-2-en-1-ol (80).

A mixture of racemic 3-methylcyclohex-2-en-1-ol (50.0 g, 444 mmol), vinyl butyrate (112 mL, 881 mmol) and Novozym[®] 435 (1.11 g, 2.2 wt %) in *n*-heptane (450 mL) was stirred for 3 h. The resulting yellow suspension was filtered, and the filtrate was concentrated in vacuo. The residual oil (127 g) was passed through silica gel (800 g, CH_2Cl_2) to give a mixture of the butyrate of **80** and vinyl butyrate (34.7 g), along with

ent-**80** (26.7 g). The mixture of the butyrate and vinyl butyrate was dissolved in MeOH (300 mL), and 4 M aqueous NaOH (110 mL, 440 mmol) was added at 0 °C. After stirring at room temperature for 1 h, the mixture was partitioned between CH_2Cl_2 (200 mL) and H_2O (250 mL), and the aqueous layer was extracted with CH_2Cl_2 (175 mL and 150 mL). The combined organic extracts were washed with brine (200 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (22.9 g), which was used without further purification.

This sequence was repeated, employing vinyl butyrate (52.0 mL, 409 mmol), Novozym[®] 435 (504

mg, 2.2 wt %), *n*-heptane (200 mL), 4 M aqueous NaOH (83 mL, 332 mmol) and MeOH (230 mL). The crude product (17.5 g) was purified by column chromatography (silica gel 200 g, CH₂Cl₂) to give (*R*)-alcohol **80** (17.3 g, 76%, >99% ee) as a colorless oil: R_f 0.49 (2:1 *n*-hexane/AcOEt); $[\alpha]_D^{22}$ +95.1 (*c* 2.88, CHCl₃), [lit. $[\alpha]_D$ +96.0 (*c* 0.423, CHCl₃)];⁵² ¹H NMR (500 MHz, CDCl₃) δ 1.37 (d, *J* = 6.5 Hz, 1H, C8-OH), 1.54–1.61 (m, 2H, C11-*H*₂), 1.69 (s, 3H, C18-*H*₃), 1.69–1.81 (m, 2H, C9-*H*₂), 1.85–1.96 (m, 2H, C12-*H*₂), 4.17 (m, 1H, C8-*H*), 5.49 (m, 1H, C14-*H*). (YA10139)

(R)-3-Methylcyclohex-2-en-1-yl Benzoate.

18 Me 13 11 8'''OBz Benzoyl chloride (0.07 mL, 0.57 mmol) was added to a mixture of (*R*)-alcohol **80** (18.2 mg, 0.16 mmol) and DMAP (99.1 mg, 0.81 mmol) in CH_2Cl_2 (1.6 mL) at 0 °C. After stirring at room temperature for 2 h, the mixture was partitioned between CH_2Cl_2 (10 mL) and saturated aqueous NaHCO₃ (2 mL), and the aqueous layer was extracted with CIL CL (8 mL). The combined extracts were mashed with bring (4 mL).

with CH₂Cl₂ (8 mL). The combined organic extracts were washed with brine (4 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (31.0 mg), which was purified by column chromatography (silica gel 15 g, 20:1 *n*-hexane/AcOEt) to give the corresponding benzoate (26.3 mg, 75%) as a colorless oil. The enantiomeric excess was determined to be >99% ee by HPLC analysis [column, Chiralpak IC-3; eluent, 200:1 *n*-hexane/2-propanol; flow rate, 0.5 mL/min; $t_R = 26.4$ min for (*R*)-enantiomer, $t_R = 29.2$ min for (*S*)-enantiomer]: R_f 0.72 (5:1 *n*-hexane/AcOEt); $[\alpha]_D^{23} + 211.8$ (*c* 1.09, CHCl₃); IR (neat) 3061, 2936, 1713, 1450, 1271 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.70 (m, 1H, one of C11- H_2), 1.84–1.89 (m, 3H, C9- H_2 and one of C11- H_2), 1.94–2.06 (m, 2H, C12- H_2), 1.74 (s, 3H, C18- H_3), 5.49 (m, 1H, C8-H), 5.60 (m, 1H, C14-H), 7.41–7.44 (m, 2H, aromatic-H), 7.54 (m, 1H, aromatic-H), 8.05–8.06 (m, 2H, aromatic-H); ¹³C NMR (125.7 MHz, CDCl₃) δ 19.1 (CH₂), 23.8 (CH₃), 28.1 (CH₂), 29.9 (CH₂), 69.3 (CH), 120.0 (CH), 128.2 (CH), 129.5 (CH), 130.9 (C), 132.6 (CH), 141.2 (C), 166.3 (C); HRMS (EI) m/z: [M]⁺ Calcd for C₁₄H₁₆O₂ 216.1150; Found 216.1145. (YS2072)

(*R*)-3-Methylcyclohex-2-en-1-yl (2*R*,3*R*)-2-Benzyloxy-4-(*tert*-butyldiphenylsilyl)oxy-3-methylbutanoate (81).

To a mixture of aldehyde **78** (1.67 g, 3.74 mmol) and 2-methyl-2-butene (8.0 mL, 75.5 mmol) in *t*-BuOH/H₂O (4:1, 35 mL) was added NaH₂PO₄ (672 mg, 5.60 mmol), followed by addition of NaClO₂ (507 mg, 5.61 mmol). After stirring for 3 h, the mixture was partitioned between AcOEt (100 mL) and 10% aqueous NaHSO₄ (40 mL), and the aqueous layer was extracted with AcOEt (3×100 mL). The combined organic extracts were

washed with brine (40 mL) and dried over anhydrous Na_2SO_4 . Filtration and evaporation in vacuo furnished the crude product (1.94 g), which was used without further purification.

To an ice-cooled mixture (0 °C) of crude carboxylic acid **79** (1.94 g) and alcohol **80** (461 mg, 4.11 mmol) in CH₂Cl₂ (37 mL) was added 1-ethyl-3-(dimethylamino)propylcarbodiimide (1.00 g, 5.22 mmol), followed by addition of DMAP (639 mg, 5.23 mmol). After stirring at room temperature for 18 h, the reaction was quenched with H₂O (40 mL), and the resulting mixture was extracted with AcOEt (2×200 mL). The combined organic extracts were washed with brine (40 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (3.20 g), which was purified by column chromatography (silica gel 200 g, 20:1 *n*-hexane/AcOEt) to give ester **81** (1.49 g, 72% for 2 steps) as a colorless oil: R_f 0.61 (5:1 *n*-hexane/AcOEt); $[\alpha]_D^{27}$ +79.1 (*c* 1.48, CHCl₃); IR (neat) 3069, 2932, 2859, 1738, 1454, 1427, 1255, 1188, 1111 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.93 (d, *J* = 7.0 Hz, 3H, C21-*H*₃), 1.04 (s, 9H, ^{*H*}Bu), 1.59–1.79 (m, 4H, C9-*H*₂ and C11-*H*₂), 1.69 (s, 3H, C18-*H*₃), 1.87–1.99 (m, 2H, C12-*H*₂), 2.17 (dddq, *J* = 4.7, 5.6, 7.1, 7.0 Hz, 1H, C20-*H*), 3.68 (dd, *J* = 4.7, 9.9 Hz, 1H, one of C22-*H*₂), 3.75 (dd, *J* = 5.6, 9.9 Hz, 1H, C22-*H*₂), 3.97 (d, *J* = 7.1 Hz, 1H, C17-*H*), 4.39 (d, *J* = 11.6 Hz, 1H, one of CH₂Ph), 4.63 (d, *J* = 11.6 Hz, 1H, one of CH₂Ph), 5.30 (m, 1H, C8-*H*), 5.43 (m, 1H, C14-*H*), 7.28–7.42 (m, 11H, aromatic-*H*), 7.63–7.65 (m, 4H,

aromatic-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 13.3 (CH₃), 19.0 (CH₂), 19.3 (C), 23.7 (CH₃), 26.8 (CH₃), 28.0 (CH₂), 29.9 (CH₂), 39.1 (CH), 64.7 (CH₂), 69.4 (CH), 72.4 (CH₂), 80.1 (CH), 119.7 (CH), 127.56 (CH), 127.57 (CH), 127.7 (CH), 128.0 (CH), 128.3 (CH), 129.49 (CH), 129.51 (CH), 133.7 (C), 133.8 (C), 135.57 (CH), 135.62 (CH), 137.7 (C), 141.3 (C), 172.0 (C); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₃₅H₄₄O₄SiNa 579.2907; Found 579.2892; Anal. Calcd for C₃₅H₄₄O₄Si: C, 75.50; H, 7.97. Found: C, 75.30; H, 8.02. (YA10143)

[2*R*,2(1*S*),3*R*]-2-Benzyloxy-4-(*tert*-butyldiphenylsilyl)oxy-3-methyl-2-(1-methylcyclohex-2-en-1-yl)-butanoic acid (82a).

To a cooled solution (-78 °C) of ester **81** (245 mg, 0.440 mmol) in THF (6 mL) was added a solution of LDA [prepared from diisopropylamine (0.10 mL, 0.70 mmol) and BuLi in *n*-hexane (1.56 M, 0.43 mL, 0.67 mmol)] in THF (3 mL), followed by addition of chlorotrimethylsilane (85 µL, 0.67 mmol). After stirring at -78 °C for 5 min, the mixture was allowed to warm to room temperature and stirred for 18 h. The reaction was quenched with saturated aqueous NH₄Cl (10 mL), and the resulting mixture was extracted with AcOEt (3×40 mL). The

combined organic extracts were washed with brine (10 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (297 mg), which was flash chromatographed (silica gel 70 g, 5:1 *n*-hexane/ AcOEt with 0.2% TFA) to provide a mixture of rearranged products. Separation by column chromatography (silica gel 30 g, 9:1 *n*-hexane/AcOEt) yielded carboxylic acid **82a** (117 mg, 48%) as a colorless form, along with a mixture of other products (6.0 mg) as a colorless oil: R_f 0.47 (3:1 *n*-hexane/AcOEt); $[\alpha]_D^{29}$ +14.2 (*c* 1.21, CHCl₃); IR (neat) 3088, 2932, 2859, 1703, 1427, 1113 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.05 (s, 9H, ^{*l*}*Bu*), 1.13 (s, 3H, C18-*H*₃), 1.22 (d, *J* = 6.8 Hz, 3H, C21-*H*₃), 1.54 (m, 1H, one of C12-*H*₂), 1.57–1.62 (m, 2H, C11-*H*₂), 1.72–1.81 (m, 2H, C9-*H*₂), 1.89 (m, 1H, one of C12-*H*₂), 2.62 (m, 1H, C20-*H*₂), 3.86–3.87 (m, 2H, C22-*H*₂), 4.71 (s, 2H, *CH*₂Ph), 5.54 (m, 1H, C8-*H*), 5.78 (d, *J* = 10.5 Hz, 1H, C14-*H*), 7.28–7.41 (m, 11H, aromatic-*H*), 7.65–7.67 (m, 4H, aromatic-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 13.3 (CH₃), 19.2 (C), 19.3 (CH₂), 24.3 (CH₂), 25.1 (CH₃), 26.9 (CH₃), 31.3 (CH₂), 40.3 (CH), 42.9 (C), 66.3 (CH₂), 67.7 (CH₂), 88.8 (C), 126.4 (CH), 127.2 (CH), 127.5 (CH), 127.6 (CH), 127.7 (CH), 128.4 (CH), 129.64 (CH), 129.647 (C), 129.653 (CH), 133.2 (CH), 133.4 (C), 135.62 (CH), 135.63 (CH), 138.5 (C), 174.2 (C); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₃₅H₄₄O₄SiNa 579.2907; Found 579.2893. (YA111076)

Methyl (3*R*)-2-Benzyloxy-4-(*tert*-butyldiphenylsilyl)oxy-3-methyl-2-[3-methylcyclohex-2en-1-yl]-butanoate. (methyl ester of 86, dr = 2.7:1, stereochemistry was not determined)

This compound was partially isolated from a mixture of byproducts for the rearrangement. R_f 0.59 (5:1 *n*-hexane/AcOEt); $[\alpha]_D^{21}$ +20.2 (*c* 0.27, CHCl₃); IR (neat) 3069, 3049, 2931, 2886, 2857, 1960, 1890, 1819, 1738, 1728, 1454, 1427, 1391, 1377, 1221, 1204, 1111, 1072, 823 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 1.05 (s, 9H, ^{*t*}Bu), 1.11 (d, *J* = 6.8 Hz, 2.2H, C21-*H*₃ of major isomer), 1.20 (d, *J* = 6.9 Hz, 0.8H, C21-*H*₃ of minor isomer), 1.41–1.55 (m, 2H, C*H*₂ of cyclohexene), 1.61 (s, 2.2H, , C18-*H*₃ of major isomer), 1.63 (m, 1H, C*H*₂ of

cyclohexene), 1.65 (s, 0.8H, C18- H_3 of minor isomer), 1.73–1.87 (m, 3H, C H_2 of cyclohexene), 2.56 (ddq, J = 3.9, 8.9, 6.8 Hz, 0.3H, C20-H of minor isomer), 2.61 (ddq, J = 4.2, 9.0, 6.9 Hz, 0.7H, C20-H of major isomer), 2.72 (m, 0.7H, C8-H of major isomer), 2.81 (m, 0.3H, C8-H of minor isomer), 3.49 (dd, J = 8.9, 10.0 Hz, 0.3H, one of C22- H_2 of minor isomer), 3.57 (s, 2.2H, OMe of major isomer), 3.60 (s, 0.8H, OMe of minor isomer), 3.66 (dd, J = 9.0, 10.0 Hz, 0.7H, one of C22- H_2 of major isomer), 3.83 (dd, J = 4.2, 10.0 Hz, 0.7H, one of C22- H_2 of major isomer), 3.98 (dd, J = 3.9, 10.0 Hz, 0.7H, one of C22- H_2 of major isomer), 4.49 (d, J = 11.0 Hz, 0.3H, one of C H_2 Ph of minor isomer), 4.61 (d, J = 11.0 Hz, 0.3H, one of C H_2 Ph of minor isomer), 4.62 (d, J = 11.0 Hz, 0.7H, one of C H_2 Ph of major isomer), 5.52 (m, 0.7H, C14-H of

major isomer), 5.53 (m, 0.3H, C14-*H* of minor isomer), 7.08–7.44 (m, 11H, aromatic-*H*), 7.63–7.69 (m, 4H, aromatic-*H*); ¹³C NMR (150.9 MHz, CDCl₃) δ 12.5 (CH₃), 13.6 (CH₃), 19.2 (C), 19.3 (C), 22.8 (CH₂), 22.9 (CH₂), 24.1 (CH₃), 24.2 (CH₃), 24.5 (CH₂), 24.7 (CH₂), 26.8 (CH₃), 26.9 (CH₃), 30.0 (CH₂), 30.1 (CH₂), 39.3 (CH), 40.0 (CH), 41.0 (CH), 41.5 (CH), 51.28 (CH₃), 51.31 (CH₃), 64.9 (CH₂), 66.0 (CH₂), 66.7 (CH₂), 66.9 (CH₂), 86.2 (C), 86.3 (C), 121.0 (CH), 121.0 (CH), 126.98 (CH), 127.02 (CH), 127.07 (CH), 127.59 (CH), 127.60 (CH), 127.63 (CH), 128.09 (CH), 128.14 (CH), 129.5 (CH), 129.6 (CH), 133.7 (C), 133.8 (C), 133.9 (C), 135.57 (C), 135.60 (C), 135.61 (CH), 135.64 (CH), 135.7 (C), 139.3 (C), 139.4 (C), 172.7 (C), 173.0 (C); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₃₆H₄₆O₄SiNa 593.3063; Found 593.3071.

[1*S*,5*S*,6*S*,9*S*,9(1*R*)]-9-Benzyloxy-9-[2-(*tert*-butyldiphenylsilyl)oxy-1-methyl]ethyl-5-iodo-1-methyl-7-oxabicyclo[4.3.0]nonan-8-one (83a).

Iodine (14.3 mg, 0.056 mmol) was added to an ice-cooled solution (0 °C) of carboxylic acid **82a** (26.1 mg, 0.047 mmol) in MeCN/saturated aqueous NaHCO₃ (1:1, 1 mL). After stirring at 0 °C for 1 h, the reaction was quenched with 1 M aqueous Na₂S₂O₃ (4 mL), and the mixture was extracted with AcOEt (2×30 mL). The combined organic extracts were washed with brine (4 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (41.1 mg), which was purified by flash column chromatography (silica

gel 10 g, 15:1 *n*-hexane/ AcOEt) to give iodolactone **83a** (24.7 mg, 77%) as a colorless oil: R_f 0.52 (5:1 *n*-hexane/AcOEt); $[\alpha]_D^{17}$ +15.2 (*c* 1.24, CHCl₃); IR (neat) 3069, 2932, 2857, 1778, 1472, 1458, 1427, 1113, 613 cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ 1.03 (s, 3H, C18-*H*₃), 1.14 (d, *J* = 7.0 Hz, 3H, C21-*H*₃), 1.21 (s, 9H, ^{*t*}*Bu*), 1.13–1.63 (m, 6H, C9-*H*₂, C11-*H*₂, and C12-*H*₂), 2.31 (ddq, *J* = 5.1, 6.7, 7.0 Hz, 1H, C20-*H*), 3.79 (dd, *J* = 6.7, 10.3 Hz, 1H, one of C22-*H*₂), 4.03 (dd, *J* = 5.1, 10.3 Hz, 1H, one of C22-*H*₂), 4.15 (d, *J* = 5.1 Hz, 1H, C14-*H*), 4.24 (dd, *J* = 5.1, 10.0 Hz, 1H, C8-*H*), 4.57 (d, *J* = 11.2 Hz, 1H, one of C*H*₂Ph), 7.08 (m, 1H, aromatic-*H*), 7.14–7.20 (m, 4H, aromatic-*H*), 7.23–7.26 (m, 6H, aromatic-*H*), 7.79–7.82 (m, 4H, aromatic-*H*); ¹³C NMR (125.7 MHz, C₆D₆) δ 13.0 (CH₃), 19.1 (C), 19.8 (CH₂), 21.9 (CH₂), 25.9 (CH₃), 26.7 (CH₃), 30.5 (CH₂), 32.4 (CH₂), 38.1 (CH), 47.6 (C), 65.3 (CH₂), 67.0 (CH₂), 84.2 (CH), 85.6 (C), 127.4 (CH),127.6 (CH), 127.8 (CH), 127.9 (CH), 128.2 (CH), 129.78 (CH), 129.83 (CH), 133.3 (C), 133.4 (C), 135.7 (CH), 135.8 (CH), 138.3 (C), 173.1 (C); HRMS (ESI) *m*/*z*: [M + Na]⁺ Calcd for C₃₅H₄₃IO₄SiNa 705.1873; Found 705.1858. (YA11173)

Methyl [2*S*,2(1*S*),3*R*]-2-Benzyloxy-4-(*tert*-butyldiphenylsilyl)oxy-3-methyl-2-[1-methylcyclo-hex-2-en-1-yl]butanoate (88).

Potassium carbonate (87.1 mg, 0.63 mmol) was added to an ice-cooled mixture (0 °C) of carboxylic acid **82a** (117 mg, 0.21 mmol) and iodomethane (40 μ L, 0.64 mmol) in DMF (2 mL). After stirring for 1 h, H₂O (40 mL) was added to the yellow mixture, and the resulting mixture was extracted with *n*-hexane/AcOEt (3:1, 2×50 mL). The combined organic extracts were washed with brine (40 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (143 mg), which was purified by column chromatography

(silica gel 15 g, 9:1 *n*-hexane/AcOEt) to give methyl ester **88** (103 mg, 85%) as a colorless oil: R_f 0.64 (5:1 *n*-hexane/AcOEt); $[\alpha]_D^{27}$ –12.1 (*c* 1.05, C₆H₆); IR (neat) 3071, 2932, 2856, 1738, 1429, 1219, 1113, 1028 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.05 (s, 9H, ^{*i*}Bu), 1.14 (s, 3H, C18-H₃), 1.22 (d, *J* = 7.0 Hz, 3H, C21-H₃), 1.63–1.72 (m, 3H, one of C12-H₂ and C11-H₂), 1.85 (dt, *J* = 5.1, 12.7 Hz, 1H, one of C12-H₂), 1.92–1.98 (m, 2H, C9-H₂), 2.63 (ddq, *J* = 3.1, 9.6, 7.0 Hz, 1H, C20-H₂), 3.49 (s, 3H, OMe), 3.59 (dd, *J* = 3.1, 9.6 Hz, 1H, one of C22-H₂), 3.69 (t, *J* = 9.6 Hz, 1H, one of C22-H₂), 4.68 (s, 2H, CH₂Ph), 5.55 (ddd, *J* = 2.9, 4.4, 10.3 Hz, 1H, C8-H), 5.83 (d, *J* = 10.3 Hz, 1H, C14-H), 7.22 (m, 1H, aromatic-H), 7.28–7.29 (m, 4H, aromatic-H), 7.35–7.44 (m, 6H, aromatic-H), 7.64–7.66 (m, 4H,

aromatic-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 13.0 (CH₃), 19.2 (C), 19.3 (CH₂), 24.6 (CH₂), 25.5 (CH₃), 26.9 (CH₃), 31.4 (CH₂), 42.0 (CH), 43.1 (C), 51.0 (CH₃), 67.5 (CH₂), 67.9 (CH₂), 89.0 (C), 125.3 (CH), 126.8 (CH), 127.58 (CH), 127.62 (CH), 128.0 (CH), 129.5 (CH), 129.6 (CH), 133.6 (C), 133.8 (C), 134.7 (CH), 135.58 (CH), 135.60 (CH), 139.9 (C), 173.5 (C); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₃₆H₄₆O₄SiNa 593.3063; Found 593.3050. (YA11085)

Methyl [2*S*,3*R*]-2-Benzyloxy-4-(*tert*-butyldiphenylsilyl)oxy-3-methyl-2-(1-methylcyclohexyl)butanoate (87a).

Platinum oxide (3.0 mg, 0.013 mmol) was added to a solution of ester **88** (27.7 mg, 0.049 mmol) in EtOH (1.5 mL), and the mixture was vigorously stirred under 1 atm of hydrogen for 29 h. The catalyst was filtered through a Celite pad, and the filtrate was evaporated in vacuo. Purification of the crude product (42.2 mg) by preparative thin layer chromatography (200×200×0.25 mm preparative silica gel plate and elution with 20:1 *n*-hexane/AcOEt twice) gave hydrogenated compound **87a** (21.2 mg, 77%) as a colorless oil: R_f 0.59 (5:1 *n*-hexane/AcOEt); $[\alpha]_D^{26}$ –10.3

(*c* 1.02, CHCl₃); IR (neat) 2930, 2859, 1736, 1427, 1240, 1217, 1113, 1028 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.05 (s, 9H, ^{*t*}*Bu*), 1.14 (s, 3H, *CMe*), 1.25–1.31 (m, 2H, *CH*₂ of cyclohexane), 1.28 (d, *J* = 6.7 Hz, 3H, CH*Me*), 1.40–1.61 (m, 6H, *CH*₂ of cyclohexane), 1.68 (m, 1H, *CH*₂ of cyclohexane), 1.78 (dt, *J* = 4.3, 13.1 Hz, 1H, *CH*₂ of cyclohexane), 2.61 (m, 1H, *CH*Me), 3.47 (s, 3H, *OMe*), 3.56 (dd, *J* = 2.1, 9.4 Hz, 1H, one of CHC*H*₂OSi), 3.70 (t, *J* = 9.4 Hz, 1H, one of CHC*H*₂OSi), 4.64 (s, 2H, *CH*₂Ph), 7.22 (m, 1H, aromatic-*H*), 7.28–7.29 (m, 4H, aromatic-*H*), 7.37–7.42 (m, 6H, aromatic-*H*), 7.64–7.66 (m, 4H, aromatic-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 14.0 (CH₃), 18.8 (CH₃), 19.3 (C), 22.1 (CH₂), 22.4 (CH₂), 25.8 (CH₂), 26.8 (CH₃), 32.6 (CH₂), 33.8 (CH₂), 41.8 (CH), 42.6 (C), 50.8 (CH₃), 67.9 (CH₂), 68.3 (CH₂), 89.7 (CH₂), 126.8 (CH), 127.58 (CH), 127.64 (CH), 128.0 (CH), 129.5 (CH), 129.6 (CH), 133.6 (C), 133.8 (C), 135.59 (CH), 135.61 (CH), 140.0 (C), 173.9 (C); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₃₆H₄₈O₄SiNa 595.3220; Found 595.3231.

Methyl (2*R**,3*R**)-2-Benzyloxy-4-(*tert*-butyldiphenylsilyl)oxy-3-methyl-2-(1-methylcyclohexyl) butanoate (87b).

Trimethylsilyldiazomethane in *n*-hexane (1.7 M, 35 μ L, 0.06 mmol) was added to a 1.6:1 mixture of minor isomers **82b** and **82c** (15.1 mg) in benzene/MeOH (1:1, 1.5 mL) at 0 °C. After stirring for 5 min, the mixture was concentrated in vacuo, and the residual pale yellow oil (16.0 mg) was used without further purification.

Platinum oxide (3.0 mg, 0.013 mmol) was added to a solution of the crude ester (16.0 mg) in EtOH (1.5 mL), and the mixture was vigorously stirred under 1 atm of hydrogen for 26 h. The catalyst was filtered through a Celite pad, and the filtrate was evaporated in vacuo. Purification of the crude product (15.5 mg) by preparative thin layer chromatography ($200 \times 100 \times 0.25$ mm preparative silica gel plate and elution with 20:1 *n*-hexane/AcOEt twice) gave hydrogenated compound **87b** (4.8 mg) as a colorless oil: R_f 0.59 (5:1 *n*-hexane/AcOEt); ¹H NMR (500 MHz, CDCl₃) δ 0.97 (s, 3H, C18-H₃), 1.05 (s, 9H, ^{*t*}Bu), 1.13 (m, 1H, CH₂ of cyclohexane), 1.20 (d, J = 7.0 Hz, 3H, C20-H₃), 1.25–1.43 (m, 6H, CH₂ of cyclohexane), 1.50–1.64 (m, 3H, CH₂ of cyclohexane), 2.55 (m, 1H, C20-H), 3.58 (t, J = 9.9 Hz, 1H, one of C22-H₂), 3.71 (s, 3H, OMe), 4.13 (dd, J = 3.9, 9.9 Hz, 1H, one of C22-H₂), 4.79 (d, J = 11.3 Hz, 1H, one of CH₂Ph), 7.24 (m, 1H, aromatic-H), 7.29–7.30 (m, 4H, aromatic-H), 7.35–7.42 (m, 6H, aromatic-H), 7.65–7.69 (m, 4H, aromatic-H); HRMS (ESI) *m*/*z*: [M + Na]⁺ Calcd for C₃₆H₄₈O₄SiNa 595.3220; Found 595.3195.
第1章第3節に関する実験

(2*S*,3*R*,5*S*)-5-[(*tert*-Butyldiphenylsilyl)oxymethyl]-3-methyl-2-(phenylthiomethyl)tetrahydrofuran (92).

BuLi in *n*-hexane (2.2 M, 12.0 mL, 26.4 mmol) was added to an ice-cooled mixture (0 °C) of thioanisole (3.10 mL, 26.5 mmol) and DABCO (2.97 g, 26.5 mmol) in THF (160 mL). After stirring for 1 h, the mixture was cooled to -78 °C, and a solution of lactone **90** (7.50 g, 20.4 mmol) in THF (40 mL) was added dropwise. After stirring for 20 min, the reaction was

quenched with saturated aqueous NH₄Cl (170 mL), and the resulting mixture was extracted with AcOEt (350 mL and 250 mL). The combined organic extracts were washed with brine (200 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (12.1 g), which was chromatographed (silica gel 250 g, 4:1 *n*-hexane/AcOEt) to give a mixture containing hemiketal 31 (8.70 g) as a colorless oil.

To a cooled solution (-78 °C) of hemiketal 91 (8.70 g) in CH₂Cl₂ (180 mL) was added triethylsilane (4.2 mL, 26.5 mmol), followed by addition of BF3 OEt2 (3.3 mL, 26.5 mmol). After stirring for 1 h, the reaction was quenched with saturated aqueous NaHCO₃ (120 mL), and the resulting mixture was extracted with AcOEt (300 and 200 mL). The combined organic extracts were washed with brine (80 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (9.20 g), which was purified by column chromatography (silica gel 250 g, 19:1 *n*-hexane/AcOEt) to give sulfide 92 (7.28 g, 86% for 2 steps) as a colorless oil: R_f 0.36 (10:1 *n*-hexane/AcOEt); $\left[\alpha\right]_{D}^{26}$ -21.3 (*c* 1.36, CHCl₃); IR (neat) 3071, 3049, 2959, 2930, 2857, 1427, 1113 cm^{-1} ; ¹H NMR (500 MHz, CDCl₃) δ 1.05 (d, J = 4.2 Hz, 3H, C21-H₃), 1.06 (s, 9H, ^{*t*}Bu), 1.64 (dt, J =11.7, 7.0 Hz, 1H, one of C22- H_2), 2.07–2.16 (m, 2H, C20-H and one of C22- H_2), 3.05 (dd, J = 6.4, 13.3 Hz, 1H, one of C16- H_2), 3.08 (dd, J = 5.1, 13.3 Hz, 1H, one of C16- H_2), 3.62–3.66 (m, 3H, C17-H and C24-H₂), 4.13 (dt, J = 12.3, 4.7 Hz, 1H, C23-H), 7.15 (m, 1H, aromatic-H), 7.23-7.25 (m, 2H, aromatic-H), 7.33–7.43 (m, 8H, aromatic-H), 7.66–7.70 (m, 4H, aromatic-H); ¹³C NMR (125.7 MHz, CDCl₃) δ 17.6 (CH₃), 19.3 (C), 26.9 (CH₃), 36.3 (CH₂), 37.9 (CH), 38.1 (CH₂), 66.3 (CH₂), 78.6 (CH), 84.7 (CH), 125.7 (CH), 127.64 (CH), 127.65 (CH), 128.8 (CH), 128.9 (CH), 129.59 (CH), 129.62 (CH), 133.6 (C), 135.64 (CH), 135.65 (CH), 136.9 (C); HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₉H₃₆O₂SSiNa 499.2103; Found 499.2087; Anal. Calcd for C₂₉H₃₆O₂SSi: C, 73.06; H, 7.61. Found: C, 72.89; H, 7.68. (HY1064)

(2R,3R,5S)-5-[(tert-Butyldiphenylsilyl)oxymethyl]-3-methyltetrahydrofuran-2-carbaldehyde (94).

m-CPBA (ca. 70%, 21.1 g, ca. 85.6 mmol) was added to an ice-cooled (0 °C) solution of sulfide **92** (40.0 g, 83.9 mmol) in CH₂Cl₂ (420 mL). After stirring for 1 h, the reaction mixture was quenched with solid Na₂S₂O₃·5H₂O (20.0 g), followed by addition of saturated aqueous NaHCO₃ (500 mL), and the resulting mixture was extracted with AcOEt (3×500 mL). The combined organic extracts

were washed with brine (400 mL) and dried over anhydrous Na_2SO_4 . Filtration and evaporation in vacuo furnished the crude product (43.8 g), which was used without further purification.

TFAA (35.0 mL, 249 mmol) was added to an ice-cooled mixture (0 °C) of crude sulfoxide **93** (43.8 g) and 2,6-lutidine (29 mL, 249 mmol) in CH₂Cl₂ (400 mL). After stirring for 1 h, the reaction was quenched with saturated aqueous NaHCO₃ (400 mL) and the resulting mixture was extracted with AcOEt (3×600 mL). The combined organic extracts were successively washed with saturated aqueous NaHCO₃ (400 mL) and brine (400 mL), and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (69.1 g), which was used without further purification.

NaHCO₃ (70.5 g, 839 mmol) was added to a solution of crude trifluoroacetate (69.1 g) in acetone/ H_2O (1:1, 400 mL). After stirring for 24 h, the mixture was diluted with AcOEt (200 mL), and acetone was removed in vacuo. The residue was passed through a Celite pad, and the filtrate was partitioned

between AcOEt (600 mL) and H₂O (200 mL). The aqueous layer was extracted with AcOEt (3×600 mL), and the combined organic extracts were washed with brine (200 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (65.2 g), which was purified by column chromatography (silica gel 500 g, 5:1 *n*-hexane/AcOEt) to give aldehyde **94** (26.3 g, 82% for 3 steps) as a colorless oil: R_f 0.45 (3:1 *n*-hexane/AcOEt); $[\alpha]_D^{16}$ +39.4 (*c* 1.03, CHCl₃); IR (neat) 3071, 2961, 2930, 2859, 1734, 1472, 1460, 1427, 1112 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.06 (s, 9H, ^{*i*}Bu), 1.14 (d, *J* = 6.8 Hz, 3H, C21-*H*₃), 1.70 (dt, *J* = 12.4, 7.8 Hz, 1H, one of C22-*H*₂), 2.12 (ddd, *J* = 5.0, 7.8, 12.4 Hz, 1H, one of C22-*H*₂), 2.40 (dtq, *J* = 7.3, 7.8, 6.8 Hz, 1H, C20-*H*₃), 3.67 (dd, *J* = 4.2, 10.9 Hz, 1H, one of C24-*H*₂), 3.74 (dd, *J* = 4.7, 10.9 Hz, 1H, one of C24-*H*₂), 3.76 (dd, *J* = 2.5, 7.3 Hz, 1H, C17-*H*), 4.32 (dddd, *J* = 4.2, 4.7, 5.0, 7.8 Hz, 1H, C16-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 17.2 (CH₃), 19.2 (C), 26.8 (CH₃), 35.9 (CH₂), 36.0 (CH), 66.1 (CH₂), 80.5 (CH), 89.6 (CH), 127.70 (CH), 127.72 (CH), 129.7 (CH), 129.8 (CH), 133.26 (C), 133.28 (C), 135.58 (CH), 135.61 (CH), 203.0 (CH); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₂₃H₃₀O₃SiNa 405.1862; Found 405.1871. (YA11022)

(*R*)-3-Methylcyclohex-2-en-1-yl (2*R*,3*R*,5*S*)-5-[(*tert*-Butyldiphenylsilyl)oxymethyl]-3-methyltetrahydrofuran-2-carboxylate (97).

To an ice-cooled solution (0 °C) of aldehyde **94** (3.00 g, 7.84 mmol) in EtOH (10 mL) was added a solution of AgNO₃ (5.30 g, 31.2 mmol) in H₂O (5 mL), followed by addition of a solution of KOH (3.50 g, 62.4 mmol) in H₂O (5 mL). After stirring for 1 h, resulting black suspension was diluted with H₂O (40 mL) and passed through a Celite pad. The yellow filtrate was extracted with AcOEt (4×120 mL), and the

combined organic extracts were washed with brine (40 mL) and dried over anhydrous Na_2SO_4 . Filtration and evaporation in vacuo furnished the crude product (3.19 g), which was chromatographed (silica gel 100 g, 3:1 CH₂Cl₂/MeOH) to give potassium carboxylate **95** (3.19 g) as a pale yellow solid.

To an ice-cooled solution (0 °C) of crude potassium carboxylate 95 (3.19 g) in CH₂Cl₂ (40 mL) was added oxalyl chloride (1.0 mL, 11.8 mmol), followed by addition of DMF (60 µL, 0.77 mmol). After stirring at room temperature for 1 h, the mixture was concentrated in vacuo, and the residue was dissolved in CH₂Cl₂ (40 mL). A mixture of alcohol 80 (1.06 g, 9.45 mmol), Et₃N (5.5 mL, 39.5 mmol) and DMAP (87.0 mg, 0.712 mmol) in CH₂Cl₂ (10 mL) was added to the solution of crude acyl chloride at 0 °C. After stirring for 2 h, the reaction mixture was partitioned between AcOEt (200 mL) and H₂O (40 mL), and the aqueous layer was extracted with AcOEt (200 mL). The combined organic extracts were washed with brine (40 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (4.15 g), which was purified by column chromatography (silica gel 200 g, 20:1 *n*-hexane/AcOEt) to give ester 97 (2.52 g, 65% for 3 steps) as a colorless oil: $R_f 0.52$ $(5:1 n-\text{hexane}/\text{AcOEt}); [\alpha]_{D}^{27} + 77.0 (c 1.49, \text{CHCl}_3); \text{ IR (neat) } 3071, 3049, 2932, 2859, 1748, 1458$ 1427, 1275, 1198, 1113 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.05 (s, 9H, ^{*t*}Bu), 1.16 (d, J = 6.8 Hz, 3H, C21-H₃), 1.56–1.76 (m, 5H, C9-H₂ and one of C22-H₂), 1.67 (s, 3H, C18-H₃), 1.84–1.96 (m, 2H, C12- H_2), 2.07 (m, 1H, one of C22- H_2), 2.35 (m, 1H, C20-H), 3.64 (dd, J = 6.8, 10.3 Hz, 1H, one of C24- H_2), 3.83 (dd, J = 4.9, 10.3 Hz, 1H, one of C22- H_2), 3.96 (d, J = 6.6 Hz, 1H, C17-H), 4.25 (m, 1H, C23-H), 5.24 (m, 1H, C8-H), 5.41 (m, 1H, C14-H), 7.35-7.43 (m, 6H, aromatic-H), 7.66-7.69 (m, 4H, aromatic-H); ¹³C NMR (125.7 MHz, CDCl₃) & 18.2 (CH₃), 19.0 (CH₂), 19.2 (C), 23.7 (CH₃), 26.8 (CH₂), 27.9 (CH₂), 29.9 (CH₃), 36.3 (CH), 38.0 (CH₂), 66.1 (CH₂), 69.3 (CH), 80.1 (CH), 84.1 (CH), 119.8 (CH), 127.617 (CH), 127.625 (CH), 129.57 (CH), 129.58 (CH), 133.61 (C), 133.64 (C), 135.61 (CH), 135.63 (CH), 141.1 (C), 172.4 (C); HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{30}H_{40}O_4SiNa$ 515.2594; Found 515.2593; Anal. Calcd for C₃₀H₄₀O₄Si: C, 73.13; H, 8.18. Found: C, 73.10; H, 8.02. (YA10146)

Methyl [2*R*,2(1*S*),3*R*,5*S*]-5-[(*tert*-Butyldiphenylsilyl)oxymethyl]-3-methyl-2-[1-methylcyclohex-2-en-1-yl]tetrahydrofuran-2-carboxylate (99b).

To a cooled solution (-78 °C) of ester **97** (1.25 g, 2.54 mmol) in THF (40 mL) was added a solution of LDA [prepared from diisopropylamine (0.55 mL, 3.92 mmol) and BuLi in *n*-hexane (1.56 M, 2.50 mL, 3.90 mmol)] in THF (10 mL), followed by addition of chlorotrimethylsilane (0.48 mL, 0.38 mmol). After stirring at -78 °C for 5 min, the mixture was allowed to warm to room temperature and stirred for 10 h. The reaction was quenched with

saturated aqueous NH₄Cl (40 mL), and the resulting mixture was extracted with AcOEt (3×100 mL). The combined organic extracts were washed with brine (40 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (1.75 g), which was chromatographed (silica gel 150 g, 7:1 *n*-hexane/AcOEt) to give an inseparable mixture of carboxylic acids **98a** and **98b** (921 mg, 74%) as a colorless oil.

Potassium carbonate (775 mg, 5.61 mmol) was added to an ice-cooled mixture (0 °C) of carboxylic acids 98a and 98b (921 mg, 1.87 mmol) and iodomethane (0.35 mL, 5.62 mmol) in DMF (19 mL). After stirring for 4 h, the resulting yellow mixture was partitioned between *n*-hexane/AcOEt (3:1, 50 mL) and H₂O (40 mL), and the aqueous layer was extracted with *n*-hexane/AcOEt (3:1, 2×50 mL). The combined organic extracts were washed with brine (40 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (1.41 g), which was flash chromatographed (silica gel 30 g, 9:1 n-hexane/AcOEt) to give a mixture of methyl esters 99a and 99b (938 mg, 99%) as a colorless oil. The diastereometric ratio (99a and 99b) was determined to be 6:94 by HPLC analysis [column, Zorbax[®] Sil, 4.6×250 mm; eluent, 50:1 *n*-hexane/THF; flow rate, 1.5 mL/min; detection, 254 nm; $t_{\rm R} = 10.0$ min for major isomer **99b**, $t_{\rm R} = 11.4$ min for minor isomer **99a**]. Separation of diastereomers 99a and 99b by flash column chromatography (silica gel 100 g, 50:1 *n*-hexane/AcOEt) yielded isomer **99a** (61.0 mg, 5%) and isomer **99b** (877 mg, 94%) as colorless oils: $R_f 0.31 (10:1 n-hexane/AcOEt); [\alpha]_D^{26} +7.1 (c 1.08, CHCl_3); IR (neat) 3071, 2932, 2859, 1732, 1456,$ 1427, 1227, 1113 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.04 (d, J = 7.1 Hz, 3H, C21- H_3), 1.05 (s, 9H, ^tBu), 1.08 (s, 3H, C18-H₃), 1.49–1.62 (m, 4H, C11-H₂, one of C12-H₂ and one of C22-H₂), 1.80–1.89 (m, 3H, C9- H_2 and one of C12- H_2), 2.16 (ddd, J = 5.0, 8.6, 13.5 Hz, 1H, one of C22- H_2), 2.46 (m, 1H, C20-H), 3.66 (dd, J = 4.3, 10.6 Hz, 1H, one of C24-H₂), 3.69 (dd, J = 5.2, 10.6 Hz, 1H, one of C24-H₂), 3.71 (s, 3H, OMe), 4.29 (m, 1H, C23-H), 5.65 (m, 1H, C8-H), 5.95 (m, 1H, C14-H), 7.36-7.43 (m, 6H, aromatic-H), 7.67 (m, 4H, aromatic-H); ¹³C NMR (125.7 MHz, CDCl₃) δ 18.0 (CH₃), 19.49 (C), 19.51 (CH₂), 23.6 (CH₃), 25.1 (CH₂), 27.1 (CH₃), 30.8 (CH₂), 36.9 (CH), 37.3 (CH₂), 42.1 (C), 51.4 (CH₃), 66.0 (CH₂), 78.3 (CH), 94.2 (C), 127.3 (CH), 127.87 (CH), 127.89 (CH), 129.8 (CH), 129.9 (CH), 133.0 (CH), 133.7 (C), 133.9 (C), 135.85 (CH), 135.90 (CH), 173.9 (C); HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{31}H_{42}O_4$ SiNa 529.2750; Found 529.2769.

Data for [2*S***,2(1***S***),3***R***,5***S***]-isomer 99a: R_f 0.28 (10:1** *n***-hexane/AcOEt); [\alpha]_D^{26} -14.2 (***c* **0.16, CHCl₃); IR (neat) 3028, 2932, 2856, 1732, 1460, 1427, 1227, 1113 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) \delta 1.056 (s, 9H, ^{***t***}***Bu***), 1.063 (d, J = 6.7 Hz, 3H, C21-H_3), 1.10 (s, 3H, C18-H_3), 1.51–1.66 (m, 3H, one of C11-H_2, one of C12-H_2 and one of C22-H_2), 1.72 (dt, J = 3.4, 13.1 Hz, 1H, one of C12-H_2), 1.86 (m, 1H, one of C11-H_2), 1.90–1.93 (m, 2H, C9-H_2),**

2.20 (ddd, J = 7.0, 9.1, 12.2 Hz, 1H, one of C22- H_2), 2.48 (m, 1H, C20- H_2), 3.69 (dd, J = 3.8, 10.7 Hz, 1H, one of C24- H_2), 3.71 (s, 3H, OMe), 3.80 (dd, J = 4.9, 10.7 Hz, 1H, one of C24- H_2), 4.29 (m, 1H, C23-H), 5.68 (dt, J = 10.0, 3.3 Hz, 1H, C8-H), 5.76 (dd, J = 1.6, 10.0 Hz, 1H, C14-H), 7.36–7.43 (m, 6H, aromatic-H), 7.66–7.70 (m, 4H, aromatic-H); ¹³C NMR (125.7 MHz, CDCl₃) δ 18.6 (CH₃), 19.1 (CH₂), 19.3 (CH), 23.3 (CH₃), 24.9 (CH₂), 26.8 (CH₃), 31.3 (CH₂), 36.8 (C), 37.4 (CH₂), 42.5 (C), 51.2 (CH₃), 65.2 (CH₂), 78.4 (CH), 94.8 (C), 127.63 (CH), 127.65 (CH), 129.56 (CH), 129.61 (CH), 132.6 (CH), 133.5 (C), 133.6 (C), 135.6 (CH), 135.7 (CH), 173.4 (C); HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₁H₄₂O₄SiNa 529.2750, Found 529.2730. (YA11088)

Methyl (2*R*,3*R*,5*S*)-5-[(*tert*-Butyldiphenylsilyl)oxymethyl]-3-methyltetrahydrofuran-2-carboxylate. (methyl ester of 103)

2.41 (dddq, J = 6.9, 7.4, 7.7, 6.7 Hz, 1H, C20-*H*), 3.67 (dd, J = 6.3, 10.5 Hz, 1H, one of C24-*H*₂), 3.70 (s, 3H, OMe), 3.80 (dd, J = 4.7, 10.5 Hz, 1H, one of C24-*H*₂), 4.01 (d, J = 6.9 Hz, 1H, C17-*H*), 4.26 (dddd, J = 4.7, 5.4, 6.3, 7.4 Hz, 1H, C23-*H*), 7.36–7.44 (m, 6H, aromatic-*H*), 7.67–7.71 (m, 4H, aromatic-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 18.0 (CH₃), 19.2 (C), 26.8 (CH₃), 36.2 (CH₂), 37.9 (CH), 51.9 (CH₃), 66.1 (CH₂), 80.1 (CH), 84.0 (CH), 127.61 (CH), 127.62 (CH), 127.63 (CH), 129.59 (CH), 129.62 (CH), 133.53 (C), 133.54 (C), 135.61 (CH), 135.62 (CH), 172.9 (C); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₂₄H₃₂O₄SiNa 435.1968, Found 435.1947.

Methyl (3*R*,5*S*)-5-[(*tert*-Butyldiphenylsilyl)oxymethyl]-3-methyl-2-[3-methylcyclohex-2-en-yl] tetra-hydrofuran-2-carboxylate. (methyl ester of 105)

This compound was partially isolated from a mixture of byproducts for the rearrangement. The stereochemistry was not determined: $[\alpha]_D^{24}$ –4.7 (*c* 1.01, CHCl₃); IR (neat) 3071, 3049, 2932, 2859, 1744, 1726, 1462, 1429, 1231, 1113 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.04 (s, 9H, ^{*t*}Bu), 1.13 (d, *J* = 7.0 Hz, 1.7H, C21-*H*₃ of major isomer), 1.14 (d, *J* = 6.9 Hz, 1.3H, C21-*H*₃ of minor isomer), 1.17–1.54 (m, 2H, *CH*₂ of cyclohexene), 1.58 (s, 1.3H, C18-*H*₃ of minor isomer), 1.64 (s, 1.7H, C18-*H*₃ of major isomer), 1.75–1.88

(m, 6H, CH_2 of cyclohexene and C22- H_2), 2.54 (m, 1H, C8-H), 2.66 (m, 0.43H, C20-H of minor isomer), 2.72 (m, 0.57H, C20-H of major isomer), 3.50 (s, 1.3H, OMe of minor isomer), 3.52 (s, 1.7H, OMe of major isomer), 3.54–3.57 (m, 1H, one of C24- H_2), 3.82 (dd, J = 4.9, 10.1, 0.43H, one of C24- H_2 of minor isomer), 3.87 (dd, J = 5.1, 10.3 Hz, 0.57H, one of C24- H_2 of major isomer), 4.26–4.33 (m, 1H, C23-H), 5.19 (s, 0.57H, C14-H of major isomer), 5.48 (s, 0.43H, C14-H of minor isomer), 7.35–7.42 (m, 6H, aromatic-H), 7.65–7.69 (m, 4H, aromatic-H); ¹³C NMR (125.7 MHz, CDCl₃) δ 14.50 (CH₃), 14.54 (CH₃), 19.2 (C), 22.26 (CH₂), 22.31 (CH₂), 24.10 (CH₃), 24.14 (CH₃), 24.3 (CH₂), 24.7 (CH₂), 26.83 (CH₃), 26.84 (CH₃), 29.8 (CH₂), 29.9 (CH₂), 36.7 (CH₂), 37.0 (CH₂), 39.0 (CH), 39.1 (CH), 40.4 (CH), 40.8 (CH), 51.4 (CH₃), 51.5 (CH₃), 66.6 (CH₂), 66.7 (CH₂), 78.94 (CH), 79.02 (CH), 91.2 (C), 91.4 (C), 121.0 (CH), 121.1 (CH), 127.58 (CH), 127.59 (CH), 129.5 (CH), 136.1 (C), 175.1 (C), 175.2 (C); HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₁H₄₂O₄SiNa 529.2750, Found 529.2735.

(1*S*,3*S*,5*R*,3a'*S*,4'*S*,7a'*S*)-3-[(*tert*-Butyldiphenylsilyl)oxymethyl]-4'-iodo-5,7a'-dimethyl-2,3'-dioxa-spiro[cyclopentane-1,1'-hexahydroindan]-2'-one (100b).

Iodine (453 mg, 1.78 mmol) was added to a solution of carboxylic acids **98a** and **98b** (797 mg, 1.62 mmol) in MeCN/saturated aqueous NaHCO₃ (1:1, 20 mL) at 0 °C. After stirring for 90 min, the reaction was quenched with 1 M aqueous Na₂S₂O₃ (30 mL), and the resulting mixture was extracted with AcOEt (2×100 mL). The combined organic extracts were washed with brine (30 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (977 mg), which was purified by flash

column chromatography (silica gel 70 g, 20:1 *n*-hexane/AcOEt) to give isomer **100b** (802 mg, 81%) as a white solid, along with isomer **100a** (35.5 mg, 4%) as a colorless oil: R_f 0.54 (5:1 *n*-hexane/AcOEt); mp 139–140 °C (colorless prisms from *n*-hexane); $[\alpha]_D^{25}$ +53.7 (*c* 1.08, CHCl₃); IR (KBr) 3071, 2934,

2857, 1780, 1460, 1233, 1113, 970, 702 cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ 0.79 (m, 1H, one of C12-*H*₂), 0.95–1.04 (m, 2H, one of C11-*H*₂ and one of C12-*H*₂), 1.14 (d, *J* = 6.7 Hz, 3H, C21-*H*₃), 1.16 (s, 9H, ^{*t*}*Bu*), 1.28 (s, 3H, C18-*H*₃), 1.33 (m, 1H, one of C11-*H*₂), 1.48–1.60 (m, 2H, C9-*H*₂), 1.83 (m, 1H, one of C22-*H*₂), 1.93 (m, 1H, one of C22-*H*₂), 2.10 (m, 1H, C20-*H*), 3.51 (dd, *J* = 4.8, 10.7 Hz, 1H, one of C24-*H*₂), 3.58 (dd, *J* = 4.7, 10.7 Hz, 1H, one of C24-*H*₂), 4.19 (m, 1H, C23-*H*), 4.28 (m, 1H, C8-*H*), 4.72 (s, 1H, C14-*H*), 7.25–7.26 (m, 6H, aromatic-*H*), 7.75–7.79 (m, 4H, aromatic-*H*); ¹³C NMR (125.7 MHz, C₆D₆) δ 15.9 (CH₃), 17.4 (CH₂), 17.8 (CH₃), 19.4 (C), 23.5 (CH), 27.0 (CH₃), 29.3 (CH₂), 30.6 (CH₂), 32.8 (CH), 36.7 (CH₂), 43.9 (C), 66.0 (CH₂), 77.7 (CH), 83.7 (CH), 91.4 (C), 128.11 (CH), 128.14 (CH), 128.3 (CH), 130.06 (CH), 130.10 (CH), 133.8 (C), 133.9 (C), 136.0 (CH), 172.0 (C); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₃₀H₃₉IO₄SiNa 641.1560; Found 641.1549; Anal. Calcd for C₃₀H₃₉IO₄Si: C, 58.25; H, 6.35. Found: C, 58.17; H, 6.35.

Data for (1*R***,3***S***,5***R***,3***a***'***S***,4'***S***,7***a***'***S***)-isomer 100a: R_f 0.52 (5:1** *n***-hexane/AcOEt); [\alpha]_D^{27} +2.5 (***c* **1.19, CHCl₃); IR (neat) 3071, 2932, 2859, 1782, 1456, 1236, 1113, 970, 702 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) \delta 1.06 (s, 9H, ^{***t***}***Bu***), 1.10 (d,** *J* **= 7.1 Hz, 3H, C21-***H***₃), 1.36 (s, 3H, C18-***H***₃), 1.55–1.63 (m, 3H, one of C11-***H***₂ and C12-***H***₂), 1.75 (m, 1H, one of C11-***H***₂), 1.88–2.00 (m, 3H, C9-***H***₂ and of one of C22-***H***₂), 2.15 (ddd,** *J* **= 4.7, 8.1, 12.5 Hz, 1H, one of C22-***H***₂), 2.50 (m, 1H, C20-***H***), 3.60 (dd,** *J* **=**

4.0, 10.9 Hz, 1H, one of C24- H_2), 3.70 (dd, J = 4.4, 10.9 Hz, 1H, one of C24- H_2), 4.43 (m, 1H, C23-H), 4.50 (d, J = 3.1 Hz, 1H, C8-H), 4.62 (dt, J = 3.1, 3.3 Hz, 1H, C14-H), 7.37–7.45 (m, 6H, aromatic-H), 7.65–7.69 (m, 4H, aromatic-H); ¹³C NMR (125.7 MHz, CDCl₃) δ 15.7 (CH₃), 18.1 (CH₂), 19.2 (C), 20.1 (CH₃), 24.3 (CH), 26.8 (CH₃), 30.0 (CH₂), 31.2 (CH₂), 35.3 (CH₂), 35.5 (CH), 43.2 (C), 65.7 (CH₂), 78.1 (CH), 83.5 (CH), 93.2 (C), 127.68 (CH), 127.72 (CH), 129.67 (CH), 129.74 (CH), 133.2 (C), 133.4 (C), 135.5 (CH), 135.6 (CH), 175.9 (C); HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₀H₃₉IO₄SiNa 641.1560; Found 651.1568.

Methyl [2*R*,2(1*S*),3*R*,5*S*]-5-(Hydroxymethyl)-3-methyl-2-(1-methylcyclohex-2-en-1-yl)tetrahydro-furan-2-carboxylate (108).

NH₄F (249 mg, 6.72 mmol) was added to a solution of TBDPS ether **99b** (341 mg, 0.673 mmol) in MeOH/EtOH (5:2, 7 mL). After stirring for 24 h, the mixture was partitioned between AcOEt (70 mL) and H₂O (15 mL), and the aqueous layer was extracted with AcOEt (70 mL). The combined organic extracts were washed with brine (20 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (391 mg), which was purified by column

chromatography (silica gel 10 g, 2:1 *n*-hexane/AcOEt) to give alcohol **108** (170 mg, 94%) as a colorless oil: $R_f 0.31$ (3:1 *n*-hexane/AcOEt); $[\alpha]_D^{22}$ +19.5 (*c* 1.17, CHCl₃); IR (neat) 3442, 2937, 1732, 1456, 1227, 1101, 1051 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.06 (d, J = 7.0 Hz, 3H, C21- H_3), 1.20 (s, 3H, C18- H_3), 1.52–1.71 (m, 4H, C11- H_2 and one of C12- H_2 and one of C22- H_2), 1.81 (dt, J = 3.3, 12.5 Hz, 1H, one of C12- H_2), 1.92–1.94 (m, 2H, C9- H_2), 2.04 (ddd, J = 5.6, 9.0, 12.5 Hz, 1H, one of C22- H_2), 2.55 (m, 1H, C20-H), 3.47 (dd, J = 5.1, 11.6 Hz, 1H, one of C24- H_2), 3.73 (s, 3H, OMe), 3.74 (dd, J = 3.4, 11.6 Hz, 1H, one of C24- H_2), 4.32 (m, 1H, C23-H), 5.75 (m, 1H, C8-H), 5.84 (m, 1H, C14-H); ¹³C NMR (125.7 MHz, CDCl₃) δ 18.0 (CH₃), 19.2 (CH₂), 23.2 (CH₃), 24.8 (CH₂), 31.1 (CH₂), 36.5 (CH₂), 37.0 (CH), 42.0 (C), 51.3 (CH₃), 65.0 (CH₂), 78.0 (CH), 94.1 (C), 127.8 (CH), 132.4 (CH), 173.2 (C); HRMS (ESI) *m*/*z*: [M + Na]⁺ Calcd for C₁₅H₂₄O₄Na 291.1572; Found 291.1555. (YA10105)

Methyl [2*R*,2(1*S*),3*R*,5*S*]-5-(Iodomethyl)-3-methyl-2-(1-methylcyclohex-2-en-1-yl)tetrahydro-furan- 2-carboxylate (109).

Iodine (103 mg, 0.405 mmol) was added to a mixture of alcohol 108 (72.4 mg, 0.270 mmol),

triphenylphosphine (106 mg, 0.405 mmol) and imidazole (55.1 mg, 0.809 mmol) in toluene (2.7 mL). After stirring at 50 °C for 1 h, the reaction was quenched with 1 M aqueous Na₂S₂O₃ (5 mL), and the resulting mixture was extracted with AcOEt (2×30 mL). The combined organic extracts were washed with brine (5 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (247 mg), which was purified by column chromatography (silica gel

10 g, 20:1 *n*-hexane/AcOEt) to give iodide **109** (96.3 mg, 94%) as a colorless oil: R_f 0.42 (10:1 *n*-hexane/AcOEt); $[\alpha]_D{}^{20}$ –15.5 (*c* 1.20, CHCl₃); IR (neat) 2936, 2876, 1732, 1454, 1433, 1229, 1061 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.04 (d, J = 6.7 Hz, 3H, C21- H_3), 1.11 (s, 3H, C18- H_3), 1.57–1.62 (m, 2H, one of C11- H_2 and one of C12- H_2), 1.67 (m, 1H, one of C11- H_2), 1.76 (ddd, J = 8.0, 8.8, 12.9 Hz, 1H, one of C22- H_2), 1.82 (dt, J = 3.2, 12.5 Hz, 1H, one of C12- H_2), 1.90–1.94 (m, 2H, C9- H_2), 2.02 (ddd, J = 4.8, 8.7, 12.9 Hz, 1H, one of C22- H_2), 2.52 (ddq, J = 8.7, 8.8, 6.7 Hz, 1H, C20-H), 3.12 (dd, J = 8.4, 9.7 Hz, 1H, one of C24- H_2), 3.29 (dd, J = 4.4, 9.7 Hz, 1H, one of C24- H_2), 3.72 (s, 3H, OMe), 4.35 (dddd, J = 4.4, 4.8, 8.0, 8.4 Hz, 1H, C23-H), 5.59 (m, 1H, C8-H), 5.91 (m, 1H, C14-H); ¹³C NMR (125.7 MHz, CDCl₃) δ 9.8 (CH₂), 17.6 (CH₃), 19.3 (CH₂), 23.4 (CH₃), 24.9 (CH₂), 30.8 (CH₂), 36.2 (CH₂), 40.6 (CH), 41.8 (C), 51.3 (CH₃), 77.5 (CH), 95.2 (C), 127.5 (CH), 132.3 (CH), 173.0 (C); HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₁₅H₂₃IO₃Na 401.0590; Found 401.0587. (YA10110)

Methyl [2R,2(1S),3R]-2-(1-Methylcyclohex-2-en-1-yl)-3-methyl-2-hydroxy-5-hexenoate (110).

Activated zinc powder (80.0 mg, 1.22 mmol) was added to a solution of iodide **109** (92.6 mg, 0.245 mmol) in AcOH (1.2 mL). After stirring at 110 °C for 1 h, the suspension was filtered through a Celite pad and the filtrate was concentrated in vacuo. The residue was azeotropically dried with toluene (3×5 mL) to furnish the crude product (127 mg), which was purified by column chromatography (silica gel 5 g, 20:1 *n*-hexane/AcOEt) to give diene **110** (51.3 mg, 83%) as a colorless oil: R_f 0.42 (10:1 *n*-hexane/AcOEt); $[\alpha]_D^{23}$ +27.4 (*c* 1.06, CHCl₃); IR (neat) 3510, 2938,

1720, 1639, 1437, 1229, 1153 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.77 (d, J = 6.7 Hz, 3H, C21- H_3), 1.09 (s, 3H, C18- H_3), 1.51–1.71 (m, 3H, C11- H_2 and one of C12- H_2), 1.91–2.01 (m, 4H, C9- H_2 , one of C12- H_2 and one of C22- H_2), 2.19 (m, 1H, C20-H), 2.57 (m, 1H, one of C22- H_2), 3.36 (s, 1H, C17-OH), 3.77 (s, 3H, OMe), 4.96–5.03 (m, 2H, C24- H_2), 5.67 (m, 1H, C23-H), 5.70–5.79 (m, 2H, C8-H and C14-H); ¹³C NMR (125.7 MHz, CDCl₃) δ 14.8 (CH₃), 19.4 (CH₂), 24.0 (CH₃), 24.5 (CH₂), 30.7 (CH₂), 35.8 (CH₂), 37.8 (CH), 41.9 (C), 52.4 (CH₃), 83.9 (C), 115.9 (CH₂), 126.5 (CH), 133.0 (CH), 137.5 (CH), 177.4 (C); HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₂₄O₃Na 275.1623; Found 275.1642. (YA10112)

Methyl [2*R*,2(1*S*),3*R*,5*S*]-5-(Chloromethyl)-3-methyl-2-(1-methylcyclohex-2-en-1-yl)tetrahydro-furan-2-carboxylate (116).

A mixture of alcohol **108** (170 mg, 0.632 mmol) and triphenylphosphine (829 mg, 3.16 mmol) in CCl₄ (6 mL) was heated at reflux for 12 h. After cooling, the resulting brown suspension was concentrated in vacuo. Purification of the residue (1.12 g) by column chromatography (silica gel 50 g, 20:1 *n*-hexane/AcOEt) gave chloride **116** (177 mg, 98%) as a colorless oil: R_f 0.47 (5:1 *n*-hexane/AcOEt); $[\alpha]_D^{23}$ –5.2 (*c* 1.03, CHCl₃); IR (neat) 2940, 2876, 1732, 1458, 1229, 1076, 739

cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.05 (d, J = 6.9 Hz, 3H, C21- H_3), 1.11 (s, 3H, C18- H_3), 1.54 (m, 1H, one of C12- H_2), 1.60 (m, 1H, one of C11- H_2), 1.67 (m, 1H, one of C11- H_2), 1.71 (ddd, J = 8.4, 9.1, 13.0 Hz, 1H, one of C22- H_2), 1.83 (dt, J = 13.3, 3.9 Hz, 1H, one of C12- H_2), 1.90–1.93 (m, 2H, C9- H_2), 2.08 (ddd, J = 4.5, 8.6, 13.0 Hz, 1H, one of C22- H_2), 2.50 (ddq, J = 8.4, 8.6, 6.9 Hz, 1H, C20-H), 3.46 (dd, J = 7.0, 11.0 Hz, 1H, one of C24- H_2), 3.57 (dd, J = 4.4, 11.0 Hz, 1H, one of C24- H_2), 3.72 (s, 3H, OMe), 4.42 (dddd, J = 4.4, 4.5, 7.0, 9.1 Hz, 1H, C23-H), 5.69 (m, 1H, C8-H),

5.91 (dd, J = 1.5, 10.6 Hz, 1H, C14-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 17.5 (CH₃), 19.3 (CH₂), 23.2 (CH₃), 24.8 (CH₂), 30.5 (CH₂), 36.3 (CH), 38.2 (CH₂), 41.8 (C), 46.7 (CH₂), 51.3 (CH₃), 77.1 (CH), 94.5 (C), 127.4 (CH), 132.3 (CH), 173.1 (C); HRMS (ESI) *m*/*z*: [M + Na]⁺ Calcd for C₁₅H₂₃ClO₃Na 309.1233; Found 309.1238. (YA10187)

Methyl [2R,2(1S),3R]-2-hydroxy-2-(1-methylcyclohex-2-en-1-yl)-3-methyl-5-hexynoate (117).

Me,20 Me 11 13 17 CO₂Me Sodium (167 mg, 7.26 mmol) was added to a yellow solution of $Fe(NO_3)_3 \cdot 9H_2O$ (10.0 mg, 0.025 mmol) in liquid ammonia (10 mL) at -40 °C. After stirring for 30 min, chloride **116** (139 mg, 0.485 mmol) in THF (5 mL) was added to the brown-colored suspension and the reaction mixture was stirred for 2 h. The reaction was quenched with solid NH₄Cl (1.0 g) and ammonia was evaporated at room temperature. The residue was partitioned between AcOEt (40 mL) and H₂O (15 mL), and the aqueous layer was extracted with AcOEt (40 mL). The combined

organic extracts were washed with brine (15 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (150 mg), which was purified by column chromatography (silica gel 10 g, 20:1 *n*-hexane/AcOEt) to give alkyne **117** (116 mg, 96%) as a colorless oil: R_f 0.44 (5:1 *n*-hexane/AcOEt); $[\alpha]_D^{23}$ +45.8 (*c* 1.03, CHCl₃); IR (neat) 3505, 3306, 2934, 2116, 1719, 1458, 1437, 1381, 1369, 1242, 1098, 629 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.97 (d, *J* = 6.7 Hz, 3H, C21-*H*₃), 1.06 (s, 3H, C18-*H*₃), 1.51 (m, 1H, one of C12-*H*₂), 1.60 (m, 1H, one of C11-*H*₂), 1.69 (m, 1H, one of C11-*H*₂), 1.87–1.95 (m, 3H, C9-*H*₂ and one of C12-*H*₂), 1.97 (t, *J* = 2.6 Hz, 1H, C24-*H*), 2.18 (ddd, *J* = 2.6, 10.5, 16.3 Hz, 1H, one of C22-*H*₂), 2.35 (ddq, *J* = 3.6, 10.5, 6.7 Hz, 1H, C20-*H*), 2.64 (ddd, *J* = 2.6, 3.6, 16.3 Hz, 1H, one of C22-*H*₂), 3.38 (s, 1H, C17-O*H*), 3.77 (s, 3H, O*Me*), 5.66–5.72 (m, 2H, C8-*H* and C14-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 15.4 (CH₃), 19.4 (CH₂), 21.2 (CH₂), 23.9 (CH₃), 24.5 (CH₂), 30.7 (CH₂), 37.3 (CH), 41.9 (C), 52.5 (CH₃), 69.4 (CH), 83.2 (C), 83.5 (C), 126.9 (CH), 132.6 (CH), 176.8 (C); HRMS (DART) *m*/*z*: [M + H]⁺ Calcd for C₁₅H₂₃O₃ 251.1647; Found 251.1658. (YA11020)

第1章第4節に関する実験

本節に限り、化合物の位置番号はラブダン類の位置番号に準じた。

Methyl [2*R*,2(1*S*),3*R*]-3-Methyl-2-(1-methylcyclohex-2-en-1-yl)-2-(trimethylsilyl)oxy-5-hexynoate (124).

TMSOTf (1.50 mL, 8.29 mmol) was added to a mixture of alcohol **117** (1.01 g, 4.03 mmol) and 2,6-lutidine (1.40 mL, 12.0 mmol) in CH_2Cl_2 (40 mL) at 0 °C. After stirring at room temperature for 14 h, the reaction was quenched with saturated aqueous NaHCO₃ (40 mL), and the resulting mixture was extracted with AcOEt (2×200 mL). The combined organic extracts were washed with brine (40 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo

furnished the crude product (2.91 g), which was purified by column chromatography (silica gel 100 g, 40:1 *n*-hexane/AcOEt) to give TMS ether **124** (1.28 g, 98%) as a colorless oil: R_f 0.47 (20:1 *n*-hexane/AcOEt); $[\alpha]_D^{23}$ +36.9 (*c* 1.00, CHCl₃); IR (neat) 3312, 2949, 2118, 1746, 1458, 1435, 1248, 1173 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.17 (s, 9H, Si*Me*₃), 0.92 (d, *J* = 6.6 Hz, 3H, C17-*H*₃), 0.99 (s, 3H, C20-*H*₃), 1.38 (m, 1H, one of C1-*H*₂), 1.60 (m, 1H, one of C2-*H*₂), 1.68 (m, 1H, one of C2-*H*₂), 1.84–1.93 (m, 3H, one of C1-*H*₂ and C3-*H*₂), 1.94 (t, *J* = 2.6 Hz, 1H, C6≡C*H*), 2.06 (ddd, *J* = 2.6, 11.0, 16.2 Hz, 1H, one of C7-*H*₂), 2.36 (ddq, *J* = 3.7, 11.0, 6.6 Hz, 1H, C8-*H*), 2.62 (ddd, *J* = 2.6, 3.7, 16.2 Hz, 1H, one of C7-*H*₂), 3.70 (s, 3H, O*Me*), 5.65 (m, 1H, C4-*H*), 5.73 (m, 1H, C5-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 2.8 (CH₃), 16.2 (CH₃), 19.9 (CH₂), 20.9 (CH₂), 24.5 (CH₂), 24.6 (CH₃), 31.1 (CH₂), 38.4 (CH), 42.4 (C), 51.4 (CH₃), 69.1 (CH), 83.8 (C), 88.0 (C), 126.2 (CH), 133.1 (CH), 175.0 (C); HRMS (DART) *m/z*: [M + H]⁺ Calcd for C₁₈H₃₁O₃Si 323.2043; Found 323.2037. (YA11044)

Methyl [2*R*,2(1*S*),3*R*]-5-Iodo-3-methyl-2-(1-methylcyclohex-2-en-1-yl)-2-(trimethylsilyl)oxy-5-hexenoate (125).

B-Iodo-9-BBN in hexanes (1.0 M, 2.0 mL, 2.0 mmol) was added to a solution of alkyne **124** (435 mg, 1.35 mmol) in *n*-pentane (14 mL) at 0 °C. After stirring at room temperature for 1 h in the dark, AcOH (230 μ L, 4.0 mmol) was added at 0 °C. After 10 min, 1 M aqueous Na₂S₂O₃ (15 mL) and saturated aqueous NaHCO₃ (15 mL) were added, and the resulting mixture was extracted with AcOEt (2×60 mL). The combined organic extracts were washed with brine (30 mL) and dried over

anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (652 mg), which was purified by column chromatography (silica gel 20 g, 40:1 *n*-hexane/Et₂O) to give vinyl iodide **125** (568 mg, 93%) as a colorless oil: R_f 0.76 (20:1 *n*-hexane/Et₂O); $[\alpha]_D^{26}$ +31.7 (*c* 1.17, CHCl₃); IR (neat) 3028, 2972, 2949, 2835, 1746, 1616, 1456, 1435, 1248, 1173 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.19 (s, 9H, Si*Me*₃), 0.67 (d, *J* = 6.7 Hz, 3H, C17-*H*₃), 1.04 (s, 3H, C20-*H*₃), 1.44 (m, 1H, one of C1-*H*₂), 1.62 (m, 1H, one of C2-*H*₂), 1.71 (m, 1H, one of C1-*H*₂), 1.88–2.00 (m, 3H, one of C2-*H*₂ and C3-*H*₂), 2.05 (dd, *J* = 11.3, 13.5 Hz, 1H, one of C7-*H*₂), 2.44 (ddq, *J* = 3.4, 11.3, 6.7 Hz, 1H, C8-*H*), 2.87 (dd, *J* = 3.4, 13.5 Hz, 1H, one of C7-*H*₂), 3.79 (s, 3H, O*Me*), 5.69 (m, 1H, C4-*H*₂), 5.74 (s, 1H, one of C6=C*H*₂); ¹³C NMR (125.7 MHz, CDCl₃) δ 2.8 (CH₃), 15.1 (CH₃), 19.9 (CH₂), 24.5 (CH₂), 24.6 (CH₃), 31.1 (CH₂), 38.0 (CH), 42.6 (C), 46.5 (CH₂), 51.5 (CH₃), 88.4 (C), 111.9 (C), 126.3 (CH), 126.8 (CH₂), 133.1 (CH), 175.2 (C); HRMS (DART) *m/z*: [M + H]⁺ Calcd for C₁₈H₃₂IO₃Si 451.1165; Found 451.1150. (YA11045)

Methyl (1*S*,2*R*,3*R*,6*S*)-1,3-Dimethyl-5-methylene-2-(trimethylsilyl)oxybicyclo[4.4.0]dec-7-ene-2-carboxylate (126).

A yellow mixture of vinyl iodide **125** (92.5 mg, 0.205 mmol), palladium acetate (4.6 mg, 0.021 mmol), 1,3-bis(diphenylphosphino)propane (10.1 mg, 0.025 mmol), AgNO₃ (69.6 mg, 0.410 mmol) and triethylamine (0.11 mL, 0.787 mmol) in DMSO (21 mL) was degassed by bubbling a stream of

argon for 5 min, and the mixture was heated at 60 °C for 12 h. After cooling, the resulting black suspension was filtered through a Celite pad, and the filtrate was partitioned between *n*-hexane/AcOEt (5:1, 150 mL) and H₂O (40 mL). The aqueous layer was extracted with *n*-hexane/AcOEt (5:1, 2×100 mL), and the combined organic extracts were washed with brine (50 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude

product (72.3 mg), which was purified by flash column chromatography (silica gel 40 g, 40:1 *n*-hexane/Et₂O) to give diene **126** (58.3 mg, 88%) as a colorless oil: R_f 0.64 (20:1 *n*-hexane/Et₂O); $[\alpha]_D^{27}$ –126.2 (*c* 1.06, CHCl₃); IR (neat) 3022, 2953, 2843, 1735, 1437 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.09 (s, 9H, Si*Me*₃), 0.86 (s, 3H, C20-*H*₃), 0.95 (d, *J* = 6.7 Hz, 3H, C17-*H*₃), 1.31 (m, 1H, one of C1-*H*₂), 1.60 (dt, *J* = 6.0, 12.9 Hz, 1H, C1-*H*₂), 1.91 (m, 1H, one of C2-*H*₂), 2.92 (ddq, *J* = 8.3, 15.0, 6.7 Hz, 1H, one of C7-*H*₂), 2.03 (dt, *J* = 18.3, 6.0 Hz, 1H, one of C2-*H*₂), 2.32 (ddq, *J* = 8.3, 15.0, 6.7 Hz, 1H, C8-*H*), 2.54 (m, 1H, one of C7-*H*₂), 2.57 (m, 1H, C5-*H*), 3.71 (s, 3H, O*Me*), 4.63 (dd, *J* = 1.9, 4.0 Hz, 1H, one of C6=C*H*₂), 4.76 (m, 1H, one of C6=C*H*₂), 5.52 (dddd, *J* = 1.5, 2.6, 4.6, 10.0 Hz, 1H, C3-*H*), 5.77 (m, 1H, C4-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 1.9 (CH₃), 16.9 (CH₃), 21.3 (CH₂), 23.1 (CH₂), 24.5 (CH₃), 33.8 (CH₂), 38.5 (CH), 42.2 (C), 46.5 (CH), 51.0 (CH₃), 85.9 (C), 109.5 (CH₂), 127.11 (CH), 127.14 (CH), 147.6 (C), 174.0 (C); HRMS (EI) *m/z*: [M]⁺ Calcd for C₁₈H₃₀O₃Si 322.1964; Found 322.1966. (YA11167)

Methyl (1*R*,4*R*,5*R*,6*S*)-4,6-Dimethyl-2-oxo-5-(trimethylsilyl)oxybicyclo[4.4.0]decane-5-carboxylate (129).

Lindlar catalyst (51.3 mg, 100 wt %) was added to a solution of diene **126** (51.3 mg, 0.159 mmol) in MeOH (3 mL), and the mixture was vigorously stirred for 6 h under 1 atm of hydrogen. The catalyst was filtered through a Celite pad, and the filtrate was evaporated in vacuo. The crude product (49.2 mg) was used without further purification.

To a solution of crude alkene **127** (49.2 mg) and phenylboronic acid (58.2 mg, 0.477 mmol) in CH_2Cl_2 (3 mL) was added a 0.16 M solution of OsO_4 in THF (0.15 mL, 0.024 mmol), followed by addition of NMO (55.9 mg, 0.477 mmol). After stirring for 72 h, the reaction was quenched with 1 M aqueous $Na_2S_2O_3$ (5 mL), and the resulting mixture was extracted with CH_2Cl_2 (3×30 mL). The combined organic extracts were washed with brine (5 mL) and dried over anhydrous Na_2SO_4 . Filtration and evaporation in vacuo furnished the crude product (190 mg), which was used without further purification.

NaIO₄ (170 mg, 0.795 mmol) was added to a solution of the crude phenylboronate 128 (190 mg) in THF/pH 7 phosphate buffer (1:1, 3 mL). After stirring at 50 °C for 3 h, the reaction was quenched with 1 M aqueous Na₂S₂O₃ (15 mL), and the resulting mixture was extracted with AcOEt (2×40 mL). The combined organic extracts were washed with brine (15 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (133 mg), which was purified by flash column chromatography (silica gel 10 g, 10:1 n-hexane/AcOEt) to give ketone 129 (36.9 mg, 71% for 3 steps) as a pale yellow oil: $R_f 0.33$ (5:1 *n*-hexane/AcOEt); $\left[\alpha\right]_D^{27}$ -65.3 (*c* 0.95, CHCl₃); IR (neat) 2951, 1737, 1714, 1462, 1437, 1250 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.11 (s, 9H, SiMe₃), 0.87 (d, J = 6.7 Hz, 3H, C17- H_3), 0.94 (s, 3H, C20- H_3), 1.07 (ddd, J = 3.9, 7.7, 13.9 Hz, 1H, one of C1- H_2), 1.28–1.36 (m, 2H, one of C2- H_2 and one of C3- H_2), 1.41 (m, 1H, one of C4- H_2), 1.53 (m, 1H, one of C3- H_2), 1.67 (m, 1H, one of C2- H_2), 1.75 (ddd, J = 3.9, 8.7, 13.9 Hz, 1H, one of C1- H_2), 1.94 (m, 1H, one of C4- H_2), 2.17 (dd, J = 5.5, 15.7 Hz, 1H, one of C7- H_2), 2.17 (m, 1H, C5-H), 2.26 (dd, J = 11.1, 15.7 Hz, 1H, one of C7- H_2), 2.62 (ddg, J = 5.5, 11.1, 6.7 Hz, 1H, C8-H), 3.68 (s, 3H, OMe); ¹³C NMR (125.7 MHz, CDCl₃) δ 2.6 (CH₃), 17.7 (CH₃), 21.7 (CH₂), 23.1 (CH₂), 24.5 (CH₂), 26.3 (CH₃), 32.2 (CH₂), 35.2 (CH), 43.1 (CH₂), 43.4 (C), 51.5 (CH₃), 55.4 (CH), 86.5 (C), 173.5 (C), 213.3 (C); HRMS (EI) m/z: $[M]^+$ Calcd for C₁₇H₃₀O₄Si 326.1913; Found 326.1909. (YA12108)

Methyl (1*S*,4*R*,5*R*,6*S*)-4,6-Dimethyl-2-oxo-5-(trimethylsilyl)oxybicyclo[4.4.0]decane-5-carboxyl-ate (130).

A 2.0 M solution of NaOMe in MeOH (0.01 mL, 0.02 mmol) was added to a solution of *cis*-decalone **129** (30.1 mg, 92.2 μ mol) in THF (1.9 mL) at 0 °C. After stirring for 30 min, the reaction was quenched with saturated aqueous NH₄Cl (5 mL), and the resulting mixture was extracted with AcOEt (2×30 mL). The combined organic extracts were washed with brine (5 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude

product (34.8 mg), which was purified by column chromatography (silica gel 10 g, 10:1 *n*-hexane/AcOEt) to give *trans*-decalone **130** (25.4 mg, 85%) as a pale yellow solid: R_f 0.42 (5:1 *n*-hexane/AcOEt); mp 88–89 °C (colorless prisms from MeOH); $[\alpha]_D^{27}$ –25.2 (*c* 1.15, CHCl₃); IR (neat) 2951, 1738, 1713, 1462, 1252 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.22 (s, 9H, Si*Me*₃), 0.85 (d, J = 6.5 Hz, 3H, C17-*H*₃), 0.90 (s, 3H, C20-*H*₃), 0.98 (m, 1H, one of C1-*H*₂), 1.08 (tq, J = 4.0, 13.3 Hz, 1H, one of C3-*H*₂), 1.31 (tq, J = 3.9, 13.5 Hz, 1H, one of C1-*H*₂), 1.40 (dq, J = 3.7, 13.5 Hz, 1H, one of C4-*H*₂), 1.53 (m, 1H, one of C2-*H*₂), 1.67 (m, 1H, one of C4-*H*₂), 1.72–1.78 (m, 2H, one of C2-*H*₂) and one of C3-*H*₂), 2.15 (dd, J = 5.3, 14.0 Hz, 1H, one of C7-*H*₂), 2.21 (dd, J = 12.6, 14.0 Hz, 1H, one of C7-*H*₂), 2.72 (ddq, J = 5.3, 12.6, 6.5 Hz, 1H, C8-*H*), 2.76 (dd, J = 3.7, 12.6 Hz, 1H, C5-*H*), 3.74 (s, 3H, O*Me*); ¹³C NMR (125.7 MHz, CDCl₃) δ 2.7 (CH₃), 15.6 (CH₃), 17.7 (CH₃), 20.3 (CH₂), 21.2 (CH₂), 24.8 (CH₂), 32.4 (CH₂), 35.9 (CH), 45.2 (CH₂), 46.6 (C), 50.0 (CH), 51.6 (CH₃), 86.0 (C), 173.0 (C), 211.8 (C); HRMS (EI) *m*/*z*: [M]⁺ Calcd for C₁₇H₃₀O₄Si 326.1913; Found 326.1919. (YA12108)

Methyl (1*R*,2*R*,4*R*,5*R*,6*S*)-4,6-Dimethyl-5-(trimethylsilyl)oxyspiro[bicyclo[4.4.0]dec-9-ene-2,2'-oxirane]-5-carboxylate (133).

m-CPBA (ca. 70%, 7.6 mg, ca. 31.0 μ mol) was added to a solution of 1,4-diene **126** (10.0 mg, 31.0 μ mol) in CH₂Cl₂ (1.0 mL) at 0 °C. After stirring for 3 h, the reaction was quenched with a mixture of 1 M aqueous Na₂S₂O₃ (3 mL) and saturated aqueous NaHCO₃ (3 mL), and the resulting mixture was extracted with AcOEt (2×30 mL). The combined organic extracts were washed with brine (6 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished

the crude product (12.7 mg), which was purified by column chromatography (silica gel 5 g, 20:1 *n*-hexane/AcOEt) to give epoxide **133** (9.1 mg, 87%) as a white amorphous solid: R_f 0.38 (10:1 *n*-hexane/AcOEt); $[\alpha]_D^{27}$ –119.6 (*c* 1.34, CHCl₃); IR (neat) 3021, 2953, 2884, 2843, 1738, 1647, 1458, 1435, 1248 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.11 (s, 9H, Si*Me*₃), 0.89 (s, 3H, C20-*H*₃), 0.95 (d, *J* = 6.6 Hz, 3H, C17-*H*₃), 1.29 (dd, *J* = 9.7, 13.6 Hz, 1H, C7-*H*₂), 1.34 (m, 1H, one of C1-*H*₂), 1.72 (dt, *J* = 5.6, 12.0 Hz, 1H, one of C1-*H*₂), 1.90 (m, 1H, one of C2-*H*₂), 2.06 (dd, *J* = 7.6, 13.6 Hz, 1H, C8-*H*), 2.48 (d, *J* = 5.1 Hz, 1H, one of C6-C*H*₂), 2.80 (d, *J* = 5.1 Hz, 1H, one of C6-C*H*₂), 3.73 (s, 3H, O*Me*), 5.42 (dddd, *J* = 1.3, 2.6, 4.2, 10.1 Hz, 1H, C4-*H*), 5.77 (m, 1H, C3-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 2.2 (CH₃), 17.4 (CH₃), 22.6 (CH₂), 23.0 (CH₃), 25.6 (CH₂), 32.4 (CH), 37.1 (CH₂), 41.9 (C), 43.7 (CH), 51.1 (CH₃), 54.0 (CH₂), 58.6 (C), 86.1 (C), 124.4 (CH), 128.8 (CH), 173.4 (C); HRMS (EI) *m*/*z*: [M]⁺ Calcd for C₁₈H₃₀O₄Si 338.1913; Found 338.1910. (YA11051)

Methyl (1*R*,2*S*,7*R*,8*S*,10*R*)-8-(Hydroxymethyl)-2,10-dimethyl-11-oxatricyclo[6.2.1.0^{2,7}]undec-5-ene-1-carboxylate (134).

A solution of epoxide **133** (14.1 mg, 41.9 μ mol) in DMSO/4 M aqueous NaOH (5:2, 0.7 mL) was heated at 80 °C for 2 h. After cooling, the reaction mixture was partitioned between AcOEt (20 mL) and H₂O (20 mL), and the aqueous layer was extracted with AcOEt (20 mL). The combined organic extracts were washed with brine (20 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (15.1 mg), which was purified by column chromatography (silica

gel 10 g, 2:3 *n*-hexane/AcOEt) to give alcohol **134** (10.0 mg, 90%) as a colorless oil: R_f 0.50 (1:1 *n*-hexane/AcOEt); $[\alpha]_D^{24}$ –54.9 (*c* 0.48, CHCl₃); IR (neat) 3493, 3024, 2955, 2878, 1755, 1732, 1458, 1437, 1339, 1321, 1290, 1248, 1109, 1090, 1057 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.94 (d, *J* = 7.0 Hz, 3H, C17-*H*₃), 1.20 (m, 1H, one of C1-*H*₂), 1.25 (s, 3H, C20-*H*₃), 1.57 (dd, *J* = 4.3, 11.7 Hz, 1H, one of C7-*H*₂), 1.64 (dt, *J* = 5.3, 11.8 Hz, one of C1-*H*₂), 1.78 (br, 1H, OH), 1.84 (dd, *J*

= 8.4, 11.7 Hz, 1H, one of C7- H_2), 1.87 (m, 1H, C5-H), 1.89–1.99 (m, 2H, C2- H_2), 2.73 (ddq, J = 4.3, 8.4, 7.0 Hz, 1H, C8-H), 3.72 (d, J = 12.2 Hz, 1H, one of C6-C H_2), 3.78 (s, 3H, OMe), 3.95 (d, J = 12.2 Hz, 1H, one of C6-C H_2); ¹³C NMR (125.7 MHz, CDCl₃) δ 18.7 (CH₃), 20.58 (CH₃), 20.60 (CH₂), 28.9 (CH₂), 34.8 (CH), 41.9 (CH₂), 46.8 (C), 51.5 (CH₃), 52.0 (CH), 62.4 (CH₂), 87.8 (C), 94.0 (C), 123.9 (CH), 129.2 (CH), 170.6 (C); HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₂₂O₄Na 289.1416; Found 289.1434. (YA12173)

Methyl (1*S*,2*R*,3*R*,6*S*)-2-Hydroxy-1,3-dimethyl-5-methylenebicyclo[4.4.0]dec-7-ene-2-carboxylate (132).

Bu₄NF in THF (1.0 M, 0.15 mL, 0.15 mmol) was added to a solution of TMS ether **126** (22.8 mg, 0.071 mmol) in THF (1 mL) at 0 °C. After stirring for 2 h, the mixture was partitioned between AcOEt (30 mL) and H₂O (5 mL), and the aqueous layer was extracted with AcOEt (30 mL). The combined organic extracts were washed with brine (5 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (23.9 mg), which was purified

by column chromatography (silica gel 5 g, 10:1 *n*-hexane/AcOEt) to give tertiary alcohol **132** (17.7 mg, 99%) as a colorless oil: R_f 0.41 (5:1 *n*-hexane/AcOEt); $[\alpha]_D^{23}$ –164.7 (*c* 0.53, CHCl₃); IR (neat) 3536, 2936, 1721, 1458, 1375, 1252, 1234 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.88 (d, *J* = 6.3 Hz, 3H, C17-*H*₃), 0.95 (s, 3H, C20-*H*₃), 1.36 (dt, *J* = 6.8, 13.6 Hz, 1H, one of C1-*H*₂), 1.79 (dt, *J* = 6.4, 13.6 Hz, 1H, one of C1-*H*₂), 2.02 (m, 1H, one of C2-*H*₂), 2.11 (m, 1H, one of C7-*H*₂), 2.27–2.36 (m, 3H, one of C2-*H*₂, one of C7-*H*₂ and C8-*H*), 2.63 (m, 1H, C5-*H*), 3.15 (s, 1H, C9-O*H*), 3.79 (s, 3H, O*Me*), 4.73 (s, 1H, one of C6=*CH*₂), 4.85 (s, 1H, one of C6=*CH*₂), 5.35 (m, 1H, C4-*H*), 5.83 (ddd, *J* = 3.2, 6.3, 9.8 Hz, 1H, C3-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 15.9 (CH₃), 24.2 (CH₂), 25.0 (CH₃), 28.2 (CH₂), 34.3 (CH), 36.7 (CH₂), 39.8 (C), 48.8 (CH), 52.0 (CH₃), 83.3 (C), 110.1 (CH₂), 128.1 (CH), 128.8 (CH), 148.2 (C), 175.6 (C); HRMS (ESI) *m*/*z*: [M + Na]⁺ Calcd for C₁₅H₂₂O₃Na 273.1467; Found 273.1452. (YA11127)

Methyl (1*S*,2*R*,3*R*,6*S*)-2-(*tert*-Butoxycarbonyl)oxy-1,3-dimethyl-5-methylenebicyclo[4.4.0]dec-7-ene-2-carboxylate (138).

KHMDS in toluene (0.5 M, 1.10 mL, 0.55 mmol) was added to a solution of tertiary alcohol **132** (70.9 mg, 0.283 mmol) in THF (2 mL) at -78 °C. After stirring for 30 min, di*-tert*-butyl dicarbonate (185 mg, 0.85 mmol) in THF (1 mL) was added, and the mixture was stirred at 0 °C for 30 min. The reaction was quenched with saturated aqueous NH₄Cl (15 mL), and the resulting mixture was extracted with AcOEt (2×50 mL). The combined organic extracts were washed

with brine (15 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (291 mg), which was purified by column chromatography (silica gel 30 g, 15:1 *n*-hexane/AcOEt) to give carbonate **138** (95.5 mg, 96%) as a colorless oil: R_f 0.40 (10:1 *n*-hexane/AcOEt); $[\alpha]_D^{28}$ –98.8 (*c* 1.13, CHCl₃); IR (neat) 2978, 1740, 1458, 1369, 1290, 1257, 1163 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.92 (s, 3H, C20-*H*₃), 0.99 (d, *J* = 7.2 Hz, 3H, C17-*H*₃), 1.47 (s, 9H, ^{*i*}Bu), 1.66–1.75 (m, 2H, C1-*H*₂), 1.94–2.03 (m, 2H, C2-*H*₂), 2.08 (dd, *J* = 4.1, 13.8 Hz, 1H, one of C7-*H*₂), 2.69 (d, *J* = 4.0 Hz, 1H, C5-*H*), 3.02 (ddq, *J* = 4.1, 5.2, 7.2 Hz, 1H, C8-*H*), 3.11 (dd, *J* = 5.2, 13.8 Hz, 1H, one of C7-*H*₂), 5.56 (m, 1H, C4-*H*), 5.74 (m, 1H, C3-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 17.1 (CH₃), 20.6

(CH₃), 23.6 (CH₂), 24.4 (CH₂), 27.7 (CH₃), 34.1(CH), 39.2 (CH₂), 41.9 (C), 46.3 (CH), 51.4 (CH₃), 81.6 (C), 88.4 (C), 112.3 (CH₂), 126.8 (CH), 127.0 (CH), 146.3 (C), 152.4 (C), 171.9 (C); HRMS (ESI) m/z: [M + K]⁺ Calcd for C₂₀H₃₀O₅K 389.1730; Found 389.1748. (YA12134)

Methyl (1*R*,2*R*,4*R*,5*R*,6*S*)-5-(*tert*-Butoxycarbonyl)oxy-4,6-dimethylspiro[bicyclo[4.4.0]dec-9-en-2,2'-oxirane]-5-carboxylate (139).

m-CPBA (ca. 70%, 60.0 mg, ca. 0.243 mmol) was added to a solution of 1,4-diene **138** (84.6 mg, 0.241 mmol) in CH₂Cl₂ (12 mL) at -40 °C. After stirring at -20 °C for 40 h, the reaction was quenched with a mixture of 1 M aqueous Na₂S₂O₃ (10 mL) and saturated aqueous NaHCO₃ (10 mL), and the resulting mixture was extracted with AcOEt (2×50 mL). The combined organic extracts were washed with brine (20 mL) and dried over anhydrous Na₂SO₄. Filtration and

evaporation in vacuo furnished the crude product (120 mg), which was purified by column chromatography (silica gel 15 g, $20:1 \rightarrow 10:1 \rightarrow 5:1$ *n*-hexane/AcOEt) to give a mixture of epoxides **139** and **140** (44.4 mg, 50%, **139:140** = 5.4:1) as a colorless oil, along with recovered diene **138** (27.1 mg, 32%, colorless oil) and bis-epoxide (11.1 mg, 12%, white solid).

This sequence was repeated again employing recovered 138 (27.1 mg, 77.3 µmol), *m*-CPBA (ca. 70%, 19.1 mg, ca. 77.5 µmol) and CH₂Cl₂ (4 mL). The crude product (35.6 mg) was purified by column chromatography (silica gel 5 g, $20:1 \rightarrow 10:1 \rightarrow 5:1$ *n*-hexane/AcOEt) to give a mixture of epoxides 139 and 140 (16.5 mg, 58%, 139:140 = 5.4:1) as a colorless oil, along with recovered diene 138 (9.7 mg, 32%, colorless oil) and bis-epoxide (2.5 mg, 9%, white solid). Separation of epoxides 139 and 140 by flash column chromatography (silica gel 120 g, CHCl₃) yielded desired epoxide 139 (51.3 mg, 58%) as a colorless oil and 140 (9.4 mg, 11%) as a white solid: R_f 0.44 (5:1 *n*-hexane/AcOEt), 0.24 (CHCl₃); $[\alpha]_{D}^{25}$ -143.6 (c 1.36, CHCl₃); IR (neat) 2978, 2949, 1748, 1458, 1292, 1258, 1161 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.96 (s, 3H, C20-H₃), 1.16 (d, J = 7.0 Hz, 3H, $C17-H_3$, 1.46 (s, 9H, ^tBu), 1.47 (br, 1H, one of C7-H₂), 1.67 (m, 1H, one of C1-H₂), 1.99-2.00 (m, 2H, one of C1-H₂ and one of C2-H₂), 2.19–2.32 (br, 3H, one of C2-H₂, one of C5-H and C7-H₂), 2.59 (d, J = 5.0 Hz, 1H, one of C6-CH₂), 2.87 (d, J = 5.0 Hz, 1H, one of C6-CH₂), 2.97 (m, 1H, C7-H₂), 3.75 (s, 3H, OMe), 5.45 (m, 1H, C3-H), 5.77 (d, J = 10.0 Hz, 1H, C4-H); ¹³C NMR (125.7 MHz, CDCl₃) δ 18.2 (CH₃), 23.6 (CH₂), 27.7 (CH₃), 33.4 (CH), 36.5 (C), 51.4 (CH₃), 52.7 (C), 81.7 (C), 88.2 (C), 124.4 (CH), 129.2 (CH), 152.4 (C), 170.5 (C), other peaks too broad to detect; HRMS (ESI) m/z: [M + Na^{+}_{1} Calcd for C₂₀H₃₀O₆Na 389.1940; Found 389.1938.

Data for Methyl (1*S*,2*R*,3*R*,6*S*,7*S*,8*R*)-2-(*tert*-Butoxycarbonyl)oxy-7,8epoxy-1,3-dimethyl-5-methylenebicyclo[4.4.0]decane-2-carboxylate (58): R_f 0.44 (5:1 *n*-hexane/AcOEt), 0.34 (CHCl₃); $[\alpha]_D^{25}$ -60.8 (*c* 0.38, CHCl₃); IR (neat) 2982, 2955, 1748, 1456, 1283, 1258, 1140 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.80 (s, 3H, C20-H₃), 1.03 (d, J = 6.7 Hz, 3H, C17-H₃), 1.15 (dt, J = 6.8, 14.2 Hz, 1H, one of C1-H₂), 1.45 (s, 9H, ^{*t*}Bu), 1.89 (m, 2H, one of C1-H₂ and one of

C2-*H*₂), 2.12 (dd, J = 3.9, 13.9 Hz, 1H, one of C7-*H*₂), 2.18–2.25 (m, 2H, one of C2-*H*₂ and one of C7-*H*₂), 2.27 (s, 1H, C5-*H*), 2.45 (m, 1H, C8-*H*), 2.99 (d, J = 4.0 Hz, 1H, C3-*H*), 3.26 (m, 1H, C4-*H*), 3.76 (s, 3H, OMe), 4.88 (s, 2H, C6=CH₂); ¹³C NMR (125.7 MHz, CDCl₃) δ 18.9 (CH₃), 23.1 (CH₂), 26.0 (CH₃), 27.7 (CH₃), 30.8 (CH₂), 36.0 (CH), 37.0 (CH₂), 38.2 (C), 51.5 (CH₃), 52.6 (CH), 54.7 (CH), 56.8 (CH), 81.8 (C), 88.8 (C), 111.8 (CH₂), 145.6 (C), 151.6 (C), 168.9 (C); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₂₀H₃₀O₆Na 389.1940; Found 389.1940.

Data for methyl (1*S*,2*R*,4*R*,5*R*,6*S*,9*R*,10*S*)-5-(*tert*-butoxycarbonyl)oxy-9,10-epoxy-4,6-dimethylspiro[bicycle[4.4.0]decan-2,2'-oxirane]-5-carboxylate (bis-epoxide): R_f 0.18 (5:1 *n*-hexane/AcOEt); mp 140–141 °C (colorless prisms from *n*-hexane); $[\alpha]_D^{25}$ –77.9 (*c* 0.80, CHCl₃); IR (neat) 2982, 2955, 1746, 1458, 1285, 1261, 1144 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.00 (s, 3H, C20-*H*₃), 1.04 (d, *J* = 6.7 Hz, 3H, C17-*H*₃), 1.09 (dq, *J* = 14.5, 1.5 Hz, 1H, C7-*H*₂), 1.14 (m, 1H, one of C7-*H*₂), 1.33 (m, 1H, C5-*H*), 1.46 (s, 9H, ^{*t*}*Bu*), 1.84 (m, 1H, one of C1-*H*₂), 1.89 (m, 1H, one of C2-*H*₂), 2.10 (t, J = 14.5 Hz, 1H, one of C7-*H*₂), 2.23 (m, 1H, one of C2-*H*₂), 2.69 (d, J = 4.5 Hz, 1H, one of C6-*CH*₂), 2.78 (m, 1H, C8-*H*), 2.82 (d, J = 4.5 Hz, 1H, one of C6-*CH*₂), 3.09 (d, J = 4.2 Hz, 1H, C4-*H*), 3.28 (m, 1H, C3-*H*), 3.78 (s, 3H, OMe) ; ¹³C NMR (125.7 MHz, CDCl₃) δ 18.8 (CH₃), 22.7 (CH₂), 26.2 (CH₃), 27.7 (CH₃), 30.7 (CH₂), 33.0 (CH), 35.0 (CH₂), 38.4 (C), 50.3 (CH), 50.6 (CH₂), 51.6 (CH₃), 54.3 (CH), 54.5 (CH), 58.5 (C), 81.9 (C), 88.6 (C), 151.5 (C), 168.6 (C); HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₃₀O₇Na 405.1889; Found 405.1873.

Methyl (1*R*,2*S*,7*R*,8*S*,12*R*)-8-(hydroxymethyl)-2,12-dimethyl-10-oxo-9,11-dioxatricyclo[6.3.2.0^{2,7}] tridec-5-ene-1-carboxylate (141).

A 0.2 M solution of $BF_3 \cdot OEt_2$ in CH_2Cl_2 (0.20 mL, 40.0 µmol) was added to a solution of epoxide **139** (11.9 mg, 32.5 µmol) in CH_2Cl_2 (0.7 mL) at -78 °C. After stirring at -60 °C for 30 min, the reaction was quenched with Et_3N (10 mL), and the resulting mixture was partitioned between AcOEt (40 mL) and saturated aqueous NaHCO₃ (15 mL). The aqueous layer was extracted with AcOEt (40 mL), and the combined organic extracts were washed with brine (15 mL) and

dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (12.1 mg), which was purified by column chromatography (silica gel 5 g, 1:1 *n*-hexane/AcOEt) to give cyclic carbonate **141** (7.5 mg, 74%) as a white solid: R_f 0.45 (1:2 *n*-hexane/AcOEt); mp 124–125 °C (colorless prisms from 3:1 *n*-hexane/CHCl₃); $[\alpha]_D^{24}$ –66.0 (*c* 1.20, CHCl₃); IR (neat) 3462, 2926, 1738, 1458, 1250, 1113, 1090, 1049 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.06 (s, 3H, C20-H₃), 1.14 (d, *J* = 6.7 Hz, 3H, C17-H₃), 1.62 (m, 1H, one of C1-H₂), 1.69 (ddd, *J* = 5.4, 10.2, 13.8 Hz, 1H, one of C1-H₂), 1.80 (dd, *J* = 8.1, 15.8 Hz, 1H, one of C7-H₂), 1.98–2.04 (m, 2H, one of C2-H₂ and OH), 2.15 (m, 1H, C5-H), 2.23 (m, 1H, one of C2-H₂), 2.43 (dd, *J* = 9.8, 15.8 Hz, 1H, one of C7-H₂), 2.70 (ddq, *J* = 8.1, 9.8, 6.7 Hz, 1H, C8-H), 3.61 (dd, *J* = 7.0, 11.1 Hz, 1H, one of C6-CH₂), 3.73 (dd, *J* = 3.6, 11.1 Hz, one of C6-CH₂), 3.81 (s, 3H, OMe), 5.59 (m, 1H, C4-H), 6.02 (m, 1H, C3-H); ¹³C NMR (125.7 MHz, CDCl₃) δ 16.9 (CH₃), 21.5 (CH₂), 24.5 (CH₃), 26.7 (CH₂), 30.5 (CH), 37.5 (CH₂), 39.9 (C), 44.2 (CH), 52.5 (CH₃), 66.4 (CH₂), 84.9 (C), 92.8 (C), 121.3 (CH), 130.8 (CH), 149.5 (C), 168.3 (C); HRMS (EI) *m/z*: [M + Na]⁺ Calcd for C₁₆H₂₂O₆Na 333.1314; Found 333.1328. (YA12145)

Methyl (1*S*,2*R*,3*R*,5*S*,6*R*)-2,5-Dihydroxy-5-(hydroxymethyl)-1,3-dimethylbicyclo[4.4.0]dec-7-ene-2- carboxylate (142).

A 0.9 M solution of NaOMe in MeOH (0.76 mL, 0.69 mmol) was added to a solution of cyclic carbonate **141** (43.0 mg, 139 μ mol) in MeOH (1.4 mL) at 0 °C. After stirring at room temperature for 5 h, the reaction was quenched with saturated aqueous NH₄Cl (10 mL), and the resulting mixture was extracted with AcOEt (2×40 mL). The combined organic extracts were washed with brine (30 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (39.0 mg), which was purified by column

chromatography (silica gel 15 g, 1:2 *n*-hexane/AcOEt) to give triol **142** (36.9 mg, 93%) as a white solid: $R_f 0.42$ (1:2 *n*-hexane/AcOEt); mp 139–140 °C (colorless needles from 3:1 *n*-hexane/CHCl₃); $[\alpha]_D^{27}$ –185.8 (*c* 0.96, CHCl₃); IR (neat) 3397, 3024, 2930, 1719, 1437, 1250, 1026 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.90 (s, 3H, C20-*H*₃), 0.96 (d, *J* = 6.4 Hz, 3H, C17-*H*₃), 1.28 (dd, *J* = 5.0, 12.4 Hz, 1H, one of C1-*H*₂), 1.47 (dd, *J* = 10.5, 15.0 Hz, 1H, one of C7-*H*₂), 1.84 (m, 1H, C5-*H*), 1.93–1.98 (m, 2H, one of C2-*H*₂ and CH₂O*H*), 2.06 (dt, *J* = 12.4, 5.3 Hz, 1H, one of C1-*H*₂), 2.13 (dd, *J* = 8.6, 15.0 Hz, 1H, one of C7-*H*₂), 2.15 (m, 1H, one of C2-*H*₂), 2.25 (ddq, *J* = 8.6, 10.5, 6.4 Hz, 1H, C8-*H*), 3.47 (dd, *J* = 4.4, 10.5 Hz, 1H, one of C6-C*H*₂), 3.60 (d, *J* = 10.5 Hz, 1H, one of C6-C*H*₂), 3.80 (s, 3H, OMe), 3.88 (s, 1H, COH), 4.45 (s, 1H, COH), 5.65 (m, 1H, C3-*H*), 5.91 (m, 1H, C4-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 16.3 (CH₃), 21.9 (CH₂), 23.9 (CH₃), 25.3 (CH₂), 29.6 (CH), 39.8 (C), 40.6 (CH₂), 45.5 (CH), 52.2 (CH₃), 69.3 (CH₂), 73.1 (C), 82.5 (C), 124.3 (CH), 128.8 (CH), 175.1 (C);

HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₁₅H₂₄O₅Na 307.1521; Found 307.1507. (YA12147)

Methyl (1S,2R,5R,6R)-2-Hydroxy-1,3-dimethyl-5-oxobicyclo[4.4.0]dec-7-ene-2-carboxylate (143).

 $\begin{array}{c} 20 \quad \text{CO}_2\text{Me} \\ \text{Me} \quad \text{Me} \quad \text{Me} \\ 1 \quad \text{Me} \quad \text{Me} \\ 4 \quad \text{Me} \quad \text{Me}^{17} \\ 0 \end{array}$

Pb(OAc)₄ (14.8 mg, 33.4 μ mol) was added to a solution of triol 60 (7.9 mg, 27.8 μ mol) in CH₂Cl₂ (0.6 mL) at 0 °C. After stirring for 5 min, the reaction was quenched with saturated aqueous NaHCO₃ (10 mL), and the resulting mixture was extracted with AcOEt (2×30 mL). The combined organic extracts were washed with brine (10 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (11.6 mg), which was purified

by column chromatography (Wako gel 5 g, 3:1 *n*-hexane/AcOEt) to give ketone 61 (6.6 mg, 94%) as a white solid: R_f 0.41 (2:1 *n*-hexane/AcOEt); mp 144–146 °C (colorless needles from 20:1 *n*-hexane/CHCl₃); $[\alpha]_D^{25}$ –268.7 (*c* 0.87, CHCl₃); IR (neat) 3391, 2930, 2855, 1717, 1433, 1265, 1163, 1045 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.00 (d, *J* = 6.5 Hz, 3H, C17-*H*₃), 1.11 (s, 3H, C20-*H*₃), 1.25 (ddd, *J* = 3.1, 5.0, 12.8 Hz, 1H, one of C1-*H*₂), 1.75 (ddd, *J* = 5.4, 11.5, 12.8 Hz, 1H, one of C1-*H*₂), 1.97 (m, 1H, one of C2-*H*₂), 2.14 (m, 1H, one of C2-*H*₂), 2.22 (dd, *J* = 10.8, 17.4 Hz, 1H, one of C7-*H*₂), 2.45 (dd, *J* = 7.3, 17.4 Hz, 1H, one of C7-*H*₂), 2.78 (m, 1H, C5-*H*), 2.83 (ddq, *J* = 7.3, 10.8, 6.5 Hz, 1H, C8-*H*), 3.09 (s, 1H, C9-O*H*), 3.83 (s, 3H, OMe), 5.64 (m, 1H, C4-*H*), 5.94 (m, 1H, C3-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 15.7 (CH₃), 22.1 (CH₂), 24.0 (CH₃), 26.0 (CH₂), 32.2 (CH), 43.6 (C), 43.7 (CH₂), 52.3 (CH₃), 53.9 (CH), 81.4 (C), 122.6 (CH), 128.8 (CH), 174.8 (C), 210.7 (C); HRMS (ESI) *m*/*z*: [M + Na]⁺ Calcd for C₁₄H₂₀O₄Na 275.1259; Found 275.1265. (YA12143)

Methyl (1*R*,2*S*,7*R*,8*R*,10*R*)-8-(*tert*-Butyldimethylsilyl)oxy-2,10-dimethyl-11-oxatricyclo[6.2.1.0^{2,7}] undec-5-ene-1-carboxylate (144).

To a cooled solution (-78 °C) of hydroxyketone **143** (3.4 mg, 13.5 µmol) in CH₂Cl₂ (1 mL) was added Et₃N (10 µL, 72 µmol), followed by addition of a 0.5 M solution of TBSOTf in CH₂Cl₂ (60 µL, 30 µmol). After stirring at 0 °C for 15 min, the reaction was quenched with saturated aqueous NaHCO₃ (10 mL), and the resulting mixture was extracted with AcOEt (2×30 mL). The combined organic extracts were washed with brine (10 mL) and dried over anhydrous Na₂SO₄.

Filtration and evaporation in vacuo furnished the crude product (6.8 mg), which was purified by flash column chromatography (silica gel 3 g, 30:1 *n*-hexane/AcOEt) to give lactol TBS ether **144** (4.6 mg, 94%) as a colorless oil: R_f 0.50 (5:1 *n*-hexane/AcOEt); $[\alpha]_D^{23}$ -67.7 (*c* 1.07, CHCl₃); IR (neat) 3032, 2953, 2930, 2857, 1763, 1732, 1462, 1335, 1298, 1107, 1069, 920, 833 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.17 (s, 3H, Si*Me*), 0.18 (s, 3H, Si*Me*), 0.91 (s, 9H, ^{*I*}*Bu*), 0.95 (d, *J* = 6.9 Hz, 3H, C17-*H*₃), 1.18 (m, 1H, one of C1-*H*₂), 1.21 (s, 3H, C20-*H*₃), 1.28 (dd, *J* = 4.4, 11.7 Hz, 1H, one of C7-*H*₂), 1.59 (m, 1H, one of C1-*H*₂), 1.81–1.88 (m, 2H, one of C2-*H*₂ and C5-*H*), 1.94 (m, 1H, one of C2-*H*₂), 2.08 (dd, *J* = 8.3, 11.7 Hz, 1H, one of C7-*H*₂), 2.61 (ddq, *J* = 4.4, 8.3, 6.9 Hz, 1H, C8-*H*), 3.73 (s, 3H, OMe), 5.73 (d, *J* = 10.3 Hz, 1H, C4-*H*), 5.90 (m, 1H, C3-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ -3.2 (CH₃), -3.0 (CH₃), 18.1 (C), 19.0 (CH₃), 20.6 (CH₂), 21.2 (CH₃), 25.9 (CH₃), 29.6 (CH₂), 34.7 (CH), 46.40 (CH), 46.43 (CH₂), 51.2 (CH₃), 52.9 (C), 88.7 (C), 107.6 (C), 125.7 (CH), 128.0 (CH), 170.6 (C); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₂₀H₃₄O₄SiNa 389.2124; Found 389.2117. (YA12172)

第2章第4節に関する実験

(R)-3-Methylcyclohex-2-en-1-yl 2-Diazo-3-oxobutanoate (212).

Diketene (1.50 mL, 19.6 mmol) was added to a solution of alcohol 80 (2.00 g,
17.8 mmol) and DMAP (215 mg, 1.79 mmol) in Et₂O (100 mL) at −10 °C. After 9
h of stirring at room temperature, the reaction was quenched with 0.15 M aqueous KOH (50 mL), and the resulting mixture was extracted with Et₂O (2 × 100 mL). The combined organic extracts were washed with brine (40 mL) and dried over

anhydrous Na_2SO_4 . Filtration and evaporation in vacuo furnished the crude product (3.97 g), which was used without further purification for the next reaction.

Methanesulfonyl azide (3.24 g, 26.8 mmol) was added to a solution of the crude acetoacetate **211** (3.97 g) and Et₃N (12.0 mL, 86.1 mmol) in acetonitrile (100 mL) at 0 °C. After 2 h of stirring at room temperature, the reaction mixture was partitioned between AcOEt (300 mL) and H₂O (150 mL), and the aqueous layer was extracted with AcOEt (300 mL). The combined organic extracts were washed with brine (150 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (6.31 g), which was purified by column chromatography (silica gel 150 g, 10:1 *n*-hexane/AcOEt) to give α -diazo- β -ketoester **212** (3.50 g, 88% for two steps) as a yellow oil. *R_f* 0.66 (3:1 *n*-hexane/AcOEt); [α]_D²⁵ +146.9 (*c* 1.10, CHCl₃); IR (neat) 2938, 2139, 1713, 1659, 1366, 1301, 1247, 1157, 1060 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.63–1.86 (m, 4H, C9-*H*₂ and C11-*H*₂), 1.73 (br s, 3H, C18-*H*₃), 1.88–2.05 (m, 2H, C12-*H*₂), 2.48 (s, 3H, COC*H*₃), 5.38 (m, 1H, C8-*H*), 5.51 (m, 1H, C14-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 18.8 (CH₂), 23.7 (CH₃), 28.0 (CH₂), 28.3 (CH₃), 29.8 (CH₂), 70.3 (CH), 77.2 (C), 119.3 (CH), 142.1 (C), 161.3 (C), 190.4 (C); HRMS (FAB) *m/z* [M + H]⁺ calcd for C₁₁H₁₅N₂O₃ 223.1083; found 223.1101. (YA8076, YA8078)

(R)-3-Methylcyclohex-2-en-1-yl Diazoacetate (213).

Lithium hydroxide (106 mg, 4.44 mmol) was added to a solution of α -diazo- β -ketoester **212** (329 mg, 1.48 mmol) in THF/H₂O (1:1, 18 mL) at 0 °C. After 30 min of stirring, the reaction was partitioned between CH₂Cl₂ (40 mL) and H₂O (10 mL). The aqueous layer was extracted with CH₂Cl₂ (3×20 mL), and the combined organic extracts were washed with brine (15 mL) and dried over

anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (309 mg), which was purified by column chromatography (silica gel 10 g, 10:1 *n*-hexane/AcOEt with 3% Et₃N) to give diazoacetate **213** (230 mg, 86%) as a yellow oil; R_f 0.66 (3:1 *n*-hexane/AcOEt); $[\alpha]_D^{27}$ +204.3 (*c* 1.21, CHCl₃); IR (neat) 3119, 2938, 2108, 1688, 1435, 1385, 1242, 1186 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.60–2.02 (m, 6H, C9-*H*₂, C11-*H*₂ and C12-*H*₂), 1.71 (br s, 3H, C18-*H*₃), 4.72 (s, 1H, C17-*H*), 5.33 (m, 1H, C8-*H*), 5.49 (m, 1H, C14-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 18.9 (CH₂), 23.6 (CH₃), 28.1 (CH₂), 29.8 (CH₂), 46.2 (CH), 69.3 (CH), 119.9 (CH), 141.2 (C), 166.6 (C); Anal. Calcd for C₉H₁₂N₂O₂: C,59.99; H, 6.71; N, 15.55. Found: C, 59.87; H, 6.69; N, 15.49. (YA8070)

(*R*)-3-Methylcyclohex-2-en-1-yl (*S*)-6-(*tert*-Butyldiphenylsilyl)oxy-2-diazo-5-(triethylsilyl)oxy-3-hydroxyhexanoate (214).

A solution of LHMDS [prepared from 1,1,1,3,3,3-hexamethyldisilazane (1.00 mL, 4.66 mmol) and butyllithium in *n*-hexane (1.65 M, 2.80 mL, 4.62 mmol)] in THF (20 mL) was added to a solution of diazoacetate **213** (839 mg,

4.66 mmol) and aldehyde **190** (1.77 g, 3.88 mmol) in THF (20 mL) at -78 °C. After 30 min of stirring, the reaction was quenched with saturated aqueous NH₄Cl (40 mL), and the resulting mixture was

extracted with AcOEt (2×100 mL). The combined organic extracts were washed with brine (30 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (2.91 g), which was subjected to chromatography (silica gel 100 g, 20:1 *n*-hexane/AcOEt, 5% Et₃N) to give aldol product **214** (2.17 g, 88%, dr = 1:1) as a yellow oil. Diastereomers could be separated by flash column chromatography (silica gel 100 g, 15:1 *n*-hexane/AcOEt with 5% Et₃N): (YA8090)

Data for the less polar isomer: R_f 0.43 (5:1 *n*-hexane:AcOEt); $[\alpha]_D^{27}$ +48.2 (*c* 1.24, CHCl₃); IR (neat) 3466, 2953, 2092, 1687, 1377, 1288, 1113, 1078 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.49 (q, *J* = 7.8 Hz, 6H, SiCH₂CH₃×3), 0.87 (t, *J* = 7.8 Hz, 9H, SiCH₂CH₃×3), 1.05 (s, 9H, '*Bu*), 1.61–2.06 (m, 8H, C9-*H*₂, C11-*H*₂, C12-*H*₂ and C22-*H*₂), 1.70 (br s, 3H, C18-*H*₃), 3.42 (br s, 1H), 3.57 (dd, *J* = 8.1, 9.8 Hz, 1H, one of C24-*H*₂), 3.64 (dd, *J* = 4.7, 9.8 Hz, 1H, one of C24-*H*₂), 4.01 (m, 1H, C23-*H*), 4.96 (m, 1H, C20-*H*), 5.34 (m, 1H, C8-*H*), 5.49 (m, 1H, C14-*H*), 7.34–7.46 (m, 6H, aromatic-*H*), 7.62–7.69 (m, 4H, aromatic-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 4.7 (CH₂), 6.7 (CH₃), 18.9 (CH₂), 19.1 (C), 23.7 (CH₃), 26.8 (CH₃), 28.2 (CH₂), 29.9 (CH₂), 38.2 (CH₂), 63.4 (CH), 67.0 (CH₂), 69.4 (CH), 70.2 (CH), 120.1 (CH), 127.71 (CH), 127.73 (CH), 129.7 (CH), 129.8 (CH), 133.1 (C), 133.3 (C), 135.6 (CH), 141.1 (C), 166.1 (C); HRMS (ESI) *m*/*z*: [M + Na]⁺ Calcd for C₃₅H₅₂N₂O₅Si₂Na 659.3312; Found 659.3305.

Data for more polar isomer: $R_f 0.38$ (5:1 *n*-hexane:AcOEt); $[\alpha]_D^{29}$ +45.7 (*c* 1.06, CHCl₃); IR (neat) 3466, 2953, 2093, 1682, 1377, 1288, 1113, 1069 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.49 (q, *J* = 7.8 Hz, 6H, SiCH₂CH₃×3), 0.86 (t, *J* = 7.8 Hz, 9H, SiCH₂CH₃×3), 1.05 (s, 9H, ^{*t*}Bu), 1.61–2.00 (m, 6H, C9-*H*₂, C11-*H*₂ and C12-*H*₂), 1.70 (br s, 3H, C18-*H*₃), 1.87 (dt, *J* = 14.4, 8.1 Hz, 1H, one of C22-*H*₂), 2.11 (dt, *J* = 14.4, 4.8 Hz, 1H, one of C22-*H*₂), 3.39 (br s, 1H, OH), 3.49 (dd, *J* = 7.5, 10.2 Hz, 1H, one of C24-*H*₂), 3.61 (dd, *J* = 4.3, 10.2 Hz, 1H, one of C24-*H*₂), 3.89 (m, 1H, C23-*H*), 4.88 (dd, *J* = 4.8, 8.1 Hz, 1H, C20-*H*), 5.34 (m, 1H, C8-*H*), 5.48 (m, 1H, C14-*H*), 7.36–7.45 (m, 6H, aromatic-*H*), 7.62–7.68 (m, 4H, aromatic-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 5.6 (CH₂), 7.4 (CH₃), 19.7 (CH₂), 19.8 (C), 24.0 (CH₃), 27.5 (CH₃), 28.9 (CH₂), 30.3 (CH₂), 40.3 (CH₂), 65.1 (CH), 68.6 (CH₂), 69.9 (CH), 71.8 (CH), 121.3 (CH), 128.5 (CH), 130.5 (CH), 130.5 (CH), 134.0 (C), 134.2 (C), 136.4 (CH), 141.0 (C), 166.1 (C); HRMS (ESI) *m*/*z*: [M + Na]⁺ Calcd for C₃₅H₅₂N₂O₅Si₂Na 659.3312; Found 659.3311.

(*R*)-3-Methylcyclohex-2-en-1-yl (*S*)-6-(*tert*-butyldiphenylsilyl)oxy-2-diazo-3-oxo-5-(triethylsilyl)oxyhexanoate (215).

A solution of alcohol **214** (4.02 g, 6.31 mmol) in THF (32 mL) was added to a solution of 2-iodoxybenzoic acid (5.36 g, 19.1 mmol) and pyridine (7.7 mL, 95.2 mmol) in DMSO (32 mL). After 6 h of stirring, the reaction mixture was diluted with H₂O (100 mL) and passed through a Celite pad. The filtrate was extracted with *n*-hexane/AcOEt (3:1, 2×200 mL), and the combined organic extracts were washed with

brine (100 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (5.72 g), which was purified by column chromatography (silica gel 200 g, 20:1 *n*-hexane/AcOEt with 5% Et₃N) to give α -diazo- β -ketoester **215** (3.75 g, 94%) as a pale yellow oil: R_f 0.60 (5:1 *n*-hexane:AcOEt); $[\alpha]_D^9$ +52.6 (*c* 1.00, CHCl₃); IR (neat) 2953, 2131, 1713, 1655, 1427, 1286, 1113, 1071, 1016 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.49 (q, *J* = 7.9 Hz, 6H, SiC*H*₂CH₃×3), 0.85 (t, *J* = 7.9 Hz, 9H, SiCH₂CH₃×3), 1.03 (s, 9H, ^{*'*}Bu), 1.63–1.86 (m, 4H, C9-*H*₂ and C11-*H*₂), 1.70 (br s, 3H, C18-*H*₃), 1.90–2.02 (m, 2H, C12-*H*₂), 3.14 (dd, *J* = 7.3, 15.9 Hz, 1H, one of C22-*H*₂), 3.25 (dd, *J* = 5.0, 15.9 Hz, 1H, one of C22-*H*₂), 3.54 (dd, *J* = 7.0, 10.0 Hz, 1H, one of C24-*H*₂), 3.63 (dd, *J* = 4.9, 10.0 Hz, 1H, one of C24-*H*₂), 4.35 (dddd, *J* = 4.9, 5.0, 7.0, 7.3 Hz, 1H, C23-*H*), 5.38 (m, 1H, C8-*H*), 5.50 (m, 1H, C14-*H*), 7.36–7.45 (m, 6H, aromatic-*H*), 7.65–7.69 (m, 4H, aromatic-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 4.6 (CH₂), 6.6 (CH₃), 18.7 (CH₂), 19.0 (C), 23.6 (CH₃), 26.7 (CH₃), 27.9 (CH₂), 29.8 (CH₂), 45.0 (CH₂), 67.8 (CH₂), 69.3 (CH), 70.0 (CH), 119.4 (CH), 127.6 (CH), 129.51 (CH), 129.54 (CH), 133.3 (C), 135.5 (CH), 141.7 (C), 160.9 (C), 191.0 (C); HRMS (ESI) *m/z*: [M +

Na]⁺ Calcd for C₃₅H₅₀N₂O₅SiNa 657.3156; Found 657.3181. (YA9065)

(*R*)-3-Methylcyclohex-2-en-1-yl (*R*)-6-(*tert*-Butyldiphenylsilyl)oxy-2-diazo-5-hydroxy-3-oxohexanoate (189).

Trifluoroacetic acid (0.23 mL, 3.10 mmol) was added to a solution of TES ether **215** (1.99 g, 3.13 mmol) in CH₂Cl₂/MeOH (1:1, 30 mL) at 0 °C. After 30 min of stirring, the reaction was quenched by saturated aqueous NaHCO₃ (30 mL), and the resulting mixture was extracted with AcOEt (2×100 mL). The combined organic extracts were washed with brine (30 mL) and dried over anhydrous Na₂SO₄. Filtration and

evaporation in vacuo furnished the crude product (2.01 g), which was purified by column chromatography (silica gel 100 g, 3:1 *n*-hexane/AcOEt with 5% Et₃N) to give α-diazo-δ-hydroxyester **189** (1.44 g, 88%) as a pale yellow oil: R_f 0.32 (5:1 *n*-hexane/AcOEt); $[\alpha]_D^{10}$ +69.3 (*c* 0.78, CHCl₃); IR (neat) 3512, 3071, 3049, 2931, 2856, 2135, 1713, 1645, 1427, 1290, 1113, 1018, 908 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.07 (s, 9H, ^{*t*}Bu), 1.64–1.84 (m, 4H, C9- H_2 and C11- H_2), 1.72 (br s, 3H, C18- H_3), 1.90–2.02 (m, 2H, C12- H_2), 2.99 (d, J = 5.3 Hz, 1H, OH), 3.02 (dd, J = 3.8, 16.5 Hz, 1H, one of C22- H_2), 3.17 (dd, J = 8.4, 16.5 Hz, 1H, one of C22- H_2), 3.65 (dd, J = 5.5, 10.2 Hz, 1H, one of C24- H_2), 3.69 (dd, J = 4.9, 10.2 Hz, 1H, one of C24- H_2), 4.23 (ddddd, J = 3.8, 4.9, 5.3, 5.5, 8.4 Hz, 1H, C23-H), 5.37 (m, 1H, C8-H), 5.50 (m, 1H, C14-H), 7.36–7.44 (m, 6H, aromatic-H), 7.65–7.68 (m, 4H, aromatic-H); ¹³C NMR (125.7 MHz, CDCl₃) δ 18.7, (CH₂), 19.1 (C), 23.6 (CH₃), 26.7 (CH₃), 27.9 (CH₂), 29.7 (CH₂), 43.3 (CH₂), 67.1 (CH₂), 68.6 (CH), 70.3 (CH), 119.2 (CH), 127.6 (CH), 129.6 (CH), 133.0 (C), 133.1 (C), 135.4 (CH), 135.5 (CH), 142.0 (C), 160.9 (C), 191.8 (C); HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₉H₃₆N₂O₅SiNa 543.2291; Found 543.2275. (YA9044)

(*R*)-3-Methylcyclohexan-2-en-1-yl (*S*)-5-[(*tert*-Butyldiphenylsilyl)oxylmethyl]-3-oxotetrahydro-furan-2-carboxylate (183).

A solution of diazoalcohol **189** (32.0 mg, 61.5 μ mol) in benzene (1 mL) was added to a refluxing suspension of Rh₂(OAc)₄ (0.5 mg, 1.1 μ mol) in benzene (2 mL), and the mixture was stirred for 5 min. After cooling, the catalyst was filtered through a Celite pad, and the filtrate was evaporated in vacuo. Purification of the crude product (30.1 mg) by column chromatography (silica gel 5 g, 5:1 *n*-hexane/AcOEt) to give a diastereomers mixture of β -ketoester

183 (20.9 mg, 69%, dr = 3.3:1) as a colorless oil; $R_f 0.67$ (3:1 *n*-hexane/AcOEt); ¹H NMR (500 MHz, CDCl₃) δ 1.03 (s, 6.91H, ^{*t*}Bu of major isomer), 1.05 (s, 2.09H, ^{*t*}Bu of minor isomer), 1.60–2.04 (m, 6H, C9-H₂, C11-H₂ and C12-H₂), 1.68 (s, 0.7H, C18-H₃ of minor isomer), 1.72 (s, 2.3H, C18-H₃ of major isomer), 2.61 (dd, J = 6.7, 18.1 Hz, 0.23H, one of C22-H₂ of minor isomer), 2.64–2.70 (m, 1.53H, C22-H₂ of major isomer), 2.69 (dd, J = 8.4, 18.1 Hz, 0.23H, one of C22-H₂ of minor isomer), 3.69 (dd, J = 2.6, 11.3 Hz, 0.77H, one of C24-H₂ of major isomer), 3.92 (d, J = 4.7 Hz, 0.46H, C24-H₂ of minor isomer), 4.01 (dd, J = 2.9, 11.3 Hz, 0.77H, one of C24-H₂ of major isomer), 4.43 (m, 0.23H, C23-H of minor isomer), 4.44 (s, 0.23H, C17-H of minor isomer), 4.64 (s, 0.77H, C17-H of major isomer), 4.75 (m, 0.77H, C23-H of major isomer), 5.28–5.35 (m, 1H, C8-H), 5.44 (m, 0.23H, C14-H of minor isomer), 5.49 (m, 0.77H, C8-H of major isomer), 7.36–7.47 (m, 6H, aromatic-H), 7.61–7.72 (m, 4H, aromatic-H of major isomer). (YA8093)

[2*R*,2(1*S*),5*S*]-3-(*tert*-Butyldimethylsilyl)oxy-5-[(*tert*-butyldiphenylsilyl)oxymethyl]-2-[1-methyl-cyclohex-2-en-1-yl]-2,5-dihydrofuran-2-carboxylic acid (218).

A solution of diazoalcohol **189** (500 mg, 0.960 mmol) in benzene (8 mL) was added to a refluxing suspension of $Rh_2(OAc)_4$ (4.2 mg, 9.5 µmol) in benzene (40 mL), and the mixture was stirred for 5 min. After cooling, the catalyst was filtered through a Celite pad, and the filtrate was evaporated in

vacuo. The crude product (492 mg) was used next reaction without further purification.

A solution of the crude β -ketoester **183** in THF (2 mL) was added to a solution of KHMDS in toluene (0.5 M, 10.0 mL, 5.0 mmol) in THF (20 mL) at -78 °C. After stirring for 30 min, a solution of *tert*-butyldimethylsilyl chloride (721 mg, 4.80 mmol) in THF (2 mL) was added to the reaction

mixture, and the mixture was allowed to warm to room temperature and stirred for 3 h. The reaction was quenched with 10% aqueous HCl (40 mL), and the resulting mixture was extracted with AcOEt (2×100 mL). The combined organic extracts were washed with brine (2×40 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (1.15 g), which was purified by column chromatography (silica gel 50 g, 10:1 *n*-hexane/AcOEt) to give carboxylic acid **218** (362 mg, 60% for 2 steps) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 0.21 (s, 3H, Si *Me*), 0.22 (s, 3H, Si*Me*), 0.96 (s, 9H, *'Bu*), 1.06 (s, 9H, *'Bu*), 1.21 (s, 3H, C18-H₃), 1.59–1.75 (m, 4H, C11-H₂ and C12-H₂), 1.92–1.96 (m, 2H, C9-H₂), 3.56 (dd, *J* = 2.6, 11.4 Hz, 1H, one of C24-H₂), 3.87 (dd, *J* = 3.3, 11.4 Hz, one of C24-H₂), 4.69 (d, *J* = 1.5 Hz, 1H, C22-H), 4.80 (m, 1H, C23-H), 5.70 (dt, *J* = 3.5, 10.3 Hz, 1H, C8-H), 5.75 (m, 1H, C14-H), 7.38–7.47 (m, 6H, aromatic-H), 7.65–7.72 (m, 4H, aromatic-H). (YA9091)

Methyl [2*R*,2(1*S*),5*S*]-3-(*tert*-Butyldimethylsilyl)oxy-5-[(*tert*-butyldiphenylsilyl)oxy-methyl]-2-[1-methylcyclohex-2-en-1-yl]-2,5-dihydrofuran-2-carboxylate (219).

Trimethylsilyldiazomethane in *n*-hexane (2.0 M, 0.07 mL, 0.14 mmol) was added to a solution of carboxylic acid **218** (41.2 mg, 67.9 μ mol) in benzene/MeOH (1:1, 1 mL) at 0 °C. After stirring for 5 min, the mixture was concentrated in vacuo, and the residual pale yellow oil (49.3 mg) was purified by column chromatography (silica gel 15 g, 20:1 *n*-hexane/AcOEt) to give methyl ester **219** (39.2 mg, 93%) as a colorless oil: ¹H NMR (500 MHz,

CDCl₃) δ 0.20 (s, 3H, Si*Me*), 0.23 (s, 3H, Si*Me*), 0.97 (s, 9H, ^{*t*}Bu), 1.03 (s, 9H, ^{*t*}Bu), 1.12 (s, 3H, C18-*H*₃), 1.48 (m, 1H, one of C12-*H*₂), 1.59–1.66 (m, 2H, one of C11-*H*₂ and one of C12-*H*₂), 1.90–1.94 (m, 3H, C9-*H*₂ and one of C11-*H*₂), 3.49 (dd, *J* = 7.5, 9.7 Hz, 1H, one of C24-*H*₂), 3.54 (s, 3H, O*Me*), 3.84 (dd, *J* = 4.6, 9.7 Hz, 1H, one of C24-*H*₂), 4.78 (ddd, *J* = 1.7, 4.6, 7.5 Hz, 1H, C23-*H*), 4.98 (d, *J* = 1.7 Hz, 1H, C22-*H*), 5.65 (dt, *J* = 3.9, 10.3 Hz, 1H, C8-*H*), 5.82 (dd, *J* = 1.3, 10.3 Hz, 1H, C14-*H*), 7.34–7.42 (m, 6H, aromatic-*H*), 7.62–7.66 (m, 4H, aromatic-*H*); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₃₆H₅₂O₅Si₂Na 643.3251; Found 643.3273. (YA9100)

[2R,2(1S),5S]-5-[(*tert*-Butyldiphenylsilyl)oxymethyl]-2-[1-methylcyclohex-2-en-1-yl]-3-oxotetrahydrofuran-2-carboxylic acid (185).

A solution of diazoalcohol **189** (500 mg, 0.960 mmol) in benzene (8 mL) was added to a refluxing suspension of $Rh_2(OAc)_4$ (4.2 mg, 9.5 µmol) in benzene (40 mL), and the mixture was stirred for 5 min. After cooling, the catalyst was filtered through a Celite pad, and the filtrate was evaporated in vacuo. The crude product (488 mg) was used next reaction without further purification.

A solution of the crude β -ketoester **183** in THF (2 mL) was added to a solution of KHMDS in toluene (0.5 M, 10.0 mL, 5.0 mmol) in THF (22 mL) at -78 °C. After stirring for 30 min, a solution of TESCI (0.81 mL, 4.83 mmol) was added to the reaction mixture, and the mixture was allowed to warm to 0 °C and stirred for 3 h. The reaction was quenched with 10% aqueous HCl (40 mL), and the resulting mixture was extracted with AcOEt (2×100 mL). The combined organic extracts were washed with brine (2×40 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (1.21 g), which was purified by column chromatography (silica gel 50 g, 3:1 *n*-hexane/AcOEt) to give carboxylic acid **185** (235 mg, 50% for 2 steps) as a colorless oil: ¹H NMR

(500 MHz, CDCl₃) δ 1.05 (s, 9H, ^{*t*}B*u*), 1.16 (s, 3H, C18-*H*₃), 1.66–1.70 (m, 3H, one of C11-*H*₂ and C12-*H*₂), 1.92–1.96 (m, 2H, C9-*H*₂), 2.11 (m, 1H, one of C11-*H*₂), 2.53 (dd, *J* = 5.2, 18.2 Hz, 1H, one of C22-*H*₂), 2.63 (dd, *J* = 8.6, 18.2 Hz, 1H, one of C22-*H*₂), 3.55 (dd, *J* = 3.9, 11.8 Hz, 1H, one of C24-*H*₂), 3.99 (dd, *J* = 2.6, 11.8 Hz, one of C24-*H*₂), 4.54 (dddd, *J* = 2.6, 3.9, 5.2, 8.6 Hz, 1H, C23), 5.68 (d, *J* = 10.3 Hz, 1H, C14-*H*), 5.82 (dt, *J* = 3.6, 10.3 Hz, 1H, C8-*H*), 7.38–7.47 (m, 6H, aromatic-*H*), 7.62–7.67 (m, 4H, aromatic-*H*). (YA9092)

(1*S*,3*S*,3*a'S*,4*'S*,7*a'S*)-3-[(*tert*-Butyldiphenylsilyl)oxymethyl]-4'-iodo-7*a*'-methyl-2,3'-di-oxaspiro[cyclopentane-1,1'-hexahydroindan]-5,2'-dione (224).

Iodine (15.1 mg, 0.059 mmol) was added to an ice-cooled solution (0 °C) of ketoacid **185** (26.7 mg, 0.054 mmol) in MeCN/saturated aqueous NaHCO₃ (1:1, 2 mL). After stirring at 0 °C for 30 min, the reaction was quenched with 1 M aqueous Na₂S₂O₃ (10 mL), and the mixture was extracted with AcOEt (20 mL). The combined organic extracts were washed with brine (10 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (41.3 mg), which was purified by flash column

chromatography (silica gel 5 g, 10:1 *n*-hexane/ AcOEt) to give iodolactone **224** (21.8 mg, 65%) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 1.05 (s, 9H, ^{*t*}Bu), 1.43 (s, 3H, C18-H₃), 1.57–1.60 (m, 3H, one of C11-H₂ and C12-H₂), 1.79–1.83 (m, 2H, one of C9-H₂ and one of C11-H₂), 2.66 (dd, J = 7.6, 18.7 Hz, 1H, one of C22-H₂), 2.73 (dd, J = 6.4, 18.7 Hz, 1H, one of C22-H₂), 3.84 (dd, J = 6.5, 10.9 Hz, 1H, one of C24-H₂), 3.94 (dd, J = 5.0, 10.9 Hz, 1H, one of C24-H₂), 4.56 (dddd, J = 5.0, 6.4, 6.5, 7.6 Hz, 1H, C23-H), 4.64 (m, 1H, one of C8-H), 5.05 (m, 1H, C14-H)7.37–7.47 (m, 6H, aromatic-H), 7.65–7.69 (m, 4H, aromatic-H); HRMS (ESI) *m*/*z*: [M + Na]⁺ Calcd for C₂₉H₃₅IO₅SiNa 641.1196; Found 641.1208. (YA9087)

{[2*S*,2(1*S*),5*S*]-3-(*tert*-Butyldimethylsilyl)oxy-5-[(*tert*-butyldiphenylsilyl)oxymethyl]-2-[1-methyl-cyclohex-2-en-1-yl]-2,5-dihydrofuran-2-yl}methanol (220).

Diisobutylaluminum hydride in hexane (1.0 M, 0.31 mL, 0.31 mmol) was added to a solution of ester **219** (64.0 mg, 0.103 mmol) in $CH_2Cl_2(1.0 \text{ mL})$ at -60 °C. After stirring for 2 h, the reaction was quenched with methanol (0.5 mL), and 1 M aqueous sodium potassium tartrate (5 mL) was added to the solution. The mixture was stirred vigorously at room temperature for 1 h, and extracted with AcOEt (20 mL). The organic extract were washed with

brine (4 mL), and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (68.2 mg), which was purified by column chromatography (silica gel 10 g, 20:1 *n*-hexane/AcOEt) to give alcohol **220** (50.3 mg, 82%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 0.26 (s, 3H, Si*Me*), 0.28 (s, 3H, Si*Me*), 0.97 (s, 9H, ^{*i*}Bu), 1.05 (s, 9H, ^{*i*}Bu), 1.07 (s, 3H, C18-*H*₃), 1.43–1.66 (m, 3H, C11-*H*₂ and one of C12-*H*₂), 1.84–1.92 (m, 3H, C9-*H*₂ and one of C12-*H*₂), 3.34 (dd, *J* = 4.5, 7.0 Hz, 1H, one of C16-*H*₂), 3.51 (dd, *J* = 2.1, 11.3 Hz, 1H, one of C24-*H*₂), 3.73 (dd, *J* = 2.5, 7.0 Hz, 1H, one of C16-*H*₂), 3.85 (dd, *J* = 2.8, 11.3 Hz, 1H, one of C24-*H*₂), 4.66 (s, 1H, C22-*H*), 4.71 (m, 1H, C23-*H*), 5.63 (dt, *J* = 3.4, 10.3 Hz, 1H, C8-*H*), 5.68 (m, 1H, C14-*H*), 7.35–7.45 (m, 6H, aromatic-*H*), 7.69–7.71 (m, 4H, aromatic-*H*). (YA9110)

[2*R*,2(1*S*),5*S*]-3-(*tert*-Butyldimethylsilyl)oxy-5-[(*tert*-butyldiphenylsilyl)oxymethyl]-2-[1-methylcyclohex-2-en-1-yl]-2,5-dihydrofuran-2-carboaldehyde (221).

Dess–Martin periodinane (21.6 mg, 0.0510 mmol) was added to a solution of alcohol **220** (20.1 mg, 0.0339 mmol) in CH₂Cl₂ (1 mL) at 0 °C. After stirring at room temperature for 3 h, the reaction was quenched with a mixture of saturated aqueous NaHCO₃ (2.5 mL) and 1 M aqueous Na₂S₂O₃ (2.5 mL),

and the resulting mixture was vigorously stirred for 30 min. The mixture was extracted with AcOEt (2×20 mL). The combined organic extracts were washed with brine (5 mL), and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (22.1 mg), which was purified by column chromatography (silica gel 5 g, 20:1 *n*-hexane/AcOEt) to give aldehyde **221** (15.5 mg, 93%) as a colorless oil: ¹H NMR (500 MHz,

CDCl₃) δ 0.19 (s, 3H, Si*Me*), 0.24 (s, 3H, Si*Me*), 0.96 (s, 9H, ^{*i*}Bu), 1.04 (s, 9H, ^{*i*}Bu), 1.12 (s, 3H, C18-*H*₃), 1.57–1.65 (m, 3H, C11-*H*₂ and one of C12-*H*₂), 1.87 (m, 1H, one of C12-*H*₂), 1.90–1.94 (m, 2H, C9-*H*₂), 3.53 (dd, J = 6.5, 10.0 Hz, 1H, one of C24-*H*₂), 3.78 (dd, J = 4.6, 10.0 Hz, 1H, one of C24-*H*₂), 4.84 (m, 1H, C23-*H*), 4.94 (s, 1H, C22-*H*), 5.71 (dt, J = 3.2, 10.1 Hz, 1H, C8-*H*), 5.90 (d, J = 10.1 Hz, 1H, C14-*H*), 7.35–7.43 (m, 6H, aromatic-*H*), 7.64–7.72 (m, 4H, aromatic-*H*), 9.75 (s, 1H, C16-*H*). (YA9104)

第2章第5節に関する実験

(*R*)-3-Methylcyclohex-2-en-1-yl (*S*)-5-[(*tert*-Butyldiphenylsilyl)oxymethyl]-4,5-dihydro-3-methyl-furan-2-carboxylate (229).

A solution of α -diazo- δ -hydroxyester **189** (159 mg, 0.305 mmol) in benzene (3 mL) was added to a refluxing suspension of Rh₂(OAc)₄ (2.7 mg, 6.1 µmol) in benzene (12 mL), and the mixture was stirred for 5 min. After cooling, the catalyst was filtered through a Celite pad, and the filtrate was evaporated in vacuo. The crude product (149 mg) was used next reaction without further purification for the next reaction.

Trimethylsilyldiazomethane in *n*-hexane (1.7 M, 0.45 mL, 0.765 mmol) was added to a mixture of the crude β-ketoester 183 (149 mg), RhCl(PPh₃)₃ (14.1 mg, 15.2 μmol), triphenylphosphine (120 mg, 0.458 mmol) and 2-propanol (0.35 mL, 4.57 mmol) in 1,4-dioxane (6 mL) at 60 °C, and the mixture was stirred for 30 min. After cooling, saturated aqueous NaHCO₃ (20 mL) and Oxone[®] (150 mg, 0.305 mmol) was added, and the resulting mixture was vigorously stirred for 30 min. The mixure was extracted with *n*-hexane/AcOEt (5:1, 2×70 mL), and the combined organic extracts were washed with brine (20 mL) and dried over anhydrous Na_2SO_4 . Filtration and evaporation in vacuo furnished the crude product (301 mg), which was purified by column chromatography (NH silica gel 30 g, 20:1 *n*-hexane/AcOEt) to give α , β -unsaturated ester **229** (89.6 mg, 60% for two steps) as a colorless oil: R_f 0.63 (5:1 *n*-hexane/AcOEt); $\left[\alpha\right]_{D}^{28}$ +111.6 (*c* 3.11, CHCl₃); IR (neat) 3071, 2932, 2857, 2251, 1709, 1663, 1427, 1377, 1263, 1140, 1113, 910 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.03 (s, 9H, ^tBu), 1.62 (m, 1H, one of C11- H_2), 1.69 (br s, 3H, C18- H_3), 1.72–1.82 (m, 3H, C9- H_2 one of C11- H_2), 1.89–2.00 (m, 2H, C12-H₂), 2.03 (br s, 3H, C21-H₃), 2.75 (m, 1H, one of C22-H₂), 2.85 (m, 1H, one of C22-H₂), 3.73 (dd, J = 4.5, 10.9 Hz, 1H, one of C24- H_2), 3.76 (dd, J = 5.4, 10.9 Hz, 1H, one of C24- H_2), 4.62 (dddd, J = 4.5, 5.4, 7.0, 10.5 Hz, 1H, C23-H), 5.38 (s, 1H, C8-H), 5.51 (s, 1H, C14-H), 7.35-7.43 (m, 6H, aromatic-H), 7.66–7.68 (m, 4H, aromatic-H); ¹³C NMR (125.7 MHz, CDCl₃) δ 13.0 (CH₃), 19.1 (CH₂), 19.3 (C), 23.7 (CH₃), 26.7 (CH₃), 28.0 (CH₂), 29.9 (CH₂), 39.4 (CH₂), 65.6 (CH₂), 69.2 (CH), 78.6 (CH), 120.0 (CH), 123.2 (C), 127.6 (CH), 127.7 (CH), 129.6 (CH), 129.7 (CH), 133.3 (C), 133.5 (C), 135.6 (CH), 135.7 (CH), 140.6 (C), 141.0 (C), 161.1 (C); HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₃₀H₃₈O₄SiNa 513.2437; Found 513.2446. (YA12136)

Methyl [2*S*,2(1*S*),5*S*]-5-[(*tert*-Butyldiphenylsilyl)oxymethyl]-2-[1-methylcyclohex-2-en-1-yl]-3-methylenetetrahydrofuran-2-carboxylate (226).

Butyllithium in *n*-hexane (1.55 M, 0.25 mL, 0.39 mmol) was added to a solution of ${}^{i}Pr_{2}NH$ (60 µL, 0.43 mmol) in THF (2.5 mL) at -78 °C. After 30 min of stirring at 0 °C, the solution was cooled to -78 °C, and a solution of α , β -unsaturated ester **229** (94.1 mg, 0.192 mmol) in THF (1.5 mL) was added dropwise. After 5 min of stirring, TMSCI (50 µL, 0.39 mL) was added, and the resulting mixture was stirred at -78 °C for 5 min. The mixture was

allowed to warm up to 0 °C and was stirred for 30 min. The mixture was quenched with saturated aqueous NH₄Cl (10 mL), and the resulting mixture was extracted with AcOEt (3×40 mL). The combined organic extracts were washed with brine (10 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (127 mg), which was chromatographed (silica gel 10 g, 4:1 *n*-hexane/AcOEt) to give slightly impure carboxylic acid **231** (88.4 mg).

Trimethylsilyldiazomethane in *n*-hexane (1.7 M, 0.17 mL, 0.29 mmol) was added to a solution of carboxylic acid **231** (88.4 mg) in benzene/MeOH (1:1, 2 mL) at 0 °C. After 5 min of stirring, the mixture was concentrated in vacuo, and the residual pale yellow oil (90.5 mg) was purified by flash column chromatography (silica gel 10 g, 20:1 *n*-hexane/AcOEt) to give methyl ester **226** (60.0 mg, 62% for two steps) as a colorless oil: $R_f 0.57$ (5:1 *n*-hexane/AcOEt); $[\alpha]_D^{22}$ +61.7 (*c* 1.33, CHCl₃); IR

(neat) 3071, 2932, 2859, 1734, 1430, 1242, 1113 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.03 (s, 9H, ^{*t*}*Bu*), 1.04 (s, 3H, C18-*H*₃), 1.52–1.64 (m, 3H, C11-*H*₂ one of C12-*H*₂), 1.71 (m, 1H, one of C12-*H*₂), 1.89 (m, 2H, C9-*H*₂), 2.69 (m, 1H, one of C22-*H*₂), 2.83 (m, 1H, one of C22-*H*₂), 3.42 (dd, *J* = 8.7, 10.1 Hz, 1H, one of C24-*H*₂), 3.53 (s, 3H, OMe), 3.74 (dd, *J* = 4.0, 10.1 Hz, 1H, one of C24-*H*₂), 4.35 (m, 1H, C23-*H*), 5.25 (d, *J* = 1.6 Hz, 1H, one of C21-*H*₂), 5.48 (d, *J* = 2.8 Hz, 1H, one of C21-*H*₂), 5.61 (dd, *J* = 1.5, 10.4 Hz, 1H, C14-*H*), 5.70 (dt, *J* = 10.4, 3.6 Hz, 1H, C8-*H*), 7.34–7.43 (m, 6H, aromatic-*H*), 7.61–7.63 (m, 4H, aromatic-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 19.0 (CH₂), 19.2 (C), 22.9 (CH₃), 24.7 (CH₂), 26.8 (CH₃), 30.5 (CH₂), 37.0 (CH₂), 43.4 (C), 51.7 (CH₃), 65.0 (CH₂), 78.6 (CH), 91.9 (C), 112.4 (CH₂), 127.2 (CH), 127.60 (CH), 127.63 (CH), 129.57 (CH), 129.63 (CH), 131.5 (CH), 133.5 (C), 135.5 (CH), 135.6 (CH), 144.9 (C), 172.3 (C); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₃₁H₄₀O₄SiNa 527.2594; Found 527.2566. (YA12139)

(1*R*,3*S*,3*a'S*,4*'S*,7*a'S*)-3-[(*tert*-Butyldiphenylsilyl)oxymethyl]-4'-iodo-7*a*'-methyl-5-methylene-2,3'-dioxaspiro[cyclopentane-1,1'-hexahydroindan]-2'-one (232).

The rearrangement was performed according to the above procedure employing α,β -unsaturated ester **229** (84.0 mg, 171 µmol), butyllithium in *n*-hexane (1.55 M, 0.23 mL, 0.34 mmol), *i*-Pr₂NH (50 µL, 0.36 mmol) and TMSCl (40 µL, 0.34 mmol). The crude product (124 mg) was chromatographed (silica gel 10 g, 4:1 *n*-hexane/AcOEt) to give slightly impure carboxylic acid **231** (47.8 mg).

Iodine (27.0 mg, 0.107 mmol) was added to a solution of carboxylic acid 231 (47.8 mg, 0.097 mmol) in MeCN/saturated aqueous NaHCO₃ (1:1, 1 mL) at 0 °C. After 6 h of stirring, the reaction was quenched with 1 M aqueous $Na_2S_2O_3$ (10 mL), and the resulting mixture was extracted with AcOEt (2×30 mL). The combined organic extracts were washed with brine (30 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (56.0 mg), which was purified by flash column chromatography (silica gel 25 g, 10:1 *n*-hexane/AcOEt) to give iodolactone 232 (45.2 mg, 59% for two steps) as a colorless oil: $R_f 0.63$ (3:1 *n*-hexane/AcOEt); $[\alpha]_{D}^{20}$ +48.3 (*c* 1.86, CHCl₃); IR (neat) 2932, 2857, 1790, 1427, 1221, 1111, 1088, 966 cm⁻¹; ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 1.06 \text{ (s, 9H, }^{t}Bu), 1.35 \text{ (s, 3H, C18-}H_3), 1.40 \text{ (m, 1H, one of C12-}H_2), 1.58-1.61$ (m, 2H, C11-H₂), 1.76 (m, 1H, one of C12-H₂), 1.85 (m, 1H, one of C9-H₂), 1.99 (m, 1H, C9-H₂), 2.71 (m, 1H, C22- H_2), 2.76 (m, 1H, C22- H_2), 3.60 (dd, J = 9.0, 10.2 Hz, 1H, C24- H_2), 3.84 (dd, J = 4.9, 10.2 Hz, 1H, one of C24- H_2), 4.34 (m, 1H, C23-H), 4.57 (d, J = 2.0 Hz, 1H, C14-H), 4.67 (m, 1H, C8-H), 4.96 (s, 1H, one of C21-H₂), 5.25 (s, 1H, one of C21-H₂), 7.36–7.43 (m, 6H, aromatic-H), 7.64–7.66 (m, 4H, aromatic-H); ¹³C NMR (125.7 MHz, CDCl₃) δ 17.6 (CH₂), 19.3 (C), 19.5 (CH₃), 23.4 (CH), 26.9 (CH₃), 29.3 (CH₂), 30.9 (CH₂), 36.2 (CH₂), 44.3 (C), 65.0 (CH₂), 79.0 (CH), 82.1 (CH), 92.3 (C), 110.6 (CH₂), 127.6 (CH), 127.7 (CH), 129.63 (CH), 129.64 (CH), 133.5 (C), 133.6 (C), 135.55 (CH), 135.56 (CH), 144.9 (C), 174.4 (C); HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₃₀H₃₇IO₄SiNa 639.1404; Found 639.1390. (HY2159)

[2*S*,2(1*S*),5*S*]-[5-(*tert*-Butyldiphenylsilyl)oxymethyl-2-(1-methylcyclohex-2-en-1-yl)-3-methyl-enetetrahydrofuran-2-yl]methanol (236).

DIBALH in *n*-hexane (1.0 M, 2.8 mL, 2.8 mmol) was added to a solution of methyl ester **226** (556 mg, 1.10 mmol) in CH_2Cl_2 (11 mL) at -78 °C. After 3 h of stirring, the reaction was quenched with methanol (0.5 mL), followed by addition of 1 M aqueous potassium sodium tartrate (15 mL). The resulting mixture was vigorously stirred at room temperature for 30 min, and was extracted with AcOEt (3×40 mL). The combined organic extracts were

washed with brine (15 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (600 mg), which was purified by flash column chromatography (silica gel 20 g, 15:1 *n*-hexane/AcOEt) to give alcohol **236** (445 mg, 85%) as a colorless oil: R_f 0.44 (5:1

n-hexane/AcOEt); $[\alpha]_D^{23}$ +27.5 (*c* 1.11, CHCl₃); IR (neat) 3495, 3073, 3022, 2934, 2860, 1472, 1427, 1113, 1038 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.04 (s, 3H, C18-*H*₃), 1.06 (s, 9H, ^{*t*}*Bu*), 1.47 (m, 1H, one of C12-*H*₂), 1.57 (m, 1H, one of C11-*H*₂), 1.65 (m, 1H, one of C11-*H*₂), 1.77 (dt, *J* = 3.4, 12.9 Hz, 1H, one of C12-*H*₂), 1.85–1.94 (m, 2H, C9-*H*₂), 2.69 (dddd, *J* = 2.1, 2.4, 5.4, 16.3 Hz, 1H, one of C22-*H*₂), 2.71 (dd, *J* = 2.5, 9.0 Hz, 1H, C16-OH), 2.80 (dddd, *J* = 2.1, 2.4, 8.7, 16.3 Hz, 1H, one of C16-*H*₂), 3.52 (dd, *J* = 3.7, 10.9 Hz, 1H, one of C24-*H*₂), 3.57 (dd, *J* = 9.0, 11.0 Hz, 1H, one of C16-*H*₂), 4.25 (dddd, *J* = 3.7, 4.1, 5.4, 8.7 Hz, 1H, C23-*H*), 5.01 (t, *J* = 2.4 Hz, 1H, one of C21-*H*₂), 5.19 (t, *J* = 2.1 Hz, 1H, one of C21-*H*₂), 5.58 (dd, *J* = 1.2, 10.6 Hz, 1H, C14-*H*), 5.68 (m, 1H, one of C8-*H*), 7.37–7.45 (m, 6H, aromatic-*H*), 7.67–7.68 (m, 4H, aromatic-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 19.21 (C), 19.24 (CH₂), 23.3 (CH₃), 24.8 (CH₂), 26.8 (CH₃), 30.5 (CH₂), 36.5 (CH₂), 42.4 (C), 64.8 (CH₂), 66.5 (CH₂), 77.8 (CH), 92.1 (C), 107.8 (CH₂), 127.1 (CH), 127.70 (CH), 127.72 (CH), 129.7 (CH), 132.1 (CH), 133.06 (C), 133.10 (C), 135.7 (CH), 135.8 (CH), 149.5 (C); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₃₀H₄₀O₃SiNa 499.2644; Found 499.2622. (YA11194)

[2*S*,2(1*S*),5*S*]-5-[(*tert*-Butyldiphenylsilyl)oxymethyl]-2-(1-methylcyclohex-2-en-1-yl)-3-methylenetetrahydrofuran-2-carboaldehyde (237).

Dess–Martin periodinane (199 mg, 0.469 mmol) was added to a solution of alcohol **236** (172 mg, 361 mmol) in CH_2Cl_2 (4 mL) at 0 °C. After 2 h of stirring at room temperature, the reaction was quenched with a mixture of 1 M aqueous Na₂S₂O₃ (10 mL) and saturated aqueous NaHCO₃ (10 mL), and the resulting mixture was vigorously stirred for 30 min. The mixture was extracted with AcOEt (2×60 mL), and the combined organic extracts were

washed with brine (20 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (198 mg), which was purified by column chromatography (silica gel 10 g, 20:1 *n*-hexane/AcOEt) to give aldehyde **237** (161 mg, 94%) as a colorless oil: R_f 0.59 (5:1 *n*-hexane/AcOEt); $[\alpha]_D^{22}$ +34.5 (*c* 1.11, CHCl₃); IR (neat) 3071, 3024, 2932, 2859, 2712, 1732, 1653, 1589, 1464, 1427, 1362, 1111, 1047 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.02 (s, 9H, ^{*t*}Bu), 1.05 (s, 3H, C18-*H*₃), 1.51–1.71 (m, 4H, C11-*H*₂ and C12-*H*₂), 1.89–1.94 (m, 2H, C9-*H*₂), 2.64 (m, 1H, one of C22-*H*₂), 3.41 (dd, *J* = 7.3, 10.3 Hz, 1H, one of C24-*H*₂), 3.64 (dd, *J* = 4.1, 10.3 Hz, 1H, one of C24-*H*₂), 4.37 (m, 1H, C23-*H*), 5.20 (d, *J* = 2.4 Hz, 1H, one of C21-*H*₂), 5.27 (dd, *J* = 1.2, 2.6 Hz, 1H, one of C21-*H*₂), 5.68 (d, *J* = 10.4 Hz, 1H, C14-*H*), 5.76 (m, 1H, C8-*H*), 7.35–7.43 (m, 6H, aromatic-*H*), 7.61–7.63 (m, 4H, aromatic-*H*), 9.64 (s, 1H, C16-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 18.7 (CH₂), 19.2 (C), 22.6 (CH₃), 24.7 (CH₂), 26.8 (CH₃), 30.4 (CH₂), 37.1 (CH₂), 43.0 (C), 65.7 (CH₂), 78.5 (CH), 93.4 (C), 111.7 (CH₂), 127.6 (CH), 127.7 (CH), 128.5 (CH), 129.6 (CH), 129.7 (CH), 130.7 (CH), 133.3 (C), 133.4 (C), 135.57 (CH), 135.61 (CH), 144.7 (C), 202.1 (CH); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₃₀H₃₈O₃SiNa 497.2488; Found 497.2462. (YA11195)

[2*S*,2(1*S*),5*S*]-1-[5-(*tert*-Butyldiphenylsilyloxy)methyl-2-(1-methylcyclohex-2-en-1-yl)-3-methyl-enetetrahydrofuran-2-yl]-2-nitroethanol (239).

To a solution of aldehyde **237** (910 mg, 1.92 mmol) in nitromethane (20 mL) was added 1,1,3,3-tetramethylguanidine (24 μ L, 0.19 mmol), and the mixture was stirred for 10 h. The solvent was removed in vacuo, and the residual yellow oil (1.09 g) was purified by column chromatography (silica gel 100 g, 30:1 \rightarrow 15:1 *n*-hexane/AcOEt) to give nitroalcohol **239** (915 mg, 89%, dr = 1.7:1) as a colorless amorphous, along with recovered aldehyde **237** (96.4 mg, 10%) as a colorless oil. R_f 0.28 (5:1 *n*-hexane/AcOEt), 0.35

(10:1 *n*-hexane/Et₂O twice); $[\alpha]_D^{24}$ +17.8 (*c* 1.01, CHCl₃); IR (neat) 3524, 3071, 3026, 2932, 2860, 1653, 1589, 1557, 1463, 1427, 1373, 1290, 1188, 1113, 1049, 970, 824 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.04 (s, 1.9H, C18-*H*₃ of major isomer), 1.05 (s, 5.7H, ^{*t*}Bu of major isomer), 1.06 (s, 3.3H,

^tBu of minor isomer), 1.10 (s, 1.1H, C18- H_3 of minor isomer), 1.64–1.74 (m, 3H, one of C11- H_2 and C12- H_2), 1.93–2.10 (m, 3H, C9- H_2 one of C11- H_2), 2.68 (dd, J = 7.5, 16.7 Hz, 0.37H, one of C22- H_2 of minor isomer), 2.74–2.76 (m, 1.26H, C22-H₂ of major isomer), 2.80 (m, 0.37H, one of C22-H₂ of minor isomer), 2.89 (d, J = 3.9 Hz, 0.63H, C16-OH of major isomer), 3.03 (d, J = 4.9 Hz, 0.37H, C16-OH of minor isomer), 3.52 (dd, J = 3.7, 11.3 Hz, 0.63H, one of C24-H₂ of major isomer), 3.56 (dd, J = 3.3, 11.3 Hz, 0.37H), one of C24-H₂ of minor isomer), 3.80 (dd, J = 3.2, 11.3 Hz, 0.63H), one of C24- H_2 of major isomer), 3.83 (dd, J = 3.4, 11.3 Hz, 0.37H, one of C24- H_2 of minor isomer), 4.23–4.27 (m, 1H, C23-H), 4.30 (dd, J = 10.8, 12.0 Hz, 0.63H, one C15- H_2 of major isomer), 4.37 (dd, J = 9.9, 12.2 Hz, 0.37H, one C15- H_2 of minor isomer), 4.65 (m, 0.37H, one C15- H_2 of minor isomer), 4.68 (m, 0.37H, C16-H of minor isomer), 4.78–4.80 (m, 1.26H, C16-H of major isomer and one C15- H_2 of major isomer), 5.02 (s, 0.37H, one of C21- H_2 of minor isomer), 5.22 (s, 0.37H, one of C21- H_2 of minor isomer), 5.27 (s, 0.63H, one of C21- H_2 of major isomer), 5.37 (s, 0.63H, one of C21-H₂ of major isomer), 5.74–5.78 (m, 0.74H, C8-H of minor isomer and C14-H of minor isomer), 5.80 (dt, J = 10.6, 3.4 Hz, 0.63H, C8-*H* of major isomer), 5.88 (d, J = 10.6 Hz, 0.63H, C14-*H* of major isomer), 7.37-7.45 (m, 6H, aromatic-H), 7.64-7.69 (m, 4H, aromatic-H); ¹³C NMR (125.7 MHz, CDCl₃) δ 19.17 (C), 19.18 (C), 19.4 (CH₂), 19.5 (CH₂), 24.76 (CH₂), 24.78 (CH₂), 25.2 (CH₃), 25.3 (CH₃), 26.8 (CH₃), 30.4 (CH₂), 31.1 (CH₂), 36.3 (CH₂), 36.8 (CH₂), 43.1 (C), 43.8 (C), 65.5 (CH₂), 65.6 (CH₂), 72.6 (CH), 73.4 (CH), 78.9 (CH), 79.0 (CH₂), 79.2 (CH₂), 79.3 (CH), 89.9 (C), 91.2 (C), 108.2 (CH₂), 109.8 (CH₂), 127.78 (CH), 127.81 (CH), 128.0 (CH), 128.3 (CH), 129.85 (CH), 129.86 (CH), 129.90 (CH), 132.6 (CH), 132.7 (CH), 132.8 (C), 132.90 (C), 132.92 (CH), 135.5 (CH), 135.6 (CH), 135.66 (CH), 135.70 (CH), 148.0 (C), 150.1 (C); HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₃₁H₄₁NO₅SiNa 558.2652; Found 558.2635. (YA11198)

[2*S*,2(1*S*),5*S*]-5-[(*tert*-Butyldiphenylsilyl)oxymethyl]-2-(1-methylcyclohex-2-en-1-yl)-3-methylene-2-(2-nitrovinyl)tetrahydrofuran (241).

A 0.2 M solution of sulfonic acid in acetic anhydride (0.10 mL, 0.02 mmol) was added to a solution of nitroalcohol **239** (101 mg, 0.187 mmol) in acetic anhydride (2 mL) at 0 °C. After 2 h of stirring, the reaction was quenched with saturated aqueous NaHCO₃ (20 mL), and the resulting mixture was extracted with AcOEt (2×40 mL). The combined organic extracts were successively washed with saturated aqueous NaHCO₃ (20 mL) and brine (20 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo

furnished the crude product (142 mg), which was used without further purification.

Et₃N (0.10 mL, 0.72 mmol) was added to a solution of crude acetate (142 mg) in CH₂Cl₂ (2 mL) at room temperature. After 30 min of stirring, the reaction mixture was concentrated in vacuo, and the residual pale yellow oil (145 mg) was purified by column chromatography (silica gel 5 g, 20:1 *n*-hexane/AcOEt) to give nitroalkene 241 (92.3 mg, 94% for two steps) as a pale yellow amorphous: R_f 0.66 (5:1 *n*-hexane/Et₂O twice); $[\alpha]_D^{23}$ -12.9 (*c* 1.08, CHCl₃); IR (neat) 3071, 3024, 2930, 2859, 1651, 1524, 1427, 1348, 1265, 1113, 1030, 824, 702 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.02 (s, 3H, C18-H₃), 1.05 (s, 9H, ^tBu), 1.48–1.56 (m, 2H, one of C11-H₂ and one of C12-H₂), 1.64–1.73 (m, 2H, one of C11-H₂ and one of C12-H₂), 1.85–1.96 (m, 2H, C9-H₂), 2.51 (m, 1H, one of C22-H₂), 2.86 (ddt, J = 8.8, 16.0, 2.7 Hz, 1H, one of C22- H_2), 3.45 (dd, J = 5.8, 10.6 Hz, 1H, one of C24- H_2), 3.56 (dd, J= 5.8, 10.6 Hz, 1H, one of C24- H_2), 4.31 (m, 1H, C23-H), 5.60 (d, J = 2.7 Hz, 1H, one of C21- H_2), 5.24 (s, 1H, one of C21- H_2), 5.63 (d, J = 10.1 Hz, 1H, C14-H), 5.80 (ddd, J = 2.7, 5.0, 10.1 Hz, 1H, C8-H), 7.24 (d, J = 12.8 Hz, 1H, C15-H), 7.37-7.46 (m, 6H, aromatic-H), 7.42 (d, J = 12.8 Hz, 1H, C15-H), 7.63–7.66 (m, 4H, aromatic-H); ¹³C NMR (125.4 MHz, CDCl₃) δ 19.0 (C), 19.2 (CH₂), 22.8 (CH), 24.8 (CH₂), 26.8 (CH₃), 30.4 (CH₂), 36.4 (CH₂), 43.5 (C), 66.0 (CH₂), 78.1 (CH), 89.2 (C), 111.2 (CH₂), 127.70 (CH), 127.72 (CH), 129.0 (CH), 129.7 (CH), 129.8 (CH), 130.7 (CH), 133.2 (C), 133.3 (C), 135.55 (CH), 135.57 (CH), 138.8 (CH), 145.3 (CH), 148.2 (C); HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₁H₃₉NO₄SiNa 540.2546; Found 540.2568. (YA13001)

[2*S*,2(1*S*),5*S*]-5-[(*tert*-Butyldiphenylsilyl)oxymethyl]-2-(1-methylcyclohex-2-en-1-yl)-3-methylene-2-(2-nitroethyl)tetrahydrofuran (243).

A solution of nitroalkene **241** (92.0 mg, 0.178 mmol) in 1,4-dioxane (2 mL) was added to a stirred suspension of NaBH₄ (20.2 mg, 0.534 mmol) in EtOH (2 mL) at 0 °C. After 7 h of stirring at room temperature, brine (15 mL) and H₂O (5 mL) were added, and the mixture was extracted with AcOEt

 $(2\times30 \text{ mL})$. The combined organic extracts were washed with brine (15 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (109 mg), which was purified by column chromatography (silica gel 10 g, 20:1 *n*-hexane/AcOEt) to give cycloaddition precursor **243** (83.5 g, 90%) as a colorless oil: R_f 0.61 (5:1 *n*-hexane/Et₂O twice); $[\alpha]_D^{2^4}$ +22.4 (*c* 0.98, CHCl₃); IR (neat) 3071, 3022, 2931, 2859, 1655,

1551, 1472, 1427, 1383, 1113, 1036 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.03 (s, 3H, C18-*H*₃), 1.06 (s, 9H, ^{*i*}*Bu*), 1.49 (m, 1H, one of C12-*H*₂), 1.58 (m, 1H, one of C11-*H*₂), 1.67–1.77 (m, 2H, one of C11-*H*₂), and one of C12-*H*₂), 1.85–1.95 (m, 2H, C9-*H*₂), 2.15 (ddd, *J* = 4.9, 10.6, 14.2 Hz, 1H, one of C16-*H*₂), 2.53–2.59 (m, 2H, one of C16-*H*₂ and one of C22-*H*₂), 2.84 (dddd, *J* = 2.1, 2.3, 8.8, 17.2, Hz, 1H, one of C22-*H*₂), 3.59 (d, *J* = 4.8 Hz, 2H, C24-*H*₂), 4.16 (ddd, *J* = 4.9, 10.9, 13.0 Hz, 1H, one of C15-*H*₂), 4.24 (m, 1H, C23-*H*), 4.33 (ddd, *J* = 5.7, 10.6, 13.0 Hz, 1H, one of C15-*H*₂), 4.94 (t, *J* = 2.3 Hz, 1H, one of C21-*H*₂), 5.18 (t, *J* = 2.1 Hz, 1H, one of C21-*H*₂), 5.51 (d, *J* = 10.3 Hz, 1H, C14-*H*), 5.69 (ddd, *J* = 2.5, 5.1, 10.3 Hz, 1H, C8-*H*), 7.36–7.43 (m, 6H, aromatic-*H*), 7.65–7.66 (m, 4H, aromatic-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 19.1 (C), 19.3 (CH₂), 23.2 (CH₃), 24.7 (CH₂), 26.8 (CH₃), 30.2 (CH₂), 32.1 (CH₂), 36.2 (CH₂), 43.9 (C), 66.4 (CH₂), 72.7 (CH₂), 78.0 (CH), 90.2 (C), 108.3 (CH₂), 127.3 (CH), 135.5 (CH), 149.5 (C); HRMS (ESI) *m*/*z*: [M + Na]⁺ Calcd for C₃₁H₄₁O₄SiNa 542.2703; Found 527.2692. (YA13003)

(1*S*,3*S*,3*a'R*,4*'R*,7*a'S*)-Perhydro-3-[(*tert*-butyldiphenylsilyl)oxymethyl]-7*a'*-methyl-5-methylene-2-oxa-4',3'-epoxynitrilospiro[cyclopentane-1,1'-indene] (243).

A mixture of nitroalkene **243** (624 mg, 1.20 mmol), phenyl isocyanate (0.52 mL, 4.78 mmol) and Et₃N (0.67 mL, 4.80 mmol) in benzene (18 mL) was refluxed for 6 h. After cooling, the resulting yellow suspension was partitioned between AcOEt (60 mL) and H₂O (30 mL), and the aqueous layer was extracted with AcOEt (2×60 mL). The combined organic extracts were washed with brine (20 mL) and dried over anhyrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (1.30 g), which was

purified by column chromatography (silica gel 30 g, 5:1 *n*-hexane/AcOEt) to give isoxazoline **245** (585 mg, 97%) as a plae yellow form. $R_f 0.45$ (3:1 *n*-hexane/AcOEt); $[\alpha]_D^{25}$ +7.2 (*c* 2.32, CHCl₃); IR (neat) 3071, 2959, 2934, 2859, 1655, 1471, 1427, 1113 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.05 (s, 9H, ^{*Bu*}), 1.06 (s 3H, C18-*H*₃), 1.14 (m, 1H, one of C12-*H*₂), 1.23–1.32 (m, 2H, one of C9-*H*₂ and one of C11-*H*₂), 1.52–1.54 (m, 2H, one of C11-*H*₂ and one of C12-*H*₂), 1.95 (m, 1H, one of C9-*H*₂), 2.67 (m, 1H, one of C22-*H*₂), 2.76 (dd, *J* = 0.9, 19.4 Hz, 1H, one of C16-*H*₂), 2.80 (ddt, *J* = 8.3, 16.1, 2.8 Hz, 1H, one of C22-*H*₂), 2.87 (dd, *J* = 2.5, 19.4 Hz, 1H, one of C22-*H*₂), 3.34 (br d, *J* = 8.4 Hz, 1H, C14-*H*), 3.52 (dd, *J* = 6.0, 10.4 Hz, 1H, one of C24-*H*₂), 3.62 (dd, *J* = 4.5, 10.4 Hz, 1H, one of C24-*H*₂), 4.22 (m, 1H, C23-*H*), 4.63 (q, *J* = 8.4 Hz, 1H, C8-*H*), 4.76 (m, 1H, one of C21-*H*₂), 5.09 (m, 1H, one of C21-*H*₂), 19.3 (C), 20.8 (CH₃), 26.8 (CH₃), 28.1 (CH₂), 30.1 (CH₂), 36.0 (CH₂), 36.5 (CH₂), 45.2 (C), 60.1 (CH), 66.0 (CH₂), 77.5 (CH), 77.8 (CH), 98.7 (C), 107.0 (CH₂), 127.7 (CH), 129.69 (CH), 129.71 (CH), 133.41 (C), 133.44 (C), 135.58 (CH), 135.60 (CH), 154.3 (C), 167.2 (C); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₃₁H₃₉NO₃SiNa 524.2597; Found 524.2579. (YA13006)

第2章第6節に関する実験

(1*S*,3*S*,3*'S*,3*a'R*,4*'R*,7*a'S*)-Perhydro-3-[(*tert*-butyldiphenylsilyl)oxymethyl]-7*a'*-methyl-5-methylene-2-oxa-4',3'-epoxyiminospiro[cyclopentane-1,1'-indene] (246).

DIBALH in *n*-hexane (1.0 M, 0.31 mL, 0.31 mmol) was added to a solution of isoxazoline **245** (102 mg, 0.204 mmol) in toluene (4 mL) at -20 °C. After 15 min of stirring, the reaction was quenched with methanol (0.1 mL), and 1 M aqueous potassium sodium tartrate (10 mL) was added to the solution. After 1 h of vigorous stirring, the resulting mixture was partitioned between CHCl₃ (30 mL) and H₂O (10 mL), and the aqueous layer was extracted with CHCl₃ (2×30 mL). The combined organic extracts were

washed with brine (15 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (109 mg), which was purified by column chromatography (silica gel 5 g, 10:1 CHCl₃/MeCN) to give isoxazolidine 246 (101 mg, 97%) as a plae yellow form. R_f 0.52 (1:1 *n*-hexane/AcOEt); $[\alpha]_D^{25}$ -14.3 (*c* 1.42, CHCl₃); IR (neat) 3215, 3071, 2930, 2857, 1655, 1472, 1427, 1111 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.97 (s, 3H, C18-H₃), 1.04 (s, 9H, ^tBu), 1.38 (m, 1H, one of C12- H_2), 1.47 (m, 1H, one of C11- H_2), 1.68–1.83 (m, 3H, one of C9- H_2 , one of C11- H_2 and one of C12- H_2), 1.93 (m, 1H, one of C9- H_2), 2.07 (dd, J = 7.0, 13.9 Hz, 1H, one of C16- H_2), 2.10 (dd, J = 8.0, 13.9 Hz, 1H, one of C16- H_2), 2.47 (t, J = 8.0 Hz, 1H, C14-H), 2.63 (m, 1H, one of C22- H_2), 2.73 (m, 1H, one of C22- H_2), 3.50 (dd, J = 6.4, 10.1 Hz, 1H, one of C24- H_2), 3.62 (dd, J = 4.5, 10.1 Hz, 1H, one of C24-H₂), 3.91 (m, 1H, C15-H), 3.96 (m, 1H, C8-H), 4.16 (m, 1H, C23-H), 4.87 (m, 1H, one of C21-H₂), 5.04 (m, 1H, one of C21-H₂), 7.36-7.43 (m, 6H, aromatic-H), 7.65-7.67 (m, 4H, aromatic-H); ¹³C NMR (125.7 MHz, CDCl₃) & 15.1 (CH₂), 19.2 (C), 21.0 (CH₃), 23.9 (CH₂), 26.8 (CH₃), 27.1 (CH₂), 37.1 (CH₂), 43.4 (CH₂), 43.8 (C), 55.2 (CH), 63.9 (CH), 66.1 (CH₂), 76.9 (CH), 81.4 (CH), 96.8 (C), 105.8 (CH₂), 127.58 (CH), 127.60 (CH), 129.56 (CH), 129.59 (CH), 133.6 (C), 135.6 (CH), 152.8 (C); HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{31}H_{41}NO_3SiNa$ 526.2753; Found 526.2742. (YA13020)

Methyl (1*S*,3*S*,5*R*,3'*S*,3a'*R*,7a'*S*)-3-[(*tert*-Butyldiphenylsilyl)oxymethyl]-5,7a'-dimethyl-4'-oxo-2-oxaspiro[cyclopentane-1,1'-perhydroindan]-3'-ylaminoformate (254a).

A mixture of isoxazolidine **246** (359 mg, 0.713 mmol) and platinum oxide (64.4 mg, 0.284 mmol) in AcOEt (7 mL) was stirred under 1 atm of hydrogen for 16 h. Hydrochloric acid in AcOEt (4 M, 0.2 mL, 0.8 mmol) was added and the mixture was vigorously stirred for 15 min. The resulting mixture was diluted with MeOH (30 mL), and the catalyst was filtered through a Celite pad. The filtrate was evaporated in vacuo, and the residual pale-yellow oil (424 mg) was used without further purification. (YA13139)

To a solution of the crude aminoalcohol **248** (424 mg) in acetone (10 mL) was added methyl chloroformate (0.11 mL, 1.42 mmol), followed by addition of Na_2CO_3 (302 mg, 2.85 mmol). After 30 min of stirring, the reaction mixture was partitioned between AcOEt (50 mL) and H₂O (20 mL), and the aqueous layer was extracted with AcOEt (2×40 mL). The combined organic extracts were washed with brine (20 mL) and dried over anhydrous Na_2SO_4 . Filtration and evaporation in vacuo furnished the crude product (489 mg), which was used without further purification. (YA13143)

Dess-Martin periodinane (340 mg, 0.802 mmol) was added to a solution of the crude alcohol **253** (489 mg) in CH₂Cl₂ (10 mL) at 0 °C. After 2 h of stirring at room temperature, the reaction was quenched with a mixture of 1 M aqueous Na₂S₂O₃ (10 mL) and saturated aqueous NaHCO₃ (10 mL), and the resulting mixture was vigorously stirred for 30 min. The mixture was extracted with AcOEt (3×40 mL), and the combined organic extracts were washed with brine (20 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (489 mg), whose 1H NMR [integration of the angular methyl protons, desired product **254a** (0.75 ppm), C20-epimer

(0.54 ppm)] revealed a diastereomeric ratio of 4.3:1. Purification of the crude product by column chromatography (silica gel 25 g, 4:1 *n*-hexane/AcOEt) afforded ketone **254a** (217 mg, 54%), along with its C20-epimer (52.3 mg, 13%) as colorless oils. (YA13145)

Data for the ketone **254a**: $R_f 0.27$ (3:1 *n*-hexane/AcOEt); $[\alpha]_D^{19}$ +28.0 (*c* 1.87, benzene); IR (neat) 3401, 3049, 2959, 2932, 2857, 1721, 1508, 1466, 1364, 1227, 1115, 1086, 1072 cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ 0.67 (d, *J* = 7.0 Hz, 3H, C21-*H*₃), 0.75 (s, 3H, C18-*H*₃), 1.00 (dd, *J* = 5.7, 11.6 Hz, 1H, one of C12-*H*₂), 1.04 (m, 1H, one of C12-*H*₂), 1.24 (s, 9H, ^{*I*}*Bu*), 1.32 (m, 1H, one of C11-*H*₂), 1.64 (m, 1H, C20-*H*), 1.71 (m, 1H, one of C11-*H*₂), 1.83–1.91 (m, 3H, one of C9-*H*₂ and C22-*H*₂), 1.89 (d, *J* = 7.3 Hz, 1H, C14-*H*), 2.11 (dd, *J* = 10.7, 14.5 Hz, 1H, one of C16-*H*₂), 2.13 (m, 1H, one of C9-*H*₂), 2.20 (dd, *J* = 7.3, 14.5 Hz, 1H, one of C16-*H*₂), 3.45 (dd, *J* = 4.4, 10.9 Hz, 1H, one of C24-*H*₂), 3.53 (s, 3H, OMe), 3.71 (dd, *J* = 3.1, 10.9 Hz, 1H, one of C24-*H*₂), 3.95 (m, 1H, C15-*H*), 4.60 (m, 1H, C23-*H*), 7.26–7.36 (m, 4H, aromatic-*H*), 7.41–7.44 (m, 2H, aromatic-*H*), 7.83–7.89 (m, 5H, NH and aromatic-*H*); ¹³C NMR (125.7 MHz, C₆D₆) δ 16.7 (CH₃), 19.4 (C), 22.2 (CH₂), 25.3 (CH₃), 27.1 (CH₃), 32.1 (CH₂), 35.6 (CH₂), 40.5 (CH₂), 41.4 (CH), 49.0 (CH₂), 49.7 (CH), 51.0 (C), 51.3 (CH₃), 59.4 (CH), 66.3 (CH₂), 78.5 (CH), 95.2 (C), 128.1 (CH), 128.3 (CH), 129.98 (CH), 130.00 (CH), 133.7 (C), 133.8 (C), 136.1 (CH), 136.2 (CH), 157.2 (C), 213.3 (C); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C_{31H41}NO₃SiNa 586.2965; Found 586.2951.

Data for the C20-epimer: $R_f 0.16$ (3:1 *n*-hexane/AcOEt); $[\alpha]_D^{20}$ +18.2 (*c* 0.88, benzene); IR (neat) 3397, 3048, 2959, 2930, 2857, 1724, 1705, 1505, 1462, 1364, 1224, 1105, 1072 cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ 0.54 (s, 3H, C18-*H*₃), 0.65 (d, *J* = 6.7 Hz, 3H, C21-*H*₃), 0.91–1.00 (m, 2H, one of C11-*H*₂ and one of C12-*H*₂), 1.18 (m, 1H, one of C22-*H*₂), 1.21 (s, 9H, ^{*i*}Bu), 1.40 (m, 1H, one of C22-*H*₂), 1.53 (m, 1H, , one of C12-*H*₂), 1.64–1.70 (m, 2H, one of C16-*H*₂ and C20-*H*), 1.84–1.94 (m, 2H, one of C9-*H*₂ and one of C11-*H*₂),

1.94 (d, J = 7.4 Hz, 1H, C14-*H*), 2.17 (m, 1H, one of C9-*H*₂), 2.36 (dd, J = 10.2, 14.5 Hz, 1H, one of C16-*H*₂), 3.43 (dd, J = 5.1, 10.7 Hz, 1H, one of C24-*H*₂), 3.54 (s, 3H, OMe), 3.59–3.60 (m, 2H, C23-*H* and one of C24-*H*₂), 4.65 (m, 1H, C15-*H*), 7.27–7.41 (m, 6H, aromatic-*H*), 7.83–7.84 (m, 5H, N*H* and aromatic-*H*); ¹³C NMR (125.7 MHz, C₆D₆) δ 16.9 (CH₃), 19.1 (C), 22.7 (CH₂), 25.8 (CH₃), 26.8 (CH₃), 30.3 (CH₂), 36.3 (CH), 37.9 (CH₂), 40.6 (CH₂), 40.8 (CH₂), 50.5 (CH), 51.3 (CH₃), 52.9 (C), 58.0 (CH), 66.0 (CH₂), 78.4 (CH), 95.3 (C), 127.9 (CH), 128.0 (CH), 129.7 (CH), 133.5 (C), 133.6 (C), 135.9 (CH), 136.0 (CH), 157.0 (C), 213.3 (C); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₃₁H₄₅NO₅SiNa 586.2965; Found 586.2982.

(1*S*,3*S*,5*R*,7*a*'*S*)-3-[(*tert*-Butyldiphenylsilyl)oxymethyl]-1',4',5',6',7',7a'-hexahydro-5,7a'-dimethyl-2-oxaspiro[cyclopentane-1,1'-2*H*-inden]-4'-one (252).

A solution of ketone **254a** (206 mg, 0.365 mmol) in toluene/TFA (20:1, 7.35 mL) was heated at 60 °C for 8 h. The reaction mixture was concentrated in vacuo, and the residual brown oil (198 mg) was purified by column chromatography (silica gel 5 g, 5:1 *n*-hexane/AcOEt) to give enone **252** (154 mg, 86%) as a pale yellow oil. R_f 0.53 (3:1 *n*-hexane/AcOEt); $[\alpha]_D^{19}$ –86.7 (*c* 1.31, CHCl₃); IR (neat) 3071, 2959, 2932, 2859, 1682, 1614, 1427, 1113 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.04 (s, 9H, ^{*t*}Bu), 1.13 (d, *J* = 6.9 Hz, 3H,

C21-*H*₃), 1.15 (s, 3H, C18-*H*₃), 1.60–1.64 (m, 2H, one of C12-*H*₂ and one of C22-*H*₂), 1.89–1.95 (m, 2H, C11-*H*₂), 2.17–2.45 (m, 5H, C9-*H*₂, one of C12-*H*₂, C20-*H* and one of C22-*H*₂), 2.43 (dd, J = 1.8, 17.9 Hz, 1H, one of C16-*H*₂), 2.70 (dd, J = 3.7, 17.9 Hz, 1H, one of C16-*H*₂), 3.64 (dd, J = 4.2, 10.9 Hz, 1H, one of C24-*H*₂), 3.74 (dd, J = 4.1, 10.9 Hz, 1H, one of C24-*H*₂), 4.29 (m, 1H, C23-*H*), 6.42 (dd, J = 1.8, 3.7 Hz, 1H, C15-*H*), 7.32–7.42 (m, 6H, aromatic-*H*), 7.65–7.66 (m, 4H, aromatic-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 16.5 (CH₃), 19.2 (C), 20.3 (CH₂), 21.4 (CH₃), 26.8 (CH₃), 28.9 (CH₂), 36.0 (CH₂), 39.2 (CH), 40.0 (CH₂), 44.5 (CH₂), 51.1 (C), 66.7 (CH₂), 77.7 (CH), 98.4 (C), 127.59 (CH), 127.60 (CH), 129.58 (CH), 129.61 (CH), 133.45 (C), 133.46 (C), 134.2 (CH), 135.6 (CH),

135.7 (CH), 149.0 (C), 199.7 (C); HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₃₁H₄₀O₃SiNa 511.2644; Found 511.2662. (YA13146)

(1*S*,3*S*,5*R*,3*a'S*,7*a'S*)-3-[(*tert*-Butyldiphenylsilyl)oxymethyl]-5,3*a'*,7*a'*-trimethyl-2-oxaspiro[cyclo-pentane-1,1'-hexahydroindan]-4'-one (258b).

OTBDPS Me,20 Me E C D Me 15 O Me

A mixture of enone **252** (11.6 mg, 23.7 μ mol) and Pd/C (2 mg) in AcOEt (1 mL) was stirred under 5 atm of hydrogen for 4 h. The catalyst was filtered through a Celite pad, and the filtrate was evaporated in vacuo. The residual pale yellow oil (12.0 mg) was used without further purification.

To a mixture of the crude ketone **255** (12.0 mg) and pyridine (30 μ L, 372 μ mol) in MeCN (1 mL) was added NaI (24.6 mg, 164 μ mol), followed by addition of TMSCl (20 μ L, 158 μ mol). After 12 h of stirring, to the mixture

was added *n*-hexane (10 mL) and a mixture of saturated NH₄Cl (10 mL) and 1 M Na₂S₂O₃ (5 mL), and the resulting mixture was vigorously stirred for 10 min. The mixture was extracted with *n*-hexane (2×30 mL), and the combined organic extracts were washed with brine (15 mL). Filtration and evaporation in vacuo furnished the crude product (12.3 mg), which was used without further purification. (YA13145)

To an ice-cooled (0 °C) solution of the crude silyl enol ether **256** (12.3 mg) in Et₂O (1.5 mL) was added diiodomethane (8 μ L, 99 μ mol), followed by addition of Et₂Zn in *n*-hexane (1.05 M, 90 μ L, 95 μ mol). After 6 h of refluxing, the reaction mixture was diluted with Et₂O (10 mL), and pyridine (50 μ L) was added. The resulting suspension was vigorously stirred for 1 h, and was filtered through a Celite pad. The filtrate was partitioned between *n*-hexane (20 mL) and H₂O (20 mL), and the aqueous layer was extracted with *n*-hexane (20 mL). The combined organic extracts were washed with brine (10 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (19.3 mg), which was used without further purification. (YA13148)

A mixture of the crude cyclopropane **257** (19.3 mg) and 15% aqueous NaOH (20 μ L) in EtOH (1 mL) was refluxed for 2 h. After cooling, the mixture was partitioned between AcOEt (30 mL) and H₂O (10 mL), and the aqueous layer was extracted with AcOEt (30 mL). The combined organic extracts were washed with brine (10 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (24.6 mg), which was used without further purification.

tert-Butylchlorodiphenylsilane (10 μ L, 39 μ mol) was added to a solution of the crude ketone (24.6 mg) and imidazole (5.0 mg, 73.4 μ mol) in DMF (1 mL). After 16 h of stirring, the reaction mixture was partitioned between *n*-hexane/AcOEt (3:1, 30 mL) and H₂O (10 mL), and the aqueous layer was extracted with *n*-hexane/AcOEt (3:1, 30 mL). The combined organic extracts were washed with brine (10 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (25.5 mg), which was purified by column chromatography (silica gel 5 g, 15:1 *n*-hexane/AcOEt) to give TBDPS ether **258b** (9.7 mg, 81% for 5 steps) as a colorless oil. (YA13150)

 $R_f 0.56 (5:1 n-\text{hexane/AcOEt}); [\alpha]_D^{19} -67.9 (c 0.22, CHCl_3); IR (neat) 3071, 2963, 2930, 2857, 1707, 1472, 1427, 1113 cm⁻¹; ¹H NMR (500 MHz, CDCl_3) <math>\delta$ 0.98 (s, 3H, C18-*H*₃), 1.04 (s, 9H, ^{*t*}Bu), 1.10 (s, 3H, C30-*H*₃), 1.14 (m, 1H, one of C16-*H*₂), 1.15 (d, *J* = 6.9 Hz, 3H, C21-*H*₃), 1.51–1.64 (m, 3H, one of C12-*H*₂, one of C16-*H*₂ and one of C22-*H*₂), 1.71 (m, 1H, one of C11-*H*₂), 1.79 (ddd, *J* = 3.8, 10.3, 13.6 Hz, 1H, one of C15-*H*₂), 2.10–2.29 (m, 5H, C9*eq*-*H*, one of C11-*H*₂, one of C12-*H*₂, C20-*H* and one of C22-*H*₂), 2.38 (ddd, *J* = 7.0, 9.9, 17.1 Hz, 1H, C9*ax*-*H*), 2.85 (ddd, *J* = 6.7, 10.2, 13.6 Hz, 1H, one of C15-*H*₂), 3.55 (dd, *J* = 4.7, 10.7 Hz, 1H, one of C24-*H*₂), 3.57 (dd, *J* = 4.3, 10.7 Hz, 1H, one of C24-*H*₂), 4.13 (m, 1H, C23-*H*), 7.38–7.46 (m, 6H, aromatic-*H*), 7.66–7.68 (m, 4H, aromatic-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 17.0 (CH₃), 19.1 (C), 21.6 (CH₃), 21.8 (CH₃), 22.1 (CH₂), 26.8 (CH₃), 28.3 (CH₂), 30.7 (CH₂), 36.6 (CH₂), 37.4 (CH₂), 37.8 (CH₂), 40.5 (CH), 50.5 (C), 58.7 (C), 66.7 (CH₂), 77.2 (CH), 97.8 (C), 127.6 (CH), 127.7 (CH), 129.5 (CH), 133.5 (C), 133.6 (C), 135.7 (CH), 214.3 (C); HRMS (ESI) *m*/*z* [M + Na]⁺ Calcd for C₃₂H₄₄O₃SiNa 527.2957; Found 527.2965.

(1*S*,3*S*,5*R*,4'*R*,7a'*S*)-3-[(*tert*-Butyldiphenylsilyl)oxymethyl]-1',4',5',6',7',7a'-hexahydro-5,7a'-dimethyl-2-oxaspiro[cyclopentane-1,1'-2*H*-inden]-4'-ol (186).

A solution of enone **252** (62.4 mg, 0.128 mmol) in MeOH (1.5 mL) was added to a mixture of NaBH₄ (7.3 mg, 0.193 mmol) and CeCl₃·7H₂O (71.5 mg, 0.192 mmol) in MeOH (1.5 mL) at -40 °C. After 30 min of stirring, the reaction was quenched with 1 M aqueous HCl (1 mL), and the resulting mixture was partitioned between AcOEt (40 mL) and brine (20 mL). The aqueous layer was extracted with AcOEt (30 mL), and the combined organic extracts were washed with brine (20 mL) and dried over anhydrous Na₂SO₄.

Filtration and evaporation in vacuo furnished the crude product (89.1 mg), which was purified by column chromatography (silica gel 5 g, 5:1 *n*-hexane/AcOEt) to give allyl alcohol **186** (57.3 mg, 91%) as a colorless amorphous. R_f 0.44 (3:1 *n*-hexane/AcOEt); $[\alpha]_D^{19}$ –89.4 (*c* 0.97, CHCl₃); IR (neat) 3399, 3049, 2932, 2859, 1472, 1462, 1427, 1265, 1113 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.05 (s, 9H, ^{*t*}*Bu*), 1.07 (d, *J* = 7.0 Hz, 3H, C21-*H*₃), 1.09 (s, 3H, C18-*H*₃), 1.19 (m, 1H, one of C9-*H*₂), 1.35 (m, 1H, C12*eq*-*H*₂), 1.55 (tq, *J* = 3.3, 13.6 Hz, 1H, C11*ax*-*H*), 1.63 (m, 1H, one of C22-*H*₂), 1.73 (m, 1H, C11*eq*-*H*), 2.02 (m, 1H, one of C16-*H*₂ and C20-*H*), 2.48 (ddd, *J* = 1.7, 3.0, 16.1 Hz, 1H, one of C16-*H*₂), 3.69 (dd, *J* = 5.7, 10.5 Hz, 1H, one of C24-*H*₂), 3.72 (dd, *J* = 4.4, 10.5 Hz, 1H, one of C24-*H*₂), 4.14 (m, 1H, C8-*H*₂), 4.24 (m, 1H, C23-*H*), 5.33 (m, 1H, C15-*H*), 7.35–7.43 (m, 6H, aromatic-*H*), 7.66–7.70 (m, 4H, aromatic-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 16.6 (CH₃), 19.3 (C), 20.2 (CH₃), 21.0 (CH₂), 26.9 (CH₃), 29.8 (CH₂), 35.9 (CH₂), 36.9 (CH₂), 39.3 (CH), 44.2 (CH₂), 51.7 (C), 67.3 (CH₂), 69.0 (CH), 77.2 (CH), 97.1 (C), 115.3 (CH), 127.57 (CH), 127.58 (CH), 129.50 (CH), 129.55 (CH), 133.7 (C), 133.8 (C), 135.70 (CH), 135.72 (CH), 152.5 (C); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₃₁H₄₂O₃SiNa 513.2801; Found 513.2780. (YA13157)

(1*S*,3*S*,5*R*,1*a'S*,3*a'S*,7*'R*,7*a'R*)-3-[(*tert*-Butyldiphenylsilyl)oxymethyl]-5,3*a'*-dimethyl-2-oxaspiro [cyclopentane-1,3'-perhydrocyclopropa[*c*]inden]-7'-ol (259).

To an ice-cooled (0 °C) solution of allyl alcohol **186** (55.4 mg, 0.113 mmol) in CH₂Cl₂ (2 mL) was added diiodomethane (36 μ L, 0.45 mmol), followed by addition of Et₂Zn in *n*-hexane (1.05 M, 0.43 mL, 0.45 mmol). After 9 h of stirring, the reaction mixture was diluted with Et₂O (10 mL), and pyridine (0.10 mL) was added. The resulting suspension was vigorously stirred for 30 min, and was filtered through a Celite pad. The filtrate was partitioned between AcOEt (20 mL) and H₂O (20 mL), and the aqueous layer

was extracted with AcOEt (30 mL). The combined organic extracts were washed with brine (20 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (79.5 mg), which was purified by column chromatography (silica gel 5 g, 5:1 *n*-hexane/AcOEt) to give cyclopropane **259** (52.3 mg, 92%) as a colorless amorphous. R_f 0.53 (5:1 benzene/Et₂O); $[\alpha]_D^{20}$ -42.0 (*c* 1.68, CHCl₃); IR (neat) 3356, 2931, 2859, 1472, 1427, 1265, 1113 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.40 (dd, J = 2.8, 7.0 Hz, 1H, one of C30- H_2), 1.03 (d, J = 6.7 Hz, 3H, C21- H_3), 1.06 (s, 9H, ¹*Bu*), 1.12 (s, 3H, C18- H_3), 1.20 (m, 1H, one of C9- H_2), 1.27–1.32 (m, 2H, C15-H and one of C30- H_2), 1.42 (m, 1H, one of C12- H_2), 1.51 (dd, J = 6.3, 12.0 Hz, 1H, one of C22- H_2), 1.61–1.81 (m, 4H, C11- H_2 , one of C12- H_2 and one of C16- H_2), 2.11 (m, 1H, C20-H), 3.68 (d, J = 4.8 Hz, 2H, C24- H_2), 4.15–4.20 (m, 2H, C8-H and C23-H), 7.37–7.44 (m, 6H, aromatic-H), 7.68–7.72 (m, 4H, aromatic-H); ¹³C NMR (125.7 MHz, CDCl₃) δ 7.7 (CH₂), 16.7 (CH), 17.0 (CH₃), 19.0 (CH₃), 19.3 (C), 21.2 (CH₂), 26.8 (CH₃), 28.2 (CH₂), 35.1 (CH₂), 36.7 (CH₂), 40.2 (CH₂), 40.7 (C), 42.1 (CH), 48.6 (C), 67.2 (CH), 67.3 (CH₂), 77.8 (CH), 94.2 (C), 127.61 (CH), 127.62 (CH), 129.6 (CH), 133.6 (C), 135.7 (CH); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₃₂H₄₄O₃SiNa 527.2959; Found 527.2979. (YA13159)

(1*S*,3*S*,5*R*,1*a'S*,3*a'S*,7*'R*,7*a'R*)-3-(Hydroxymethyl)-5,3*a'*-dimethyl-2-oxaspiro[cyclopentane-1,3'-perhydrocyclopropa[*c*]inden]-7'-ol. (261)

Bu₄NF in THF (1.0 M, 0.15 mL, 0.15 mmol) was added to a solution of TBDPS ether **259** (50.1 mg, 99.2 μ mol) in THF (2 mL). After 30 min of stirring at 60 °C, the mixture was partitioned between AcOEt (30 mL) and H₂O (20 mL), and the aqueous layer was extracted with AcOEt (2×30 mL). The combined organic extracts were washed with brine (20 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (54.3 mg), which was purified by column chromatography (silica gel 5 g, 4:3 *n*-hexane/AcOEt) to

give diol **261** (26.6 mg, 96%) as a white solid. R_f 0.32 (1:1 *n*-hexane/AcOEt); mp 159–161 °C (colorless needles from Et₂O); $[\alpha]_D^{22}$ –63.4 (*c* 1.27, CHCl₃); IR (neat) 3275, 2937, 2862, 1448, 1375, 1265 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.46 (dd, J = 3.5, 8.2 Hz, 1H, one of C30- H_2), 1.05 (d, J = 6.7 Hz, 3H, C21- H_3), 1.11 (t, J = 3.5 Hz, 1H, one of C30- H_2), 1.13 (s, 3H. C18- H_3), 1.20 (m, 1H, one of C9- H_2), 1.35 (m, 1H, C15-H), 1.42 (m, 1H, one of C12- H_2), 1.49 (dd, J = 6.2, 11.9 Hz, 1H, one of C22- H_2), 1.64–1.72 (m, 2H, C11- H_2), 1.76–1.85 (m, 4H, one of C12- H_2 , C16- H_2 and one of C22- H_2), 1.92 (m, 1H, one of C9- H_2), 2.16 (m, 1H, C20-H), 3.55 (dd, J = 6.9, 11.4 Hz, 1H one of C24- H_2), 3.66 (dd, J = 3.6, 11.4 Hz, 1H, one of C24- H_2), 4.18 (dd, J = 3.8, 10.9 Hz, 1H, C8-H), 4.20 (m, 1H, C23-H); ¹³C NMR (125.7 MHz, CDCl₃) δ 8.1 (CH₂), 16.7 (CH), 17.0 (CH₃), 19.1 (CH₃), 21.1 (CH₂), 28.1 (CH₂), 35.0 (CH₂), 36.2 (CH₂), 40.79 (C), 40.82 (CH₂), 42.2 (CH), 48.8 (C), 67.0 (CH), 67.2 (CH₂), 78.1 (CH), 94.5 (C); HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₆H₂₆O₃Na 289.1780; Found 289.1778. (YA13160)

(1*S*,3*S*,5*R*,3*a*'*R*,4'*R*,7*a*'*S*)-3-(Hydroxymethyl)-5,3*a*',7*a*'-trimethyl-2-oxaspiro[cyclopentan-1,1'-hexahydroindan]-4'-ol. (262)

A mixture of cyclopropane **261** (15.0 mg, 56.3 μ mol), PtO₂ (3.8 mg, 16.7 μ mol) and AcONa (13.8 mg, 0.163 mmol) in AcOH (0.6 mL) was heated at 40 °C under 1 atm of hydrogen. Two additional equal portions of PtO₂ (1.9 mg, 8.4 μ mol) were added after 16 h and 32 h. After a total reaction time of 48 h, the catalyst was filtered through a Celite pad, and the filtrate was evaporated in vacuo. The residual gray solid was partitioned between AcOEt (30 mL) and H₂O (10 mL), and the aqueous layer was extracted with AcOEt (2×30 mL). The combined organic

extracts were washed with brine (10 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (40.1 mg), which was purified by flash column chromatography (silica gel 10 g, 1:1 *n*-hexane/AcOEt) to give diol **262** (11.1 mg, 74%) as a white solid. R_f 0.25 (1:1 *n*-hexane/AcOEt); $[\alpha]_D^{23}$ –29.5 (*c* 0.54, CHCl₃); IR (neat) 3393, 2987, 2938, 2878, 1474, 1381, 1215, 1015 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.99 (s, 3H, C18-*H*₃), 1.06 (d, *J* = 6.7 Hz, 3H, C21-*H*₃), 1.11 (s, 3H, C30-*H*₃), 1.30 (ddd, *J* = 2.1, 4.7, 13.5 Hz, 1H, C12*eq*-*H*), 1.40 (m, 1H, C9*ax*-*H*), 1.52–1.65 (m, 5H, C11-*H*₂, C15-*H*₂ and one of C22-*H*₂), 1.69 (ddt, *J* = 2.0, 12.5, 5.0 Hz, 1H, C9*eq*-*H*), 1.73–1.81 (m, 2H, one of C16-*H*₂ and one of C22-*H*₂), 1.92–2.04 (m, 2H, C12*ax*-*H* and one of C16-*H*₂), 2.21 (m, 1H, C20-*H*), 3.57 (dd, *J* = 8.1, 11.1 Hz, 1H, one of C24-*H*₂), 3.65 (dd, *J* = 3.7, 11.1 Hz, 1H, one of C24-*H*₂), 3.96 (dd, *J* = 5.0, 11.3 Hz, 1H, C8-*H*), 4.21 (m, 1H, C23-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 16.4 (CH₃), 16.6 (CH₃), 17.3 (CH₃), 20.2 (CH₂), 26.1 (CH₂), 29.6 (CH₂), 33.6 (CH₂), 35.8 (CH₂), 40.7 (CH₂), 43.5 (CH), 49.8 (C), 51.0 (C), 68.0 (CH₂), 73.6 (CH), 77.6 (CH), 96.7 (C); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₁₆H₂₈O₃Na 291.1936; Found 291.1923. (YA3176)

(1*S*,3*S*,5*R*,3*a'R*,4*'R*,7*a'S*)-3-[(*tert*-Butyldiphenylsilyl)oxymethyl]-5,3*a'*,7*a'*-trimethyl-2-oxaspiro-[cyclopentane-1,1'-hexahydroindan]-4'-ol (263).

A 0.35 M solution of *tert*-butylchlorodiphenylsilane in DMF (0.10 mL, 35.0 µmol) was added to a solution of diol **262** (4.9 mg, 18.3 µmol) and imidazole (4.8 mg, 0.071 mmol) in DMF (0.5 mL) at

0 °C. After 6 h of stirring at room temperature, the reaction mixture was partitioned between *n*-hexane/AcOEt (3:1, 30 mL) and H₂O (15 mL), and the aqueous layer was extracted with *n*-hexane/AcOEt (3:1, 2×30 mL). The combined organic extracts were washed with brine (15 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product (24.9 mg), which was purified by column chromatography (silica gel 5 g, 5:1 *n*-hexane/AcOEt) to give TBDPS ether **263** (8.8 mg, 95%) as a

colorless oil. R_f 0.40 (3:1 *n*-hexane/AcOEt); $[\alpha]_D^{23}$ –27.6 (*c* 0.82, CHCl₃); IR (neat) 3419, 3071, 2928, 2855, 1462, 1427, 1113, 1015 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.91 (s, 3H, C18-*H*₃), 0.976 (d, *J* = 5.8 Hz, 3H, C21-*H*₃), 0.982 (s, 9H, ^{*t*}*Bu*), 1.07 (s, 3H, one of C30-*H*₃), 1.23 (ddd, *J* = 2.2, 4.6, 13.3 Hz, 1H, C12*eq*-*H*), 1.34 (m, 1H, one of C9-*H*₂), 1.43–1.64 (m, 7H, one of C9-*H*₂, C11-*H*₂, C15-*H*₂, one of C16-*H*₂ and one of C22-*H*₂), 1.86 (dt, *J* = 6.2, 13.3 Hz, 1H, C12*ax*-*H*), 1.96 (dt, *J* = 5.6, 11.3 Hz, 1H, one of C22-*H*₂), 2.07–2.17 (m, 2H, one of C16-*H*₂ and C20-*H*), 3.62 (dd, *J* = 4.5, 10.5 Hz, 1H, one of C24-*H*₂), 3.66 (dd, *J* = 4.9, 10.5 Hz, 1H, one of C24-*H*₂), 3.88 (dd, *J* = 5.0, 11.3 Hz, 1H, C8-*H*), 4.13 (m, 1H, C23-*H*), 7.30–7.37 (m, 6H, aromatic-*H*), 7.60–7.63 (m, 4H, aromatic-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 15.9 (CH₃), 16.6 (CH₃), 17.3 (CH₃), 19.3 (C), 20.3 (CH₂), 26.1 (CH₂), 26.8 (CH₃), 29.6 (CH₂), 33.6 (CH₂), 36.1 (CH₂), 40.2 (CH₂), 43.3 (CH), 49.8 (C), 50.9 (C), 67.2 (CH₂), 73.8 (CH), 135.7 (CH); HRMS (ESI) *m*/*z* [M + Na]⁺ Calcd for C₃₂H₄₆O₃SiNa 529.3114; Found 529.3123. (YA13166)

(1*S*,3*S*,5*R*,3*a'R*,7*a'S*)-3-[(*tert*-Butyldiphenylsilyl)oxymethyl]-5,3*a'*,7*a'*-trimethyl-2-oxaspiro[cyclo-pentane-1,1'-hexahydroindan]-4'-one (258a).

Dess-Martin periodinane (9.5 mg, 22.4 μ mol) was added to a solution of alcohol **263** (7.0 mg, 13.8 μ mol) in CH₂Cl₂ (1 mL) at 0 °C. After 30 min of stirring at room temperature, the reaction was quenched with a mixture of 1 M aqueous Na₂S₂O₃ (7 mL) and saturated aqueous NaHCO₃ (7 mL), and the resulting mixture was vigorously stirred for 30 min. The mixture was extracted with AcOEt (2×30 mL), and the combined organic extracts were washed with brine (15 mL) and dried over anhydrous Na₂SO₄. Filtration and

evaporation in vacuo furnished the crude product (10.1 mg), which was purified by column chromatography (silica gel 5 g, 8:1 *n*-hexane/AcOEt) to give ketone **258a** (6.2 mg, 88%) as a colorless oil. R_f 0.59 (3:1 *n*-hexane/AcOEt); $[\alpha]_D{}^{23}$ –14.6 (*c* 0.64, CHCl₃); IR (neat) 2961, 2930, 2859, 1709, 1472, 1462, 1427, 1113 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.87 (s, 3H, C18-*H*₃), 1.05 (s, 9H, ^{*'*}*Bu*), 1.07 (d, *J* = 7.0 Hz, 3H, C21-*H*₃), 1.36 (m, 1H, C12*eq*-*H*), 1.38 (s, 3H, C30-*H*₃), 1.53–1.58 (m, 2H, C15β-*H* and one of C22-*H*₂), 1.68 (m, 1H, one of C11-*H*₂), 1.85 (m, 1H, one of C16-*H*₂), 1.93–2.06 (m, 3H, C12*ax*-*H*, one of C16-*H*₂ and one of C22-*H*₂), 2.11–2.20 (m, 3H, C9*eq*-*H*, one of C11-*H*₂ and C20-*H*), 2.32 (dt, *J* = 5.8, 13.5 Hz, 1H, C15α-*H*), 2.60 (ddd, *J* = 8.8, 11.9, 15.7 Hz, 1H, C9*ax*-*H*), 3.68 (dd, *J* = 4.7, 10.6 Hz, 1H, one of C24-*H*₂), 3.73 (dd, *J* = 4.7, 10.6 Hz, 1H, one of C24-*H*₂), 4.24 (m, 1H, C23-*H*), 7.36–7.44 (m, 6H, aromatic-*H*), 7.66–7.69 (m, 4H, aromatic-*H*); ¹³C NMR (125.7 MHz, CDCl₃) δ 17.4 (CH₃), 19.0 (CH₂), 39.5 (CH₂), 43.2 (CH), 51.7 (C), 60.9 (C), 67.2 (CH₂), 77.8 (CH), 96.5 (C), 127.63 (CH), 127.64 (CH), 129.60 (CH), 129.62 (CH), 133.5 (C), 133.6 (C), 135.61 (CH), 135.65 (CH), 216.8 (C); HRMS (ESI) *m*/*z* [M + Na]⁺ Calcd for C₃₂H₄₄O₃SiNa 527.2957; Found 527.2954. (YA13167)

参考文献

- (1) Wani, M. C.; Taylor, H.; L.; Wall, M. E.; Coggon, P.; McPhail, A. T. J. Am. Chem. Soc. 1971, 93, 2325–2327.
- (2) (a) Denis, J.-N.; Greene, A. E. J. Am. Chem. Soc. 1988, 110, 5917–5919. (b) Mangatal, L.; Adeline, M, T.; Guénard, D.; Guéritte-Voegelein, F.; Potier, P. Tetrahedron 1989, 45, 4177–4190.
 (c) Lavelle, F.; Fizames, C.; Guéritte-Voegelein, F.; Guénard, D.; Potier, P. Proc. A. A. C. R. 1989, 30, 566–568. (d) Denis, J.-N.; Correa, A.; Greene, A. E. J. Org. Chem. 1990, 55, 1957–1959.
- (3) (a) Holton, R. A.; Somoza, C.; Kim, H.-B.; Ronald, F. L.; Biediger, R. J.; Boatman, D.; Shindo, M.; Smith, C. C.; Kim, S.; Nadizadeh, H.; Suzuki, Y.; Tao, C.; Vu, P.; Tang, S.; Zhang, P.; Murthi, K. K.; Gentile, L. N.; Liu, J. H. J. Am. Chem. Soc. 1994, 116, 1597-1598. (b) Holton, R. A.; Kim, H.-B.; Somoza, C.; Liang, F.; Biediger, R. J.; Boatman, D.; Shindo, M.; Smith, C. C.; Kim, S.; Nadizadeh, H.; Suzuki, Y.; Tao, C.; Vu, P.; Tang, S.; Zhang, P.; Murthi, K. K.; Gentile, L. N.; Liu, J. H. J. Am. Chem. Soc. 1994, 116, 1599-1600. (c) Nicolaou, K. C.; Yang, Z.; Liu, J. J. Ueno, H.; Nantermet, P. G.; Guy, R. K.; Claiborne, C. F.; Renaud, J.; Couladouros, E. A.; Paulvannan, K.; Sorensen, E. J. Nature 1994, 367, 630-634. (d) Masters, J. J.; Link, J. T.; Synder, L. B.; Young, W. B.; Danishefsky, S. J. Angew. Chem., In. Ed. 1995, 34, 1723-1726. (e) Wender, P. A.; Badham, N. F.; Conway, S. P.; Floreancig, P. E.; Glass, T. E.; Granicher, C.; Houze, J. B.; Janichen, J.; Lee, D.; Marquess, D. G.; McGrane, P. L.; Meng, W.; Mucciaro, T. P.; Muhlebach, M.; Natchus, M. G.; Paulsen, H.; Rawlins, D. B.; Satkofsky, J.; Sutton, J. C.; Taylor, R. F.; Tomooka, K. J. Am. Chem. Soc. 1997, 119, 2755-2756. (f) Mukaiyama, T.; Shiina, I.; Iwadare, H.; Nishimura, T.; Ohkawa, N.; Sakoh, H.; Nishimura, K.; Tani, Y.; Hasegawa, M.; Yamada, K.; Saitoh, K.; Chem. Eur. J. 1998, 5, 121-161. (g) Morihara, K.; Hara, R.; Kawahara, S.; Nishimori, T.; Nakamura, N.; Kusama, H.; Kuwajima, I. J. Am. Chem. Soc. 1998, 120, 12980–12981. (h) Ringel, I.; Horwitz, S. B. J. Nati. Can. Insti. 1991, 83, 288-291.
- (4) Ishihara, S.; Mendoza, A.; Baran, P. S. *Tetrahedron* **2013**, *69*, 5685–5701.
- (5) For a review on biosynthesis of oxygenated steroids and tritepenes, see: Brown, G. D. *Nat. Prod. Rep.* **1998**, 653–696.
- (6) For a review on the structure, bioactivities, and synthesis of highly functionalized labdane diterpenes, see: Marcos, I. S.; Castañeda, L.; Basabe, P.; Díez, D.; Urones, J. G. *Mini-Rev. Org. Chem.* 2012, 9, 54–86.
- (7) For a review on the structure, bioactivity and synthesis of OSW-1 and other steroidal glycosides, see: Tang, Y.; Li, N.; Duan, J.-A.; Tao, W. *Chem. Rev.* **2013**, *113*, 5480–5514.
- (8) Slominski, A.; Semak, I.; Wortsman, J.; Zjawiony, J.; Li, W.; Zbytek, B.; Tuckey, R. C. *FEBS J.* 2006, 273, 2891–2901.
- (9) Wube, A. A.; Wenzig, E.-M.; Gibbons, S.; Asres, K.; Bauer, R.; Bucar, F. *Phytochemistry*, 2008, 69, 982–987.
- (10) (a) Sholichin, M.; Miyahara, K.; Kawasaki, T. *Chem. Pharm. Bull.* 1985, *33*, 1756–1759. (b) Lee, S.-M.; Chun, H.-K.; Lee, C.-H.; Min, B.-S.; Lee, E.-S.; Kho, Y.-H. *Chem. Pharm. Bull.* 2002, *50*, 1245–1249.
- (11) Ori, K.; Koroda, M.; Mimaki, Y.; Sakagami, H.; Sashida, Y. *Phytochemistry* 2003, 64, 1351–1359.
- (12) Cirigliano, A. M.; Veleiro, A. S.; Oberti, J. C.; Burton, G. J. Nat. Prod. 2002, 65, 1049–1051.
- (13) Gao, X.-M.; Pu, J.-X.; Huang, S.-X.; Lu, Y.; Lou, L.-G.; Li, R.-T.; Xiao, W.-L.; Chang, Y.; Sun, H.-D. J. Nat. Prod. 2008, 71, 1182–1188.
- (14) Nagafuji, S.; Okabe, H.; Akahane, H.; Abe, F. Biol. Pharm. Bull. 2004, 27, 193–197.

- (15) Rigano, D.; Aviello, G.; Bruno, M.; Formisano, C.; Rosselli, S.; Capasso, R.; Senatore, F.; Izzo, A. A.; Borrelli, F. J. Nat. Prod. 2009, 72, 1477–1481.
- (16) Moon, H.-I. Phytother. Res. 2010, 24, 1256–1259.
- (17) (a) Mazur, Y.; Daieli, N.; Sondheimer, F. J. Am. Chem. Soc. 1960, 82, 5889–5908. (b) Doller, D.; Gros, E. G. Synth. Commun. 1990, 20, 3115–3124. (c) Shi, B.; Tang, P.; Hu, X.; Liu, J. O.; Yu, B. J. Org. Chem. 2005, 70, 10354–10367. (d) Perez-Medrano, A.; Grieco, P. A. J. Am. Chem. Soc. 1991, 113, 1057–1059. (e) Cuo, C.; Fuchs, P. L. Tetrahedron Lett. 1998, 39, 1099–1102. (f) Yu, W.; Jin, Z. J. Am. Chem. Soc. 2002, 124, 6576–6583.
- (18) (a) Corey, E. J.; Das, J. J. Am. Chem. Soc. 1982, 104, 5551–5553. (b) McMurry, J. E.; Erion, M. D. J. Am. Chem. Soc. 1985, 107, 2712–2720. (c) Kende, A. S.; Deng, W.-P.; Zhong, M.; Guo, X.-C. Org. Lett. 2003, 5, 1785–1788. (d) Cano, M. J.; Bouanou, H.; Tapia, R.; Alvarez, E.; Alvarez-Manzaneda, R.; Chahboun, R.; Alvarez-Manzaneda, E. J. Org. Chem. 2013, 78, 9196–9204. (e) Kienzle, F.; Stadlwieser, J.; Rank, W.; Mergelsberg, I. Tetrahedron Lett. 1988, 29, 6479–6482. (f) Paquette, L. A.; Wang, H.-Li. Tetrahedron Lett. 1995, 36, 6005–6008.
- (19) For reviews on Ireland–Claisen rearrangements, see: (a) Chai, Y.; Hong, S.-P.; Lindsay, H. A.; McFarland, C.; McIntosh, M. C. *Tetrahedron* 2002, *58*, 2905–2928. (b) Ilardi, E. A.; Stivala, C. E.; Zakarian, A. *Chem. Soc. Rev.* 2009, *38*, 3133–3148.
- (20) (a) Nakamura, E.; Fukuzaki, K.; Kuwajima, I. J. Chem. Soc., Chem. Commun. 1983, 499–501.
 (b) Gilbert, J. C.; Selliah, R. D. Tetrahedron 1994, 50, 1651–1664 and references cited therein.
 (c) Kazmaier, U. J. Org. Chem. 1996, 61, 3694–3699. (d) Bedel, O.; Français, A.; Haudrechy, A. Synlett 2005, 2313–2316 and references cited therein. (e) Bunte, J. O.; Cuzzupe, A. N.; Daly, A. M.; Rizzacasa, M. A. Angew. Chem., Int. Ed. 2006, 45, 6376–6380.
- (21) (a) Qin, Y.-C.; Stivala, C. E.; Zakarian, A. Angew. Chem., Int. Ed. 2007, 46, 7466–7469. (b) Yang, Y.; Fu, X.; Chen, J.; Zhai, H. Angew. Chem., Int. Ed. 2012, 51, 9825–9828.
- (22) Ireland, R. E.; Wipf, P.; Xiang, J.-N. J. Org. Chem. 1991, 56, 3572–3582.
- (23) (a) Sato, T.; Tajima, K.; Fujisawa, T. *Tetrahedron Lett.* 1983, 24, 729–730. (b) Bruke, S. D.; Fobare, W. F.; Pacofsky, G. J. J. Org. Chem. 1983, 48, 5221–5228. (c) Kallmerten, J.; Gould, T. J. *Tetrahedron Lett.* 1983, 24, 5177–5180. (d) Bartlett, P. A.; Tanzella, D. J.; Barstow, J. F. J. Org. Chem. 1982, 47, 3941–3945.
- (24) (a) Bruke, S. D.; Letourneau, J. J.; Matulenko, M. A. *Tetrahedron Lett.* 1999, 40, 9–12. (b) Marchart, S.; Mulzer, J.; Enev, V. S. *Org. Lett.* 2007, *9*, 813–816. (c) Parthasarathy, G.; Besnard, C.; Kündig, E. P. *Chem. Commun.* 2012, 48, 11241–11243.
- (25) Hattori, K.; Yamamoto, H. *Tetrahedron* **1994**, *50*, 3099–3112.
- (26) Jackson, R. W.; Shea, K. J. Tetrahedron Lett. 1994, 35, 1317–1320.
- (27) Khaledy, M. M.; Kalani, M. Y. S.; Khuong, K. S.; Houk, K. N. J. Org. Chem. 2003, 68, 572–577.
- (28) Gu, Z.; Herrmann, A. T.; Stivala, C. E.; Zakarian, A. Synlett 2010, 1717–1722.
- (29) (a) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765–5780. (b) Katsuki, T.; Martin, V. S. Org. React. 1996, 48, 1–299.
- (30) Roush, W. R.; Straub, J. A.; VanNieuwenhze, M. S. J. Org. Chem. 1991, 56, 1636–1648.
- (31) Suzuki, T.; Saimoto, H.; Tomioka, H.; Oshima, K.; Nozaki, H. *Tetrahedron Lett.* **1982**, *23*, 3597–3600.
- (32) (a) Dess, D. B.; Martin, J. C. J. Org. Chem. **1983**, 48, 4155–4156. (b) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. **1991**, 113, 7277–7287.
- (33) (a) Kraus, G. A.; Taschner, M. J. J. Org. Chem. 1980, 45, 1175–1176. (b) Kraus, G. A.; Roth, B. J. Org. Chem. 1980, 45, 4825–4830.
- (34) ter Halle, R.; Bernet, Y.; Billard, S.; Bufferne, C.; Carlier, P.; Delaitre, C.; Flouzat, C.; Humblot,

G.; Laigle, J. C.; Lombard, F.; Wilmouth, S. Org. Process. Res. Dev. 2004, 8, 283–286.

- (35) Gajewski, J. J.; Emrani, J. J. Am. Chem. Soc. 1984, 106, 5733-5734.
- (36) Wilcox, C. S.; Babston, R. E. J. Am. Chem. Soc. 1986, 108, 6636-6642.
- (37) Corey, E. J.; Seebach, D. J. Org. Chem. 1966, 31, 4097–4099.
- (38) Giri, I.; Bolon, P. J.; Chu, C. K. Nucleosides Nucleotides 1996, 15, 183–204.
- (39) Lewis, M. D.; Cha, J. K.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 4976–4978.
- (40) For recent reviews on Pummerer reactions, see: (a) Bur, S. K.; Padwa, A. *Chem. Rev.* 2004, *104*, 2401–2432. (b) Feldman, K. S. *Tetrahedron* 2006, *62*, 5003–5034. (c) Smith, L. H. S.; Coote, S. C.; Sneddon, H. F.; Procter, D. J. *Angew. Chem., Int. Ed.* 2010, *49*, 5832–5844.
- (41) For the use of Tollens oxidation to the synthesis of a tetrahydrofuran-2-carboxylic acid derivative, see: Di Florio, R.; Rizzacasa, M. A. *J. Org. Chem.* **1998**, *63*, 8595–8598.
- (42) Ireland, R. E.; Meissner, R. S.; Rizzacasa, M. A. J. Org. Chem. 1993, 115, 7166–7172.
- (43) (a) Paul, R. Bull. Soc. Chim. Fr. 1935, 2, 745–754. (b) Eglinton, G.; Jones, E. R. H.; Whiting, M. C. J. Chem. Soc. 1952, 2873–2882.
- (44) Zhang, W.; Robins, M. J. Tetrahedron Lett. 1992, 33, 1177–1180.
- (45) Boto, A.; Hernández, R.; Suárez, E. J. Org. Chem. 2000, 65, 4930-4937.
- (46) (a) Cocker, J. D.; Halsall, T. G.; Bowers, A. J. Chem. Soc. 1956, 4259–4262. (b) Cocker, J. D.; Halsall, T. G. J. Chem. Soc. 1956, 4262–4271.
- (47) Hara, S.; Dojo, H.; Takinami, S.; Suzuki, A. Tetrahedron Lett. 1983, 24, 731–734.
- (48) For a review on intramolecular Heck reactions, see: Link, J. T. Org. React. 2002, 60, 157–534.
- (49) (a) Karabelas, K.; Westerlund, C.; Hallberg, A. J. Org. Chem. 1985, 50, 3896–3900. (b) Abelman, M. M.; Oh, T.; Overman, L. E. J. Am. Chem. Soc. 1987, 52, 4133–4135.
- (50) (a) Iwasawa, N.; Kato, T.; Narasaka, K. *Chem. Lett.* **1988**, 1721–1724. (b) Chiba, S.; Kitamura, M.; Narasaka, K. *J. Am. Chem. Soc.* **2006**, *128*, 6931–6937.
- (51) Trost, B. M.; Lee, D. C.; Rise, F. Tetrahedron Lett. 1989, 30, 651–654.
- (52) For a review on radical cyclization reactions, see: Giese, B.; Kopping, B.; Göbel, T.; Dickhaut, J.; Thoma, G.; Kulicke, K. J.; Trach, F. Org. React. 1996, 48, 301–834.
- (53) Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. J. Comput. Chem. 1990, 11, 440–467.
- (54) Carreño, M. C.; Pérez-González, M.; Ribagorda, M.; Somoza, À.; Urbano, A. Chem. Commun. 2002, 3052–3053.
- (55) Wiseman, J. M.; McDonald, F. E.; Liotta, D. C. Org. Lett. 2005, 7, 3155–3157.
- (56) Akahori, Y.; Yamakoshi, H.; Sawayama, Y.; Hashimoto, S.; Nakamura, S. J. Org. Chem. 2014, 79, 720–735.
- (57) (a) Sidwell, W. T. L.; Tamm, C.; Ziegler, R. J. Am. Chem. Soc. 1975, 97, 3518–3519. (b) Adinolfi, M.; Barone, G.; Lanzetta, R.; Laonigro, R.; Mandoni, L.; Parrilli, M. J. Nat. Prod. 1983, 46, 559–562.
 (c) Adinolfi, M.; Barone, G.; Lanzetta, R.; Laonigro, R.; Mandoni, L.; Parrilli, M. Can. J. Chem. 1983, 61, 2633–2637. (d) Adinolfi, M.; Barone, G.; Corsaro, M. M.; Mangoni, L.; Lanzetta, R.; Parrilli, M. Can.J.Chem. 1988, 66, 2787–2793. (e) Mimaki, Y.; Ori, K.; Sashida, Y.; Nikaido, T.; Song, L.-G.; Ohmoto, T. Chem. Lett. 1992, 1836–1866. (f) Mimaki, Y.; Ori, K.; Sashida, Y.; Nikaido, T.; Song, L.-G.; Ohmoto, T. Chem. Lett. 1992, 1999–2000. (g) Barone, G.; Michela, M.; Lanzetta, C. R.; Mangoni, L.; Parrilli, M. Phytochemistry 1993, 33, 431–436. (h) Mikami, Y.; Kubo, S.; Kinoshita, Y.; Sashida, Y.; Song, L.-G.; Nikaido, T.; Ohmoto, T. Phytochemistry 1993, 34, 791–797. (i) Amschler, G.; Frahm, A. W.; Muller-Dobleis, D.; Muller-Doblies, U. Phytochemistry 1998, 47, 429–436. (j) Kuroda, M.; Mimaki, Y.; Ori, K.; Kushino, H.; Nukada, T.; Sakagami, H.; Sashida, Y. Tetrahedron 2002, 58, 6735–6740. (k) Ori, K.; Kuroda, M.;

Mimaki, Y.; Sakagami, H.; Sashida, Y. *Chem. Pharm. Bull.* **2003**, *51*, 92–95. (l) Kuroda, M.; Mimaki, Y.; Ori, K.; Kushino, H.; Nukada, T.; Sakagami, H.; Sashida, Y. *Tetrahedron* **2002**, *58*, 6735–6740.

- (58) Woodward, R. B.; Patchett, D. H.; Barton, H. R.; Ives, D. A. J.; Kelly, R. B. J. Am. Chem. Soc. 1954, 76, 2852–2853.
- (59) Corey, E. J.; Lee, J.; Liu, D. R. Tetrahedron Lett. 1994, 35, 9149–9152.
- (60) Yamaoka, M.; Nakazaki, A.; Kobayashi, S. Tetrahedron Lett. 2009, 50, 6764-6768.
- (61) (a) Tanaka, N.; Kitamura, A.; Mizushima, Y.; Sugawara, F.; Sakaguchi, K. J. Nat. Prod. 1998, 61, 193–197. (b) Mizushinam, Y.; Tanaka, N.; Kitamura, A.; Tamai, K.; Ikeda, M.; Takemura, M.; Sugawara, F.; Arai, T.; Matsukage, A.; Yoshida, S.; Sakaguchi, K. Biochem. J. 1998, 330, 1325–1332.
- (62) Silvestre, S. M.; Salvador, J. A. R. *Tetrahedron* **2007**, *63*, 2439–2445.
- (63) 在原僚一,博士論文,2008年,北海道大学.
- (64) 赤堀禎紘, 修士論文, 2011年, 北海道大学.
- (65) Jurczak, J.; Bauer, T.; Chmielewski, M. Carbohydrate Res. 1987, 164, 493-499.
- (66) Wenkert, E.; McPherson, C. A. J. Am. Chem. Soc. 1972, 94, 8084-8090.
- (67) Wang, C.; Forsyth, C. J. Org. Lett. 2006, 8, 2997–3000.
- (68) (a) Frigerio, M.; Santagostino, M. *Tetrahedron Lett.* 1994, 35, 8019–8022. (b) Frigerio, M.; Santagostino, M.; Sputore, S. J. Org. Chem. 1999, 64, 4537–4538.
- (69) Wu, Y.; Huang, J.-H.; Shen, X.; Hu, Q.; Tang, C.-J.; Li, L. Org. Lett. 2002, 4, 2141.
- (70) Moyer, M. P.; Feldman, P. L.; Rapoport, H. J. Org. Chem. 1985, 50, 5223-5230.
- (71) (a) Heslin, J. C.; Moody, C. J. J. Chem. Soc., Perkin Trans. 1 1988, 1417–1423. (b) Moody, C. J.; Taylor, R. J. J. Chem. Soc., Perkin Trans. 1 1989, 721–731. (c) Cox, G. G.; Moody, C. J. Tetrahedron 1993, 49, 5109–5126.
- (72) Carroll, M. F. J. Chem. Soc. 1940, 704–706.
- (73) Gilbert, J. C.; Kelly, T. A. Tetrahedron Lett. 1988, 44, 7587–7600.
- (74) Luzzio, F. A. Tetrahedron 2001, 57, 915–945.
- (75) Petasis, N. A.; Bzowej, E. I. J. Am. Chem. Soc. 1990, 112, 6392-6394.
- (76) Scott, W. J.; McMurry, J. E. Acc. Chem. Res. 1988, 21, 47-54.
- (77) Marshall, J. A.; Zou, D. Tetrahedron Lett. 2000, 41, 1347–1350.
- (78) Greene, A. E.; Lansard, J.-P.; Luche, J.-L.; Petrier, C. J. Org. Chem. 1984, 49, 931–932.
- (79) Scheiper, B.; Bonnekessek, M.; Krause, H.; Fürstner, A. 2004, 69, 3943–3949.
- (80) (a) Marino, J. P.; de Dios, A.; Anna, L. J.; de la Pradilla, R. F. J. Org. Chem. 1996, 61, 109–117.
 (b) Bertz, S. H.; Dabbagh, G.; Mujsce, A. M. J. Am. Chem. Soc. 1991, 113, 631–636.
- (81) (a) Lebel, H.; Paquet, V. J. Am. Chem. Soc. 2004, 126, 320–328. (b) Lebel, H.; Guay, D.; Paquet, V.; Huard, K. Org. Lett. 2004, 6, 3047–3050.
- (82) Mukaiyama, T.; Hoshino, T. J. Am. Chem. Soc. 1960, 82, 5339–5342.
- (83) Voorhees, V.; Adams, R. J. Am. Chem. Soc. 1922, 44, 1397-1405.
- (84) For a review on cleavage of isoxazolines, see: Nagireddy, J. R.; Raheem, M.-A.; Haner, J.; Tam, W. Curr. Org. Chem. 2011, 8, 659–700.
- (85) (a) Le Bel, N. A. *Trans. N. Y. Acd. Sci.* 1965, *27*, 858–863. (b) Liguori, A.; Sindona, G.; Uccella, N. *Tetrahedron* 1984, *40*, 1901–1906. (c) Casuscelli, F.; Chiacchio, U.; Rescifina, A.; Romeo, R.; Romeo, G.; Tommasini, S.; Uccella, N. *Tetrahedron* 1995, *51*, 2979–2990.
- (86) (a) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1958, 80, 5323–5324. (b) Furukawa, J.; Kawabata, N.; Nishimura, J. Tetrahedron Lett. 1966, 3353–3354.
- (87) Girard, C.; Conia, J. M. Tetrahedron Lett. 1974, 3327–3328.

- (88) Gemal, A. L.; Luche, J.-L. J. Am. Chem. Soc. 1981, 103, 5454–5459.
- (89) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307–1370.
- (90) Takahashi, H.; Kawakita, T.; Ohno, M.; Yoshioka, M.; Kobayashi, S. *Tetrahedron* **1992**, *48*, 5691–5700.
- (91) Newhouse, T. R.; Kaib, P. S. J.; Gross, A. W.; Corey, E. J. Org. Lett. 2013, 15, 1591–1593.
- (92) Shioiri, T.; Aoyama, T.; Mori, S. Org. Synth. Coll. Vol. 1993, 8, 612–615.
- (93) Corey, E. J.; Cho, H.; Rücker, C.; Hua, D. H. Tetrahedron Lett. 1981, 22, 3455–3458.
- (94) Danheiser, R. L.; Miller, R. F.; Brisbois, R. G.; Park, S. Z. J. Org. Chem. 1990, 55, 1959–1964.