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Abstract 

   A measure valued diffusion is discussed which describes the infinite-sites-model with stepping stone 

structure. The average probability that there exist s segregating sites in randomly chosen two genes at the 

stationary state is written in terms of the coalescent time of the dual process.

1. Introduction 

   Let E be the space defined by 

 E=[0,1]4={x=(x„xi,  •  •  •  ,x,,,  •  •  •);  xnE  [0,  I] for all  nEZ+}, 

and S be a countable (or finite) set, where  Z+ denotes the non-negative integers. P(E) stands for the Borel 

probability measures on E with the topology of weak covergence, and  P is defined by 

 P=  ;  iikEP(E),  kES}, 

with the product topology. 

   We consider a  P -valued diffusion process characterized by a positive constant 0 and constants 

            S is called the set of colonies, and the constant (1/2) 0 and the matrix  {nzkik) are called 
the mutation rate and the migration rates respectively. The generator of the diffusion is written in terms 

of random sampling, mutation and migration. The precise definition of the diffusion is given in Section 2. 

Our diffusion is known to have a unique stationary  distribution'', denoted by  Q(d,u) which is a probability 

measure on P. 

   Define  A„  for  sEZ+, by 

 As=  {(x,y)GE2  ;  x—(xo,xl,  •  •  •)EE and  Y=(Y0,Y1,  •  •  •)EE 

 satisfy 

      (i)  20,  X„  •  •  • are distinct, and  Yo,Y1,  •  •  • are distinct, 
      and 

      (ii) there exist  1 and  mEZ, such that 

          (a)  /4-m=s, 

      (b) 

           (c) xo,  •  •  •,x1-1,Yo,  -•,Y„„-I are distinct, 

          (d)  xi+j----yni+1 for  all  jeZ+ }.



Here, in the condition (c) of (ii), the set  {xo, •  •  •,x1-1} is regarded as empty if 1=0, and the set 

 {yo,  •  •  •,y,„_1} is considered in the same way for  m=0. 

We consider a Markov chain {k(t)} with state space  SUS'US3U  •  •  •. The definition of {k(t)} is given in 

Section 2. The coalescent time T of the Markov chain is the first passage time to the set S.  IA, denotes 

the indicator function of  A. 

   Our main result is stated as follows: 

                                 OT)s  (1.1) f<1,0-4,Xiik2 >5(4)=E(k, [ e9T( ;T<c/D ], (1c,,k2)ES2, 

                 

. .s! 
where  <1,1s,i4,  X/42> is the integral of  lAs with respect to the product measure  ilk,  X/42. This statement 
appears in Corollary 5.1. 

   An element sEE is called a type of genes, and  xo,xi,  •  •  •,xn,  •  •  • are called sites where mutations have 
occurred in the lines of descent of the gene.  x0 is the site at which the most recent mutation have occurred. 

 AsCE2 is the set of pairs of types which have s segregating sites. For  (x,y)EAR, there exist 1 and m 
 EZ+ appeared in the definition  A. Here,  (x1,x1+1,x1+2,  •  •  •)=(Y„,,vm-FI,Y.+2,  •  • •) is called a common 

ancestor of  x and y.  <1As,i.lkiXiik,> stands for the probability with respect to  it that the pair of types 
chosen from colonies k1 and k2 independently has s segregating sites. The left-hand side of (1,1) is the 

average (with respect to  C)(4)) quantity of  <1As,AkiXiik,>. The right-hand side is determined by the 
Markov chain {k(t)}. 

   In section 2, we give a precise statement of our problem and the main result (Theorem 2.4). Section 
3 is devoted to the key,Theorem 3.1, for the proof of Theorem 2.4. In Section 4, we give the proof of 
Theorem 2.4. A corollary of Theorem 2.4 is given in Section 5. In Section 6, two examples are given,where 
the set S is assumed to be the d-dimensional lattice  Zd. 

2. Preliminaries 
   Define  Em,  mEN, by the set 

 Em=EXEX•  •  • XE  (m-fold) 
with the product topology, where N denotes the set of natural numbers. C(Em) denotes the space of 
continuous functions on  V, and  B(Em) stands for the space of bounded Borel measurable function on  E. 
Here, for each  mEN, we introduce the operators  (fiii ,  :  B(Em)  B(Em-1) and L2,1_<im, 

 :B(Em)  —> B(Em), are given by 
        (cbii.f)(xl, • •  sm-1)—Axi,  •  •  ,x,_„xi,x7, • •  ,gym-1) 

and 
                1 I       (LI) (xi , • • • , =-01 {fixi • • • , 5J-1 (u, xi), x,n)—f(x„ • • • ,x22,)}du,                    2 0 

for  fEB(Em), where  x,EE  (i=1,  2,  •  •  •,m), and where  (u,x)—(u,x0,zi,  •  •  •)  EE for  x=(xo,xl, • •  •)EE. 

   Throughout this paper, the constant 0 is assumed to be positive. For  fEB(Em) and 

It---(ki,k2, •  •  •  dc„,)ESm, we put 

 Of,k(A)= <f, Ak>, 

where  it=(ittk),EsEP and  uk is the product measure  itkiX  lik2X  •  •  •  X  iikm. Now, we are in position to define 

the generator  G of our P-valued diffusion process. Define G for  fEB(Em) 

by 

      (G Ofrk)(A)= E <L,f, E Eirtk,k,<Lii,i(k9k>+ E (<00 — <f, iak›), 
 2=1  k'ESi=I m 

where  •  •  •  •  •  •  ,Icni)ES'i for and  ri(k)k—(k„  •  •  -,1c2_,,k,,k2+1,  •  •  •  21c222)ESm for



   We assume in this paper that the coefficients satisfy 
                                  mk,k2.-_0 for  k,  k2 

and 
 suPk  I  nikki  <  +  c/i with Mkk— Etc, #k,Mkk-

Define A C  CCP) X C(P) by 
           A =  {((/)  f,k,  Lk)  ;  mEN,  kES'n  ,  fEC(Em))  - 

 C([0,  c/o)  ,  I') denotes the space of continuous functions  co  : [0,  00) with the topology of uniform 

convergence on compact subsets of [0,  co) . The coordinate process  ii(t)=  fiik(t)lkEs;  01 on 

 52=C([0,  00),  P) is defined by 

 A(t)(0))=c0(t),(oES2, 
and we set the a -fields 

 F=c7(A(s);s:0) and Ft=0-(2(s);Os_<t) for  t-0. 

Define the martingale problem as follows. 

                     Definition 2.1. For 0EP, a probability measure P on  (C[O,  oo),P),F) is called a solution of the 

 C(  [0,  c3),  P) martingale problem for  (A,  u  0) if  P(A(0)=A°  )=1, and if 

 of,k(g(0)—fot(Gof,k)(12(s))ds, 
is a (P,  {Ft})-martingale for all  (0,f,k,  G-Of,k)EA. 

   The following two propositions are essentially due to K.  Handa5). By Theorem 3.2 and 3.7 of his paper, 

we have the next proposition. 

Proposition 2.2. 
   0 F

or any0EP, there exists a unique solution P of the C([0,c13),P)martingale problemfor(A,,u) 

That is, the  C([0,  c'.), P) martingale problem is well posed. 

   The definition of the martingale problem in  5) is slightly different from ours. In  [5], the class of 
functions f in the definition of the set A is restricted to the family of continuous functions on  E which can 

be represented in the form 

(2.1) f(x)= fi(x) • -fm(x), fieC(E). 

However, it is obvious that Proposition 2.2 is obtained from Theorem 3.2 ans 3.7 in  5), because any 

 feC(Ent) can be approximated uniformly by a sequence of finite linear combinations of functions having 

form(2.1). 

   We set 

 Pf(x)--folf((u,x))du 
   and 

               1 
         (Ln(x)=—28(P—N, for  fEB(E)=-B(E'), 

where I is the identity operator. Obviously,  L is the infinitesimal generator of a Feller semigroup 7;=-eZ 
on  C(E)  =C(E1)



Define  C,,,(E) by 

 C„,(E)=  ffEC(E);./(x)=f(x,) if  x0=x,„,  •  •  •,x.=x,,,„ for  •  •  •  ) and 

          x, = (x, x,1, • •  • ) in E},  inEZ+. 

Let  2. be the Lebesgue measure on  [0,1], and  A— is the product measure  A  XAX••• on  E. For 

fEB(E), <1> denotes  41(x)r(dx). For any  fECm(E), 

           (1 ot)k (1 8t) 
     Ttf=e-÷9tZU j Pk ‘--im 2 j                      f=e-72'  (Pf—<f>)+<f>---><f> 

         k=0 ki k=0 k! 

uniformly on E, as t  —> 

Since  U:foC.(E) is dense in C(E), the assumption of Theorem 5.1 in  5) is satisfied. Hence, we obtain the 

next proposition. Here, P(P) denotes the set of  Borel probability measures on P. 

Proposition 2.3. The measure valued diffusion process  {ii(t);t_0} corresponding to  the solution of the 
C([0,  +°°),  P) martingale problem for A is ergodic in a weak sense. Namely, there exists a uniquely 

stationary distribution  QEP(P), and 

      limiC(t)k>i =j--;<f, 
                    +- 

holds for any  (f,  k)  E U  (C(Em)  X  Sm). 
                         m=1 

   Let  K=  {k(t)  ;  tO} be a Markov chain on the state space  s•  =  U,7=0Sm, whose generator is of the form 

           Lh(k)=ECi;li<j,ki=k;} {h(Ak)—h(k)} E Inik,kich(ri(k,)k—h(k)),  kES', 
         J=2  i=  11c,  *lc, 

for any bounded function  S'—*R, where  ki is the ith component of k and  Iki is a positive constant m 

such that  kESm  . For  kESm, A(k) denotes the transition rate from k. 

That is, 
 Iki 

 2(k)=0{(i,  ki=k;}  +E  m 
 i=lk'  #k, 

   Define  7' by  T--in.f{t0;1k(t)1._<1}  . 

   The Markov chain  {k(t)  ;  -0} is a generalized Kingman's coalescent process, and the stopping time T 

is called the coalescent time of the Markov chain. For any 1,  mEZ+, define  A(i,„,) by 
 A  (i,„,)  {(x,  Y)EE2  ;  x=  (xo,  x  ,  •  •  •  )  EE and  Y=(Y0,Y1,  •  •  •)EE  satisfy 

       1.  xvx„  •  •  • are distinct and  yo,  y1,  •  •  • are distinct, 

       2.  xi=ymand  xo  ,  xi  •  •  •x/-  Yo  Y1,  •  •  •  Ym_  I are distinct, 

      3.  xi+;  =xi+, for all  jEZ  ±} 

Now, we can state our main result. 

Theorem 2.4. The equality 

                        (1 eTyl-F.) (2.2) <1A(4.).4,X1.42>Z5(4)=Ek[eCT 2 ,, in;T<+00],1,                                I! 

holds for any  k=(k1,k2)ES2, where  1A(i„) denotes the indicator function of the set  A  (/,m). 

   The integrand of the left-hand side is the probability with respect to a random distribution  u that the



pair of x and y chosen independently from colonies  k, and k2 belongs to the set  A(l,m). The left-hand side 
is the expectation of the above probability with respect to the measure  Q(du) on P which is the stationary 

distribution of the measure-valued diffusion  {;(t)},>_0. The integrand of the right -hand side is a 
functional of the Markov chain  {k(t)},,, and the right-hand side is the expectation of the functional with 
respect to the measure Pk of the Markov chain. 

3. Dual process of the measure valued diffusion process 

   First, define random operators  {I`n}„1 for  1GN. Let  frijii>0 be the sequence of jump times of the 
Markov chain  {k(t)},,„, where  z()=-0.  {11},a0 denotes a sequence of random operators which are conditionally 
independent given K= {k(t) ;  tO} and satisfy 

 P[rn=oic]=c1;1_1<j, k1(z„—)=k(z,,—)}-1X1 (k.( z„)=-fiik,(en— ), and ki(z„—).---k.,(zn—)) for  1..u<j, 
and 

 P  [rn  identityl  lc  =1 
Here,  1, denotes the indicator function of an event A. 

   Since the operator  EL:,  1GN, is bounded on the both spaces  C(E1) and  B(Ei), the family of operators 
                                      a=i 

 {T ;(t)},0 given by  Ti(t)=exp  ftZLil is a Feller semigroup on  C(E1), and a strongly continuous semigroup 
                                             a=1 

on  B(E1). We set  M(t)  =  Ik(t)  I. Let us define a U B(Em)-valued process  {Y(t);t01 by 
 m=1 

 Y(0)  EB(Em(o) 

 17(t)--  zn) Y(;) for  tE  rrn,  TO, 
and 

 Yeraa+  =  rn+1  Tivf(t„)(  ;1+1  tn)  /7(  rn) 
for  neZ+. 

   Let P be the solution of the martingale problem  (A,A  0  ), and  {{(t);t0} be the coordinate process on 

 52=C([0,  cio),P). The process  {Y(t),  IC(t);t0) is called the dual process of the measure valued diffusion 

process  ({71(t) ;  tO),P). Now, we are in position to give a key statemant to prove Theorem 2.5. 

Theorem 3.1. Let (f, k) be any element of the set U  (B(Em)X,r). Then, the equality 
 rn=1 

                          0 (3.1) EPC<Aii(t)k>1=Eu- ,,,[17(t),A,_(/‘^ >1                                                                /, 

holds for any  t~0 

   This is a modified statement of Theorem 3.5 in  5). He has established the relation (3.1) for any 
 +.. 

 (f,k) of U  (C(r)X,r). Note that the continuity  of  f is not assumed in Theorem 3.1. 
          m=1 

   Since the proof is almost the same as that of Theorem 3.5 in  5), we will give only the outline of our 

proof in the rest of this section. 

   First, we note the following. We can construct the P-valued process  WO  ;  t~0} whose distribution is 

P and the dual process {(  Y(t),k(t));  tO} starting from  (f,k) on the same probability space so that these



two processes are mutually independent. Fix  te(0,  co), and set 

 F(s)=EC<  Y(s),/:(t—s)k„>] for 0-s_<t 

Then (3.1) is equivalent to the identity  F(0)=F(t). 

   We set 

 I(h)=E[<  Y(s+h),g(t—s—h)k,,, ,,>], 
then, the next lemma can be proved by the same way as the proof of Proposition 4.1 in  5). 

Lemma 3.2. If 

(3.2)  li(h)  —/(0)  I  <  0(h2) 

holds as  h 0 uniformly in  se [0,  t)  , then  (3.1) is valid. 

  Set 

(3.3)  I(h)  =i1  (h)  +./2(h  )+/3(h)  +R  (h) 
where 

(3.4)  ii(h)=E[<  7:14(,)(h) Y (s),1,7(t— s— h)k,s,>1 , 

 12(h)  =  EC  E  tr:(  <  Two—i(h—r)Oi,  Tivi(s)(r)11(s),A(t—s—h  ),6,k(s)> 
 Isi<Jsm(s) 

            — <  Tm(s)(h) Y(s),A(t—s—h),,..(s)>)dr], 

 M(s) 

 13(h)  =  EC  E  E mk,„,(,)< Tm(s)(h)vs) Y(s)/L---(t—s—h),,(k,)„,(,)>1xh, 
 i=lkES 

 R(11)  =1-(h)  —(4(h)  +1-2(h)  +13(h)). 

   The inequality, 

(3.5)  IR  (h  )  I  0(h2) uniformly in s as h  1,  0, 
can be verified by the same argument as that of Proposition 4.2 in  5). 

   Here, we give a remark on the solution P of the martingale problem for  (A,it  0) which is stated in 

Proposition 2.2. 

Proposition 3.3. Let  Ikl=m andfEll(r) 

               Mf,k(t)—=95f,k(i: (t))— j: (GO f,k) (g- (s))ds 
is a  (P,.  {F,})-martingale whose sample paths belong to  C([0,  o)  ;  R) almost surely. 

Proof. We can easily show that 
 =  tfEB(Em)  ;MAk(t) is a  (P,  {F/})-martingale} 

is closed with respect to the bounded pointwise convergence. Since  Dr includes  C(Em)  , we see that 

 Dr  =B(Em). 

Next,  X(t)=---4>f,k(ii(t)) is shown to satisfy that 

 X(  t)l—fot  {1(l—  1)  U(s)X(s)1-2+  /V(s)X(s)'  ds 
is a (P, {F1})-martingale for each  1EN  , 

where U(s) and V(s) are  {F,}-adapted  bounded processes not depending on 1. Therefore, we see that 

 EP[IX(t)—X(s)141cit—s12, Os_<_t<+c,3, 

which implies the continuity of paths of  Mf,k(t).



(3.6)  Rt(f,  k  ;  u)  = E  (<0i;  Tm(of,;(t-u),,,,,>  -<  Lcof,A(t-u)„>) 

 +E mk.i< Tni(of,/:(t-ori(,)k .> 
 i=lk,  ES 

for  fEB(Em),  k  =  (1c,,  •  •  •  dcm)Gri and  0  t. 

Lemma 3.4. For each  sE [0, t], 

(3.7)  11?1(f,k;u)122(k)11  f 

and 

(3.8) EPC<Aii7(t)k>]  =EP[<  T„,(s).f41(t—s)k>]  +EP[fos  Rt(f,k;u)dui 

holds, where P is the solution of the martingale problem for  (A,/20  ). 

Proof. (3.7) follows from (3.6) immediately. Making use of Lemma 4.3.4 of  Ethier. and  Kurtz[1] and 

Proposition 3.3, we can see that 

(3.9)  Z(s)<T(t—s)f,/,/(s)k>—fosli',.(f,k;  t—  u)du 
is a (P,  {Ft})-martingale for sE [0,  t]. Hence, 

 V[Z(t)]=EP[Z(t—s)], 

which is equivalent to  (3.8). 

   As a consequence of Lemma 3.4, we have 

 I(0)  =E[<  Y(s),/,‘(t—s),(s)>] 

    =E[E[<  Y  (s),  (t  —  s),
(o>  Ilf]] 

 =EC<  TM(S)(h)  Y  (s),  (t—  s—h)k(s)>]+ECih  Ri_s(Y(s),k(s);r)dr] 
 =II'  00+12*  (h)+1;(h) , 

where 

 /1"(h  )  =1-1(h  )  =E[Tm(s)(h)  (s),  (t  —  s  —  h)k,>], 

 .12.(h)  =EC  foh  (‹CbiiTm(s)(r)  Y(s),11—  (I—  s—r)0A,0>  Tito,o(r)  Y(s),  (t  —  s—r)k,s,>)dri, 
 ii<ism(s) 
 ki(s)---ki(s) 

and 
 M(s) 

 13(h)=EC  flik,kicojejh  <  Tm(s)(r)  Y  (s),  (t—  s  —r);(jok.(s)>  dr] 
                   i=1  k- ES 

   In order to get (3.2), it is sufficient to prove that 

(3.10)  14(h)--4*(h)I<0(h2) (i=2,3), 
holds uniformly in s as h 0. 

   Observing that the equalities 

(3.11)  EC<  c  b  iiTm(s)(r)  Y  (s),  (t—  s—r)sik(s)>i 
 =  E[<  Tm(s)-1(h—r)  cbifTm(s)(r)Y(s),ii(t—  s—h),sik,s,>] 

 +E[fah  rR,„( TA0s) (7')  Y(s),kik(s),  u)du] 
 =E[<Titico -1(h—r)  ibijni(s)(r)17(S), (t—  h)fijk(s)>]+  0(h  —r)  , 

and 

(3.12)  EC<  Tivi(s)(r) Y(s),117(t—s —r),(s) >1 =EC< Tivico(h) Y(s),,u(t— s —r)k(s)>1



 +E  Johs-r(TM(s)(r) Y(s),  Ic(s), u)du] 
 =E[<7714( s)(h)Y(s),g(t—s—r)ks,>]+0(h—r) 

follow from Lemma 3.4, we see 

 

112(h)-12:(h)1  <  f  0(h—r)dr=0(h2), 
uniformly in s as h 0. Similarly, we can see that  

113(h)-13.(h)10(112) 

uniformly in s as h 0. Therefore, we obtain Theorem 3.1. 

4. Proof of Theorem 2.4 

   Define  p and P2 by 

(4.1) (Pi.f)(xo,x1I,• •yoy1, •  •  • )=J:If(u,x0,x1,• • • ; yo yl,  •  •  • )du 
and 

 (P2f)  (X0  XI  YO  •  •  )=f0  I  f(X0  X  '  •  •  )du 
for any  feB(E2). Then, we see 

            2 1 

                     LL,--q0(p+P2-21), 
                                      i=1 

and 

                      1                  T
2(t) =exp {—28t(Pi-FP9-2n) 

                                                                                        - 

                     _e_otx (et/2)k   (P+P2)k.                            t
zio 

Note that  P1 and  P2 are commutative. Put  Y(0)=1A0„). Obviously,  Y(t)=T2(t) Y(0) for  t<  T. Here, we 
need the following lemma. 

Lemma 4.1. 
(1)  (PIIP2m)1A(z,.)=1D, where D is the diagonal set of E2, 
(2)  (PinP2n2)1A(4.)=0, if  rt1>1 or  n2>ni, 
(3)  012  (PnP2n2)1A(/,.)=0, if  (ni  n2)*(l,  m). 

   The proof of Lemma 4.1 is omitted, since it is easily shown. Using (2) in Lemma 4.1, we have 

           T2(t) Y(0) = T2(t)1A(i,„,)=e_9,`1(19//2)k(Pi P2)kl A(1,m)- 
                                       k=0 Ict 

By (1) and (3) in Lemma 4.1, we see that 

 Y(  =012  T2(  T) Y(0) 

                    e-OT(9772)1+m                                   if  T<+c.  P.m! 
Observing that Y(t) is equal to the constant for we get 

                     — 0 
            lien <Y(t),12k(t)>=e-OT COT/2)1+m a.s., for T<c/.                                l!ni! 

Since the equality 
 lirn  <  T2(t)  Y(0)  =0



                        -0 
           lim< Y(t),Ack(t)>=0  a.s„ for  T=+°. 

Hence, we get 

(4.2) ilin-LE<, - 0 _or(07Y2)1+'                      < Y(t)""ik(t)>1=-E0Aci,m),10[6. itm! ;  T<±c/3] 

                                         -19T(0772)1+'                       =Ek[e ;T<±co] .                                       l!ni! 

The last equality follows from the fact that T is a functional of the Markov chain {k(t)}. Using (3.1) and 
(4.2), we see that 

                                                      n,r/9)/+. 

(4.3)  lim  EP [<1A(100,iiki(t)X/1,,,(t)>1=Ek[e-9T('''' ; T<+co].   t---F-  1!m! 

It is clear that (4.3) implies 

       5<1 
                                    -T (0772)1+ 

            Av,m), AkiX19 itmt;T<+c/3]. 

Thus, the proof of Theorem 2.4 is complete. 

5. Corollary 

   Recall that 
 As= U  A(l,m),sEZ+. 

 l-Fm=s,l,mEZ+ 

 As stands for the set of pairs  (x,y)EE2, which have s segregating sites.  Let.  A_=U  As. 
 s=o 

 A_ means the set of pairs (x,y)EE2, which have an common ancestor. Then, we obtain the next 

statement. 

Corollary 5.1. The equalities 

                                    - OT(OTY  
(5.1) 5<iAs, Akix 142>I5(4) =Eck, ,k2j[e st;T<+c°] 

(5.2)  5<1,,,..,tik,  X1-42>  6(dii)  ,k9,[T<+co], 

(5.3)  5<1.A0,1-4,Xlik,›Ij(4)=-E(k,,k2)Ce  6T  ;  T<±co], 
and 

(5.4)  5Es<1iis,g,,,xiik2>  ;5(4)  T<+co] 
               s=0 

hold for any  (ki,koes2. 

Proof. We can obtain (5.1) by summing up the both sides of (2,2) for 1 and m satisfying  /-1-m-s. (5.2) 

follows from (5.1) through the summation for s. (5.3) is included in (5.1). We obtain (5.4) by summing 

up for s after multiplying the both sides of (5.1) by s. The proof is complete. 

   The left-hand side of (5.1),(5.2) and (5.3) stands for the average probability that the types of  two



genes randomly chosen from colonies  k1 andk2 have s segragating sites(have an common ancestor and are 
idetical respectively). That of (5.4) means the averaged number of segregating sites in a sample of two 

genes chosen in the same way as above. 

6. Examples 

   This section is devoted to two examples. 

Example 1. We consider the case that the set S of colonies is the d dimensional lattice  Zd. Assume on the 

migration rates  {m^,2},,,,,2Ezd that  mk,k, depends only on  k2—k1, and that  mk1k,>0 if and only if 

 k2—k1=±  6., for some  iG  {1,  2,  •  •  •,  d}  , where  6,—(50,61, • • •,5,j). 

Put 

 rak=ram for  k*O, and  m1,==±  Emk. 

   Define a Markov chain {k(t)} with state space  ZdUA, where  A is an extra point. The transition from 

kEZd is as follows. The distribution of the holding time  z at the initial state  kEZd(k*O) is the 

exponential distribution with parameter  2m0. The distribution of  k(z) is given by 
 P(k(z)=k-±e2)=(m,i+m_, ,)/2m,  (i=1,  2,  •  •  •,d). 

The distribution of the holding time  z at the state 0 is the exponential distribution with parameter 

 (1+2m0), and the distribution  k(z) is given by 

 P(k(z)=A)=1/(1-1-2mo) 

and 

 P(k(z)=-±ei)=(m,t+m_ei)/(1+2mo)  (i=1,  •  •  •  ,d) 

 A is assumed to be a trap. Define  T' by  7',  =inf{t-O  :k(t)GA}  . Then, we can easily see that the 

distribution  T' with initial state  k2—k1EZd is the same as that of T with initial state  (k„k2)EZdXZd. 

Hence, we see that 

 <+e/3)=1:',,ki,k2)  (T<+c/3). 

Therefore, we obtain that  P(A.,,k2,(T<  -I-c/J)=1 if and only if  d<2. 

Example 2. Assume that  S=Z1. The migration rate is assumed to have the same form as in Example 1. 

Namely, 

               p if  k2=k1±1 

                q if  k2=k,  —1 
                0 if otherwise, 

where  p>0, q>0,  p+q=1, and  mo=P+q. 

In this case, we can get the explicit form of the Laplace transform of the distribution of T. 

That is, 

 E(,,,,k2)CCAT]=a(A)b(A)i,  1=11c1—k2IEZ 
where 

                    a(A)=1   
                                1+11A2+4m0A' 

 b(A)  = 2m(A +2m0-4A2+4m,,,A)2m,,
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